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THE FIRST LAW OF Thermodynamics

by

Jerzy Borysowicz
Michigan State University

1. Examples of Energy Dissipation

A medium size car weighing 4000 lbs and moving with a speed of
55mph carries a large amount of kinetic energy. This energy is roughly
equal to the energy needed for an average person to climb a 2000 ft high
mountain, which is equivalent to 2 hrs of hard work; and yet, with a
medium hard pressure on the brake pedal, the car can be stopped in 20
seconds. After the brakes are cooled off there is no trace of the kinetic
energy left. There are many instances of the disappearance of kinetic
energy: a stone dropped on the ground; a collision of trains; gems polished
in a grinder; a man trying to warm himself up in cold weather, beating
his arms against his body. In some of the cases, the energy loss seems to
be accompanied by a heating of the surroundings. Careful examination
would show that some heat is produced in all cases. Is the heat a form of
energy? Is energy lost? What is heat? We shall discuss these questions
now.

2. Internal Energy

2a. Disordered Nature of Molecular Motion. Consider the mo-
tion of a stone thrown into the air. The molecules of the air are in a
constant motion and so are the molecules from which the stone is built.
However, there is a difference between the two kinds of motion. The air
molecules are very fast, as fast as 500m/s, and they move randomly in all
directions. Because of this randomness, it is difficult to observe their mo-
tion. Only when a very small region containing not too many molecules is
observed can the motion be detected. The molecules of the stone move all
together and therefore their motion is quite noticeable even though their
speed is small; on the order of, say, 40m/s. Due to collisions with the air
molecules, the stone will experience a force called “air resistance.” It is
quite interesting to consider the effect of these collisions on the speeds of
the air molecules.
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v + 2V v - 2V

v v

V
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Figure 1. A molecule, velocity ~v, hits a stone that has ve-
locity ~V . Two cases are shown: (a) the molecule approaches
from the left; (b) the molecule approaches from the right. In
each case the upper line shows the molecule’s velocity before
the collision, the lower line after it.

2b. Mechanical Energy into Molecular Motion Energy. During
the head-on collision of a molecule, of speed v, with a stone, of speed
V , the speed of the molecule will increase by 2V (see Fig. 1). A molecule
chasing the stone from behind and then colliding will decrease its speed by
2V . The change in the molecule’s kinetic energy in the head-on collision
will be

∆Ek =
1

2
m(v + 2V )2 −

1

2
mv2 = +2mvV ,

where we have neglected the small term 2mV 2 (we assume V ¿ v).
Similarly, for a collision from behind, we have:

∆Ek =
1

2
m(v − 2V )2 −

1

2
mv2 = −2mvV ,

The first impression is that the average kinetic energy of the air
molecules should remain constant. However, it takes more time to chase
the stone from behind than to meet it head-on, therefore the number of
head-on collisions in which energy is gained by the air molecules is larger.
Consequently, the average kinetic energy of the air molecules should in-
crease. This is not surprising. We assume that only elastic collisions
take place and that the total kinetic energy must be conserved. Because
the stone is slowing down, its kinetic energy must be transferring to the
disordered motion of the air molecules.

2c. Temperature and Molecular Motion. Although the motion of
the molecules of a gas is difficult to observe, a change in their average
kinetic energy is easily detected by monitoring the temperature of the
gas. For many gases this average kinetic energy is, to a good approxima-
tion, proportional to their temperature. In liquids and solids the random
motion of molecules is more complicated because they are close together
and are interacting with each other most of the time. In spite of the
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complicated nature of these internal motions their total average energy
(kinetic plus interactions) can be entirely determined by measuring the
temperature and volume of a solid or liquid.

2d. Internal Energy. This total average energy of internal molecular
motion is called “internal energy” and should always be taken into account
when considering the conservation of energy. For an ideal gas, there is no
potential energy since there are no interactions. Furthermore there is no
“structure” to the gas molecules, so the kinetic energy is simply mv2/2
for each molecule. The internal energy of an ideal gas of N molecules can
be expressed in terms of the average kinetic energy of the molecules1

U = NEk,ave =
1

2
Nmv2

RMS , (1)

or in terms of temperature:

U =
3

2
NkT =

3

2
nRT . (2)

For a non-ideal gas, the internal energy is usually expressed as:

U = CvT , (3)

where Cv is called the “heat capacity” of the gas. It is a quantity which
is proportional to the amount of gas in the system.

3. Heat and Its Mechanical Equivalent

3a. Intensive Character of Internal Energy. It has been explained
in the previous section that the internal energy is not related to the global
motion of a system but to its temperature. In everyday language, we
would say that a body with increased internal energy has higher temper-
ature or is hotter.

as. I. nternal Energy Transfer[]3bHeat The transfer of internal energy
can take place directly (without exchange of mechanical energy) when two
bodies are in contact. The internal energy will be transferred from the
higher temperature body to the lower temperature one. Again we would
say that there was flow of heat. It took a long time to recognize the
nature of heat and its relationship with energy and work. In textbooks,
heat is explained as a “form of energy” or a “form of energy transfer.”
The second definition of heat, as an energy transfer, is more precise.

1For the connection between average kinetic energy, RMS speed and temperature,
see “Temperature and Pressure of an Ideal Gas: The Equation of State” (MISN-0-157).
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Figure 2. Apparatus used to measure the
mechanical equivalent of heat. The weight
is let drop, thereby forcing the shaft to turn
and the paddles to stir the liquid.

3c. Heat Unit: Calories. The unit of heat is the “calorie.” It is
defined as the amount of heat needed to increase the temperature of one
gram of water from 14.5 ◦C to 15.5 ◦C. It is a good approximation to
assume that one calorie will increase the temperature of one gram of
water by 1 ◦C at any initial temperature in the liquid phase.

3d. Heat’s Mechanical Equivalent. In the case of the stone thrown
into the air, we noticed that the mechanical energy of the stone was
changed into the internal energy of the air and that the temperature of
the air would be changed by the heat flow. One should be able to deter-
mine precisely the amount of heat produced when a definite amount of
mechanical energy is converted into internal energy. The experiment with
the stone flying in the air is not well suited for this purpose. The kinetic
energy of the stone could be determined by measuring its mass and by con-
trolling its initial velocity. However, the amount of heat produced would
be very difficult to measure because of the large volume of air involved.
The first careful measurement of the heat equivalent of mechanical energy
was made by James Joule (1818-1889). In his experiment, a falling weight
pulled a string which rotated on a shaft with attached paddles immersed
in a water container (see Fig. 2). The lost mechanical energy is known
from the distance the weight falls and from the weight’s mass. The gain
in heat can be determined from the mass of water and the increase in its
temperature. The results obtained by Joule were quite accurate in his
time. The value accepted today is:

1 cal = 4.184 joules .

In whatever manner the mechanical energy E is changed into heat—by
stirring, rubbing, friction or during an inelastic collision—the amount of
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heat transferred, Q, is always found to be:

4.184×Q[in calories] = E[in joules].

4. Mechanical Work of Gases

4a. Change of Internal Energy into Work. The internal energy
of a system can be increased at the expense of mechanical energy as
was demonstrated in Joule’s experiment. The direct transfer of internal
energy from one body to another is possible when the two bodies have
different temperatures and are in contact with each other. Is it possible
to obtain mechanical energy from the internal energy of a gas or some
other substance?

4b. Work Done by a Gas: The Steam Engine. Indeed, such a
process can take place in machines which produce mechanical work while
burning some fuel. Let us consider the work stroke of a steam engine.
At the beginning of the stroke the steam is contained in a small part of
the cylinder and its pressure and temperature are high. When the stroke
is finished, the volume is larger and the pressure and temperature are
smaller. For example, in Fig. 3 the force F on the piston is

F = PA , (4)

where P is the pressure of the gas and A the surface area of the piston
exposed to the gas. If the displacement ∆S of the piston is small, the

T , P , Vi i i

T > Ti f A

DS

DV

T , P , Vf f f

Figure 3. Changes in state of the gas in an engine cylinder
during the piston stroke.
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Figure 4. P − V diagram
of an isothermal expansion.
Note that pressure decreases
as volume increases while tem-
perature is held constant.

pressure can be assumed to be approximately constant, and the work done
on the piston by the gas is:

W = F∆S = PA∆S = P∆V , (5)

where ∆V is the change in the volume of the gas during expansion. For
large displacements where P is not constant over the change in volume,
one should integrate over variable pressure with the result:

W =

∫ Vf

V0

P dV . (6)

This formula can be used if we know the pressure of the gas as a function
of its volume, either by mathematical formula or by a graphical represen-
tation known as a P − V diagram.2

4c. Work in an Isothermal Process. There are many ways in which
gas pressure may vary during an expansion. Let us imagine that the ex-
panding mass of gas is in thermal contact with a large body which has
a constant temperature. Such a body is often called a “heat reservoir.”
Because heat is allowed to flow freely between the gas and the heat reser-
voir, the temperature of the gas will remain constant. An expansion
during which the temperature is constant is called an “isothermal” ex-
pansion and if the system is closed, i.e. the amount of gas remains fixed,
the pressure will be inversely proportional to the volume:

PV = nRT = constant = P0V0 ,

2If the P − V diagram is given, the work is equal to the area under the curve. See
the relevant problems in this module’s Problem Supplement.

10



MISN-0-158 7

P =
P V
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V
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Figure 5. P − V diagram
of an adiabatic process. Note
that pressure decreases as vol-
ume increases and energy is
held constant.

so

P =
P0V0

V
, (7)

where P0 and V0 are initial values of the pressure and volume. The work
done during a isothermal expansion can be calculated now using Eq. (6):

W =

∫ Vf

V0

P dV =

∫ Vf

V0

P0V0

V
dV = P0V0`n

(

Vf
V0

)

. (8)

We have assumed here that the gas expanded from the initial volume V0

to the final volume Vf and that the initial pressure was P0. The isothermal
expansion is illustrated graphically in the P − V diagram of Fig. 4. The
shaded area is the integral of P with respect to V and thus represents the
work done by the gas during the expansion.

4d. Work in a Adiabatic Process. When the cylinder and piston
are good thermal insulators and/or the expansion is fast, the heat flow to
the expanding gas can be neglected. A process in which the gas does not
receive or produce any heat is called an “adiabatic” process. The pressure
in the adiabatic process depends on the volume in a more complicated
manner:

PV γ = constant = P0V
γ
0 ,

so,

P =
P0V

γ
0

V γ
, (9)

where P0 and V0 are the initial values of the pressure and volume and γ
is a constant. The constant γ is equal to approximately 1.4 for all gases
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with molecules composed of two atoms. This type of expansion is also
illustrated in a P − V diagram (see Fig. 5).

4e. Negative Value for Work Done on a Gas. Let us notice
that the work as defined in Eq. (6) is the work done by a gas. If the
gas is compressed, however, work is done on the gas by its surroundings.
Equation (6) still holds, but note that its value will be negative. In
general, a negative value of the integral shows that work is done on the
system, rather than by the system.

5. The First Law of Thermodynamics

5a. Conserving Mechanical + Internal Energy. We have learned
about a new form of energy (internal energy) and about different ways in
which mechanical and internal energy can be exchanged. We are ready to
introduce the “first law of thermodynamics,” which is nothing more than
the conservation law for these two kinds of energy.

5b. Energy Conservation in an Adiabatic Process. Consider
first a well insulated cylinder, with a well insulated piston, containing
a compressed gas that can only expand or contract adiabatically (see
Fig. 6). If the gas is allowed to expand, the piston may carry a load and
mechanical work will be performed. This work is done entirely by the
gas in the cylinder, which is thermally insulated from its surroundings.
Conservation of energy requires that the workW done by the gas be equal
to the loss of its internal energy U :

W = −∆U , (10)

where the minus sign means that the internal energy is lost when the gas
expands and does work.

5c. Energy Conservation in an Isothermal Process. Let us now
consider an isothermal expansion of the gas. In this case the cylinder
is made from a good thermal conductor and is in contact with a heat
reservoir. During the expansion the temperature of the gas will remain
constant and equal to the temperature of the heat reservoir. Therefore
its internal energy will remain constant too. This means that the work of
the expanding gas must come from some other source than the gas itself.
The only other source of energy is the heat reservoir. The energy will flow
in the form of heat from the heat reservoir to the gas. The work W done
by the gas must be equal to the heat Q absorbed by it:

W = Q . (11)

12
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Insulator, no heat flow Conductor, heat absorbed

Work out Work out

Q = 0;

T and U decrease

Q in;

T and U constant

a) b)

Figure 6. A piston moving in a cylinder: (a) an adiabatic
expansion; (b) an isothermal expansion.

5d. Energy Conservation in a General Process. In a real life
process usually both heat and internal energy are converted into work.
Such would be the case with a cylinder which is neither a perfect thermal
conductor nor a perfect insulator. The total balance of work, heat and
internal energy is:

W = Q−∆U .

Traditionally, this equation is written as

∆U = Q−W , (12)

and is known as the first law of thermodynamics. It says that the internal
energy gained by a system must be equal to the heat absorbed by the
system minus work done by the system.

5e. Generalization to Other Substances. We arrived at Eq. (12)
by assuming that energy is conserved and considering all possible ways
in which it can be exchanged. We should not be surprised to find that
Eq. (12) is valid, not only for an expanding gas, but also for all processes
in which work is produced, heat is exchanged and internal energy is gained
or lost. As with the simpler law of conservation for mechanical energy,
the first law of thermodynamics cannot be proved or derived. It was
discovered as a result of many observations and experiments. No violation
of the law has ever been observed.
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Glossary

• adiabatic: an adjective describing a process in which a system does
not experience any heat transfer. This means that the system is ther-
mally insulated from its environment.

• calorie: a unit of heat energy; the amount of internal energy transfer
necessary to raise the temperature of one gram of water from 14.5 ◦C
to 15.5 ◦C; abbreviated “cal.”

• cycle: a series of changes of state in a system resulting in a return to
the initial state.

• heat: a form of energy transfer involving the internal energy of a
system and mechanical work done on or by the system. The unit of
heat is the calorie.

• heat reservoir: a large system with enough constituents so that
transfers of heat to or from the reservoir do not significantly change its
temperature.

• heat capacity: a quantity used to express the internal energy of a
system as a function of temperature.

• internal energy: the total average energy of internal motion of a
system. At thermal equilibrium the internal energy can be expressed
as a function of temperature.

• isothermal: an adjective describing a process in which a system un-
dergoing a change in state does not experience a change in temperature.
For an ideal gas under closed conditions this implies that the product
of pressure and volume is constant.

• P −V diagram: a two-dimensional graph of the pressure of a system
as a function of volume. The work done on or by the system can be
represented as the area under the P (V ) curve between the initial and
final volumes.
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PROBLEM SUPPLEMENT

1 atm = 1.013× 105N/m2 = 1.013× 105 J/m3

1 liter = 1000 cm3 = 10−3m3

1N = 4.45 lb

1watt = 1 joule/sec

1mi/hr = 0.447m/s

1 cal = 4.184 J

T/ ◦C =
5

9
[(T/ ◦F)− 32]

T/K = T/ ◦C+ 273

Note: T denotes temperature

Note: Problem 7 also occurs in this module’s Model Exam.

1. A closed vessel contains 32 g of oxygen gas at 1.00 atm pressure. The
gas is heated with its volume kept constant. It is found that 5.0 calories
of heat are needed to raise the temperature of the oxygen by 1.00 ◦C.

Compute how much heat is needed to raise the temperature of 1.00 liter
of oxygen, initially at 1.00 atm pressure, from 0.0 ◦C to 1.00 × 102 ◦C
with its volume remaining constant? Help: [S-1]

2. The internal energy of the oxygen gas in Problem1 changes according
to the formula ∆U = Cv∆T . Compute the heat capacity, Cv:

a. for 32 g of oxygen

b. for 1.0 liter of oxygen at a pressure of 1.0 atm and a temperature of
0.0 ◦C (STP).

3. Compute the heat produced when a car weighing 4.0× 103 lbs brakes
and its velocity decreases from 55mph to 2.0× 101mph, assuming all
of the lost mechanical energy is converted to heat. Help: [S-6]

4. A gas vessel with a piston is heated up and is allowed to expand in
such a way that its pressure remains constant and equal to 2.0 atm.
The initial volume of gas is 6.0 liters and the final volume is 10.0 liters.
Find the work done by the gas. Help: [S-2]

15
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5. An ideal gas with volume 5.0 liters and pressure 2.5 atm undergoes an
adiabatic expansion. The final volume is 7.5 liters. Find the work done
by the gas during the expansion. Help: [S-3]

16
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6. One mole of an ideal gas goes through the cycle shown here in this P−V
diagram:

P0

V0 volume

pressure

a

b

c

2V0 3V0

2P0

a. Use the equation of state of an ideal gas, PV = nRT , and the
following data to find the temperature of the gas at points a, b, and
c. The answers we give follow from this “ideal gas” assumption.
P0 = 1.00× 10

6N/m2

V0 = 1.00× 10
−3m3

R = 8.314 J/(moleK)

b. What is the internal energy (in joules) of the gas at points a, b, and
c? Help: [S-4]

c. Calculate the work done by the gas as it goes from a to b; b to c; c
to a. Help: [S-8]

d. Calculate ∆U for each step: a to b; b to c; c to a.

e. Calculate Q for each step: a to b; b to c; c to a.

f. Calculate ∆U , W and Q for one complete cycle. Where does the
energy come from for the work output?

g. If this apparatus is to be used as an engine, how rapidly should it
complete each cycle for it to have a power output of 3.0HP? (1HP
= 746watts)

17
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7.
P

V

a

b c

d

Pt. Volume Pressure Temp.
(m3) (N/m2) ( ◦C)

a 1.245 2000 27
b 1.245 4000 327
c 2.490 4000 927
d 2.490 3000 627

A gas goes through the cycle illustrated above. The starting point is
at “a.” The values of the volume, pressure and temperature of the gas
during the cycle are shown in the table. The heat capacity of the gas
is CV = 5 cal/K.

a. Calculate the internal energy for each of the states a, b, c and d.
Help: [S-7]

b. Calculate the net work done by the gas during one complete cycle.
Help: [S-7]

c. How much heat is absorbed or liberated by the gas during the part
of the cycle from a → b? Help: [S-7] Repeat for the parts of the
cycle from b→ c, c→ d, d→ a. Help: [S-7]

d. Where does the energy come from for the work done during the
complete cycle? Substantiate your answer quantitatively.

e. If the system going through this cyclic process is to be used as an
engine, how rapidly should it complete this cycle for its output to
be 30 kilowatts?

Brief Answers:

1. Q = 22.3 cal

2. Heat capacity:

a. 5 cal/ ◦C

b. 0.223 cal/ ◦C

3. 113.6Kcal

4. 808 J

5. W = 474 J Help: [S-5]

18
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6. An ideal gas cycle:

a. Ta = 120K; Tb = 481K; Tc = 361K

b. Ua = 1.50× 10
3 J Help: [S-4]

Ub = 6.00× 10
3 J; Uc = 4.50× 10

3 J

c. Wab = 1.50× 10
3 J Help: [S-6]

Wbc = 1.50× 10
3 J; Wca = −2.00× 10

3 J; negative, compression

d. ∆Uab = 4.50× 10
3 J; ∆Ubc = −1.50× 10

3 J; ∆Uca = −3.00× 10
3 J

e. a to b: Qab = ∆Uab +Wab = 6.00× 10
3 J

b to c: Qbc = 0
c to a: Qca = −5.00× 10

3 J

f. ∆U = 0 for one cycle, since the gas returns to its original condition.
Summing the results of part (d) will verify this.
Using part (c) gives W = 1000 J.
Part (e) gives Q = 1000 J.
All the work output energy comes from heat input energy.

g. P =W/t so that t =W/P .
Using 1000 J as the work for one cycle, P as 3.0HP = 2238W gives
t = 0.45 sec, the time for one cycle.

7. A gas cycle:

a. point a, 1500 cal; point b, 3000 cal; point c, 6000 cal; point d, 4500 cal

b. 1868 joules

c. a→ b, 1500 cal absorbed; b→ c, 4190 cal absorbed; c→ d, 1500 cal
liberated; d→ a, 3744 cal liberated

d. Net heat absorbed = 1500 cal + 4190 cal − 1500 cal − 3744 cal =
446 cal = 1868 J = net work done

e. 16.1 cycles per second
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, Problem 1)

Note that there are two different quantities of oxygen in this problem,
heated by different amounts: first 32 grams heated 1 degree and then 1
liter heated 100 degrees.
The molecular weight of oxygen is 32, so 32 g of oxygen is one mole of
oxygen. To find out how many moles of oxygen are in 1 liter at 1 atm
pressure, (initially at 0 ◦C) use the equation of state for an ideal gas,
PV = nRT , or recall that at STP (0 ◦C, 1 atm) a mole of ideal gas
occupies a volume of 22.4 liters.

S-2 (from PS, Problem 4)

Since the pressure is constant, the integral for work reduces to the fol-
lowing simple form:

W =

∫ Vf

Vi

PdV = P

∫ Vf

Vi

dV = P (Vf − Vi).

On the P − V diagram, below, the shaded area represents this integral
and is easy to compute. UnframedEpsFigurem158gr09
Use: area=width×height= (2 atm)(4 `)= 8 atm `. Using the appro-
priate conversion factors this can be converted to joules.
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S-3 (from PS, Problem 5)

Here is the P − V diagram for this adiabatic expansion:

pressure (atm)

5.0          7.5 volume (liters)

PV
g
= (2.5 atm)(5.0 liter)1.4

= constant

The work done by the expanding gas is still represented by the area
under the curve, but there is no simple geometrical formula for com-
puting it. You must use the integral definition of work and integrate
P = P0V

γ
0 /V γ with respect to V from V = 5.0 liters to V = 7.5 liters.

Help: [S-5]

S-4 (from Problem 6b)

The equation for the internal energy of the ideal gas is given, in terms
of the gas’s temperature, in the text part of this module.

S-5 (from [S-3])

integral =
p0V

γ
0

−γ + 1

(

V −γ+1
f − V −γ+1

0

)

= 4.676 atm `

S-6 (from PS, Problem 3)

Advice: first convert to MKS and find: m = 1805 kg, vi = 24.59m/s,
vf = 8.94m/s.

S-7 (from PS, Problem 7)

Successfully work and thoroughly understand Problems 1-6, for which
help is provided, before attempting this problem.
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S-8 (from PS, Problem 6c)

You could compute the work done on/by the gas for each segment of
the cycle by finding the mathematical equation expressing pressure as
a function of volume and integrating between the appropriate limits.
For example from a to b the pressure varies linearly with volume so the
equation of a straight line is used:

P = αV + β

where α is the slope of the line and β is the intercept. These two
parameters are determined by evaluating the expression at two points
where the pressure is known, [obviously at point a(V0P0) and point
b(2V0, 2P0)] and solving the two resulting expressions for α and β:

P0 = αV0 + β ; α =
P0

V0

= 1.00× 109Nm−5

hence:
2P0 = 2αV0 + β β = 0

Thus P = (P0/V0)V and this may be integrated from a to b. Similarly
the pressure from b to c is P = −(P0/V0)V + 4P0, and the pressure
from c to a is simply P0. If this seems too complicated you may use
simple geometry to calculate the relevant areas under each P (V ) curve.
For example from a to b, the area under the curve is shown below:

P0

P0

P0

V0

V0

volume

pressure

a

b

c

2V0 3V0

2P0

V0

The work done by the gas in expanding from V0 to 2V0 is simply the
area of the shaded triangle and the shaded rectangle:

Area =
1

2
(base) × (height) + (width) × ( height)

=
1

2
(V0)(P0) + V0P0 =

3

2
P0V0
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MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet.

2.
P

V

a

b c

d

Pt. Volume Pressure Temp.
(m3) (N/m2) ( ◦C)

a 1.245 2000 27
b 1.245 4000 327
c 2.490 4000 927
d 2.490 3000 627

A gas goes through the cycle illustrated above. The starting point is
at “a.” The values of the volume, pressure and temperature of the gas
during the cycle are shown in the table. The heat capacity of the gas
is CV = 5 cal/K.

a. Calculate the internal energy for each of the states a, b, c and d.

b. Calculate the net work done by the gas during one complete cycle.

c. How much heat is absorbed or liberated by the gas during the part
of the cycle from a → b? Repeat for the parts of the cycle from
b→ c, c→ d, d→ a.

d. Where does the energy come from for the work done during the
complete cycle? Substantiate your answer quantitatively.

e. If the system going through this cyclic process is to be used as an
engine, how rapidly should it complete this cycle for its output to
be 30 kilowatts?

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 7.
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