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Solving the generalized Pell equation x2 −Dy2 = N

Copyright 2004 by John P. Robertson

Introduction

This article gives fast, simple algorithms to find integer solutions x, y to
generalized Pell equations, x2 − Dy2 = N , for D a positive integer, not a
square, and N a nonzero integer. Pell equations have fascinated for cen-
turies. Consider the smallest positive solution to the equation x2−Dy2 = 1
for 980 ≤ D ≤ 1005, as shown in Table 1 below. Sometimes this smallest
solution is quite small, and sometimes it is huge. If you don’t see a pattern,
don’t feel bad; neither do I. This lack of an easy relationship between the
value of D and the smallest solution is part of the appeal of these equations.

The main method we will present for solving the generalized Pell equa-
tion, the LMM algorithm, is only slightly more complex than the stan-
dard continued fraction algorithm for solving the Pell equation x2 −Dy2 =
1. While this method was known to Lagrange, it remained virtually un-
known until recently rediscovered independently by Keith Matthews [11]
and Richard Mollin [13].

What is presented here is sufficient for cases where D and N are “small.”
Even to solve these cases, you may want to have efficient algorithms to
solve the equation x2 ≡ D (mod |m|), and to factor integers. We give
references for algorithms to perform these last two functions, but we do not
give the algorithms themselves herein. Also, no proofs are given here, but
references to proofs are given. Williams [19] and Lenstra [7] discuss solving
Pell equations for large D.

If you just want to solve a particular equation, download Keith Matthews’
CALC from

www.numbertheory.org/calc/krm calc.html

and use the function patz(D, N), or find a link to CALC at Keith Matthews’
home page

www.maths.uq.edu.au/˜krm.

Or use his online BCMATH solver available at

www.numbertheory.org/php/php.html
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Minimum Positive Solutions

D x y

980 51841 1656
981 158070671986249 5046808151700
982 8837 282
983 284088 9061
984 88805 2831
985 332929 10608
986 49299 1570
987 377 12
988 14549450527 462879684
989 550271588560695 17497618534396
990 881 28
991 379516400906811930638014896080 12055735790331359447442538767
992 63 2
993 2647 84
994 1135 36
995 8835999 280120
996 8553815 271038
997 14418057673 456624468
998 984076901 31150410
999 102688615 3248924

1000 39480499 1248483
1001 1060905 33532
1002 206869247 6535248
1003 9026 285
1004 27009633024199 852416459730
1005 2950149761 93059568

Table 1: Minimum positive solutions to x2 −Dy2 = 1.
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(or use the link to BCMATH from his home page). Dario Alejandro Alpern
also has an online solver, available at

www.alpertron.com.ar/ENGLISH.HTM.

If you want some algorithms for solving these equations, this is the place.
If you want the theory behind these algorithms, see the references.

Methods specific to the given equation are presented here for x2−Dy2 =
±1, for x2−Dy2 = ±4, and for x2−Dy2 = N when N2 < D. For the general
Pell equation (arbitrary N 6= 0) there are at least five good methods:

1. Brute-force search (which is good only if the upper search limit,
given below, is not too large),

2. The Lagrange-Matthews-Mollin (LMM) algorithm,

3. Lagrange’s system of reductions,

4. The cyclic method, and

5. Use of binary quadratic forms.

Of these five, we will present only the first three. For the cyclic method
see Edwards [5]. For binary quadratic forms see Hurwitz [6] or Mathews [9].

Section headings are

1. PQa algorithm,

2. Solving x2 −Dy2 = ±1,

3. Solving x2 −Dy2 = ±4,

4. Structure of solutions to x2 −Dy2 = N ,

5. Solving x2 −Dy2 = N for N2 < D,

6. Solving x2 −Dy2 = N by brute-force search,

7. Solving x2 −Dy2 = N by the LMM algorithm.

8. Lagrange’s system of reductions.
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Annotated references and Tables 2 to 6 are at the end.
Web pages with material on continued fractions generally and Pell equa-

tions in particular (or with links to other such pages) are at the Number
Theory Web and at Eric Weisstein’s World of Mathematics. At the Num-
ber Theory Web, look for, “Descriptions of areas/courses in number theory,
lecture notes,” and look for the topics of interest. The URL is (note that
there is no longer a US mirror)

www.numbertheory.org/ntw/web.html

or

www.maths.uq.edu.au/˜krm/ntw/

At Eric Weisstein’s World of Mathematics, Number Theory section, look for
continued fractions and Diophantine equations. The URL is

mathworld.wolfram.com/topics/NumberTheory.html

PQa algorithm

This algorithm is at the heart of many methods to solve Pell equations,
including the LMM algorithm. It computes the (simple) continued fraction
expansion of the quadratic irrational (P0 +

√
D)/Q0 for certain P0, Q0, D,

and it computes some auxiliary variables.
Let P0, Q0, D be integers so that Q0 6= 0, D > 0 is not a square, and

P 2
0 ≡ D (mod Q0). Set

A−2 = 0, A−1 = 1,

B−2 = 1, B−1 = 0,

G−2 = −P0, and G−1 = Q0.

For i ≥ 0 set

ai =
⌊
(Pi +

√
D)/Qi

⌋
,

Ai = aiAi−1 + Ai−2,

Bi = aiBi−1 + Bi−2,

Gi = aiGi−1 + Gi−2,
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and for i ≥ 1 set

Pi = ai−1Qi−1 − Pi−1 and

Qi = (D − P 2
i )/Qi−1.

Exactly how far to carry these computations is discussed with each use
below.

Each of these variables will be an integer for all indices for which they are
defined. A key output of this algorithm is the sequence a0, a1, a2, . . . which
gives the continued fraction expansion of ξ0 = (P0 +

√
D)/Q0. That is,

(P0 +
√

D)/Q0 = a0 +
1

a1 +
1

a2 +
1

a3 +
1
· · ·

We write 〈a0, a1, a2, . . .〉 for this continued fraction expansion. The ai are
the partial quotients of ξ0.

Also, for i ≥ 0, set ξi = (Pi +
√

D)/Qi so the conjugate of ξi is ξi =
(Pi−

√
D)/Qi. Set ξ = ξ0 and ξ = ξ0. The ξi are the i-th complete quotients

of ξ. These much-studied variables have many interesting properties, of
which we list just a few.

1. For i > 0, ai > 0.

2. Each of the sequences {ai}, {Pi}, and {Qi} is eventually periodic.
Specifically, there is a least nonnegative integer i0 and a least positive
integer `, the length of the minimal period, so that for any integers
i ≥ i0 and k > 0, ai+k` = ai, Pi+k` = Pi, Qi+k` = Qi, and ξi+k` = ξi.

3. For i ≥ i0, 0 < Pi <
√

D, 0 <
√

D − Pi < Qi <
√

D + Pi < 2
√

D.

4. For i ≥ i0, if Qi 6= 1 then ai <
√

D, while if Qi = 1 then
√

D < ai <
2
√

D.

5. For i ≥ i0, ξi = (Pi +
√

D)/Qi is reduced, which means that ξi > 1 and
−1 < ξi < 0.

6. ξi = 〈ai, ai+1, ai+2, . . .〉 for i ≥ 0.

7. The ξi = (Pi +
√

D)/Qi are distinct for i0 ≤ i ≤ i0 + `− 1.
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8. gcd(Ai, Bi) = 1 for i ≥ −2.

9. The ratios Ai/Bi for i ≥ 0 are the convergents to the continued fraction
expansion of (P0 +

√
D)/Q0.

10. (P0 +
√

D)/Q0 = limi→∞
Ai

Bi
.

11. AiBi−1 −Ai−1Bi = (−1)i−1 for i ≥ −1.

12. AiBi−2 −Ai−2Bi = (−1)iai for i ≥ 0.

13. ξi = ai +
1

ξi+1
for i ≥ 0.

14.
P0 +

√
D

Q0
=

Aiξi+1 + Ai−1

Biξi+1 + Bi−1
for i ≥ −1.

15. P 2
i ≡ D (mod |Qi|) for i ≥ 0.

16. Qi = Qi−2 − ai−1(Pi − Pi−1) for i ≥ 2.

17. Gi = Q0Ai − P0Bi for i ≥ −2.

18. Ai −Biξ =
Gi −Bi

√
D

Q0
; Ai −Biξ =

Gi + Bi

√
D

Q0
for i ≥ 0.

19. (Ai −Biξ)
(
Ai −Biξ

)
=

(−1)i+1Qi+1

Q0
for i ≥ −1.

20. G2
i−1 −DB2

i−1 = (−1)iQ0Qi for i ≥ 0.

21. gcd(Gi, Bi) = gcd(Q0, Bi) for i ≥ −2.

22. gcd(Gi, Bi) divides Qi+1 for i ≥ −1.

23.
1

Bi + Bi+1
≤

ai+2

Bi+2
< |Ai −Biξ| <

1
Bi+1

for i ≥ 0.

24.
1

(ai+1 + 2) Bi
≤

1
Bi + Bi+1

for i ≥ 0;
1

2Bi+1
≤

1
Bi + Bi+1

for i ≥ 0.

25. |Ai − ξBi| <
1

2Bi
⇐⇒ |Qi+1| <

√
D, for sufficiently large i.
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26.

∣∣∣∣∣Gi −Bi

√
D

Q0

∣∣∣∣∣ <
1

2Bi
⇐⇒

∣∣∣G2
i −B2

i

√
D

∣∣∣ < |Q0|
√

D for sufficiently

large i.

27. b
√

Dc+
√

D is reduced.

In 2002 Keith Matthews proved item 22; if you know of earlier references,
I would like to hear of them.

The relation G2
i−DB2

i = (−1)i+1Qi+1Q0 will be important to us because
all of the methods of solution we discuss will involve setting Q0 = |N |, and
finding those i so that (−1)i+1Qi+1 = N/|N |. Then Gi, Bi will be a solution
to the equation being considered. From a computational viewpoint, also note
that, in some sense, Gi and Bi will typically be large, while Q0 and Qi+1

will be small. So this equation sometimes allows accurate computation of
the left-hand-side of G2

i − DB2
i = (−1)i+1Qi+1Q0 when the terms on the

left-hand-side exceed the machine accuracy available.
It is useful to determine when one has reached the end of the first period.

One method is as follows. As Pi and Qi are computed, determine whether
(Pi +

√
D)/Qi is reduced, and let ir be the smallest i for which this occurs.

Then find the smallest j > ir for which Pir = Pj and Qir = Qj . This j will
mark the start of the second period, so j − 1 is the end of the first period.

For certain P0 and Q0 there are ways to determine when one has reached
the middle of the first period, without computing the whole period. When-
ever either

P0 = 0 and Q0 = 1, or

D ≡ 1 (mod 4), P0 = 1, and Q0 = 2,

the following will hold. Let ` be the smallest index so that ` > 0 and
Q` = Q0 (= 1 or 2). If there is a j so that Pj = Pj+1, and j is the smallest
such, then ` = 2j, and the length of the period is even. Otherwise, there is
a j so that Qj = Qj+1, and if j is the smallest such, then ` = 2j +1, and the
length of the period is odd. For either case one can immediately compute
the second half of the first period using the following relations that express
the palindromic properties of the sequences Pi, Qi, and ai: Pi = P`+1−i

for i = 1, 2, 3, . . . , `, Qi = Q`−i for i = 0, 1, 2, . . . , `, and ai = a`−i

for i = 1, 2, 3, . . . , ` − 1. Also, a` = 2a0 if P0 = 0 and Q0 = 1, and
a` = 2a0 − 1 if P0 = 1 and Q0 = 2. This gives Pi, Qi, and ai through i = `,
and periodicity can be used to extend these sequences from here. There are
additional palindromic properties of these sequences that are easily seen by
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considering a few cases, e.g., (P0, Q0, D) = (0, 1, 94), (0, 1, 353), (1, 2,
217), (1, 2, 481).

Table 2 illustrates the PQa algorithm for P0 = 11, Q0 = 108, and D =
13. Computations are carried through a point slightly beyond the end of
the second period. Notice that each of the sequences {ai}, {Pi}, and {Qi}
is periodic for i ≥ 3. Within each period there is exactly one Qi = 1. For
a given P0, Q0, and D, there might not be any Qi = 1. But, if there is at
least one Qi = ±1, as happens here, then there will be exactly one Qi = 1
in each period of {Qi}. Note how the values of Ai, Bi, and Gi grow large as
i increases. To compute G2

i −DB2
i , it is easiest to compute (−1)i+1Q0Qi+1,

as Q0 is fixed and Qi+1 stays relatively small.
Continued fractions in general and the PQa algorithm in particular are

discussed in many texts, so we will refer the interested reader to the following
references to justify the assertions made above.

References - NZM [14], Mollin [12], Rockett and Szüsz [17], Cohen [3]

Solving x2 −Dy2 = ±1

To solve the equation x2−Dy2 = ±1, apply the PQa algorithm with P0 = 0
and Q0 = 1. There will be a smallest ` with a` = 2a0, which will also be
the smallest ` > 0 so that Q` = 1. Here ` is the length of the period of the
continued fraction expansion of

√
D. There are two cases to consider: ` is

odd, or ` is even.
If ` is odd, the equation x2 − Dy2 = −1 has solutions. The minimal

positive solution is given by x = G`−1, y = B`−1. For any positive integer
k, if k is odd then x = Gk`−1, y = Bk`−1 is a solution to the equation
x2 − Dy2 = −1, and all solutions to this equation with x and y positive
are generated this way. If k is an even positive integer, then x = Gk`−1,
y = Bk`−1 is a solution to the equation x2 − Dy2 = 1, and all solutions to
this equation with x and y positive are generated this way. The minimal
positive solution to x2 −Dy2 = 1 is x = G2`−1, y = B2`−1.

If the smallest ` so that a` = 2a0 is even, then the equation x2 −Dy2 =
−1 does not have any solutions. For any positive integer k, x = Gk`−1,
y = Bk`−1 is a solution to the equation x2 − Dy2 = 1, and all solutions to
this equation with x and y positive are generated this way. In particular,
the minimal positive solution to x2 −Dy2 = 1 is x = G`−1, y = B`−1.

The sequences Pi and ai are periodic with period ` after the zero-th
term, i.e., the first period is P1 to P` for the sequence Pi, and a1 to a` for
the sequence ai. The sequence Qi is periodic starting at the zero-th term,
i.e., the first period is Q0 to Q`−1.
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The previous section discusses the palindromic properties of the se-
quences Pi, Qi, and ai, and the half-period stopping rule.

There are several methods to generate all solutions to either of the equa-
tions x2 −Dy2 = ±1 once the minimal positive solution is known.

Consider first the equation x2 −Dy2 = 1. If t, u is the minimal positive
solution to this equation, then for the n-th positive solution xn + yn

√
D =

(t + u
√

D)n and xn − yn

√
D = (t − u

√
D)n. While each positive solution

corresponds to a positive n, these equations also make sense for n ≤ 0.
There is a recursion xn+1 = txn + uynD, yn+1 = tyn + uxn. Another
pair of recursions is (set x0 = 1, y0 = 0) xn+1 = 2txn − xn−1, yn+1 =
2tyn − yn−1. The comments in this paragraph apply whether or not the
equation x2 −Dy2 = −1 has solutions.

Now suppose the equation x2 −Dy2 = −1 has solutions, let t, u be the
minimal positive solution, and define xn, yn by the equation xn + yn

√
D =

(t + u
√

D)n. Then also xn − yn

√
D = (t − u

√
D)n. If n is odd, xn, yn

is a solution to the equation x2 − Dy2 = −1, and if n is even then xn,
yn is a solution to the equation x2 − Dy2 = 1. All positive solutions to
these two equations are so generated. The recursion xn+1 = txn + uynD,
yn+1 = tyn + uxn also alternately generates solutions to the +1 and −1
equations. Another recursion is (set x0 = 1, y0 = 0) xn+1 = 2txn + xn−1,
yn+1 = 2tyn + yn−1.

All solutions are given by taking the four choices of sign, ±xn, ±yn.
Perhaps the most succinct way to summarize the set of solutions is as

follows. Let x, y be any solution to x2−Dy2 = ±1. Let t, u be the minimal
positive solution of x2−Dy2 = ±1. Then for some sign, ±1, and some integer
n, x + y

√
D = ±(t + u

√
D)n. Note also that (t + u

√
D)−1 = ±(t− u

√
D).

Table 3 applies the PQa algorithm to solve x2 − 13y2 = ±1. The period
length ` is 5, so the equation x2 − 13y2 = −1 has solutions. The smallest
positive solution is given by x = 18, y = 5. The smallest positive solution
to x2 − 13y2 = 1 is given by x = 649, y = 180. Note that (18 + 5

√
13)2 =

649 + 180
√

13, (18 + 5
√

13)3 = 23382 + 6485
√

13, and (18 + 5
√

13)4 =
842401 + 233640

√
13.

References: NZM [14], Mollin [12], Olds [15], Rockett and Szüsz [17],
Leveque [8], Rose [18], and many other sources not listed here. Many intro-
ductory books on number theory cover the Pell ±1 equation.

Solving x2 −Dy2 = ±4

In some ways, solutions to the equation x2−Dy2 = ±4 are more fundamental
than solutions to the equation x2 −Dy2 = ±1. The most interesting case is
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when D ≡ 1 (mod 4), so we cover that first.
When D ≡ 1 (mod 4), apply the PQa algorithm with D = D, P0 = 1,

and Q0 = 2. There will be a smallest ` > 0 so that a` = 2a0 − 1. This will
also be the smallest ` > 0 so that Q` = 2. Then ` is the length of the period
of the continued fraction expansion of (1 +

√
D)/2. The minimal positive

solution to x2 −Dy2 = ±4 is then x = G`−1, y = B`−1. If ` is odd, it will
be a solution to the −4 equation, while if ` is even it will be a solution to
the +4 equation and the −4 equation will not have solutions.

Periodicity of the sequences Pi, Qi, and ai is similar to that for the ±1
equation. The section “PQa algorithm” discusses the palindromic properties
of the sequences Pi, Qi, and ai, and the half-period stopping rule.

If D ≡ 0 (mod 4), then for any solution to x2 − Dy2 = ±4, x must be
even. Set X = x/2, set Y = y, and solve X2 − (D/4)Y 2 = ±1. If X, Y is
the minimal positive solution to this equation, then x = 2X, y = Y is the
minimal positive solution to x2 − Dy2 = ±4. Alternatively, one can apply
the PQa algorithm with P0 = 0 and Q0 = 2. If ` is the smallest index so
that a` = 2a0, then the minimal positive solution is G`−1, B`−1.

If D ≡ 2 or 3 (mod 4), then by considerations modulo 4 one can see
that both x and y must be even. Set X = x/2, Y = y/2, and solve X2 −
DY 2 = ±1. If X, Y is the minimal positive solution to this equation,
then x = 2X, y = 2Y is the minimal positive solution to x2 − Dy2 = ±4.
Alternatively, use the PQa algorithm with P0 = 0 and Q0 = 1, but set
G−2 = 0, G−1 = 2, B−2 = 2, and B−1 = 0. If ` is the smallest index so that
a` = 2a0, then the minimal positive solution is G`−1, B`−1.

As with the ±1 equation, all solutions can be generated from the minimal
positive solution. Consider first the equation x2 − Dy2 = 4. If t, u is the
minimal positive solution to this equation, then for the n-th solution xn +
yn

√
D = [(t + u

√
D)n]/(2n−1) and xn − yn

√
D = [(t− u

√
D)n]/(2n−1). We

also have the recursion xn+1 = (1/2)(txn +uynD), yn+1 = (1/2)(tyn +uxn).
Another recursion is (set x0 = 2, y0 = 0) xn+1 = txn − xn−1, yn+1 =
tyn − yn−1.

Now suppose the equation x2 −Dy2 = −4 has solutions, let t, u be the
minimal positive solution, and define xn, yn by the equation xn + yn

√
D =

[(t + u
√

D)n]/(2n−1). Then if n is odd, xn, yn is a solution to the equation
x2−Dy2 = −4, and if n is even then xn, yn is a solution to the equation x2−
Dy2 = 4. All positive solutions to these two equations are so generated. The
recursion xn+1 = (1/2)(txn+uynD), yn+1 = (1/2)(tyn+uxn) also alternately
generates solutions to the +4 and −4 equations. Another recursion is (set
x0 = 2, y0 = 0) xn+1 = txn + xn−1, yn+1 = tyn + yn−1.

The set of solutions can be summarized as follows. Let t, u be the
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minimal positive solution of x2 − Dy2 = ±4. Then for any solution to
x2−Dy2 = ±4, there is a sign, ±1, and an integer n so that (x+y

√
D)/2 =

(±1)[(t + u
√

D)/2]n.
In some ways, the equation x2 − Dy2 = ±4 is more fundamental than

the equation x2 − Dy2 = ±1. The numbers 1 and 4 are the only N ’s so
that, for any D, if you know the minimal positive solution to the equation
x2−Dy2 = ±N , you can generate all solutions, and you can do this without
solving any other Pell equation. Also, if you know the minimal positive
solution to x2−Dy2 = ±4, you can generate all the solutions to x2−Dy2 =
±1. But the converse does not hold. The best that can be said as a converse
is that for D not 5 or 12, the solutions to the equation x2 −Dy2 = ±4 can
be derived from the intermediate steps when the PQa algorithm is used to
solve the equation x2 −Dy2 = ±1.

When D ≡ 1 (mod 4), considerations modulo 4 show that for any solu-
tion to x2 −Dy2 = ±4, x and y are both odd or both even. If the minimal
positive solution has both x and y even, then all solutions have both x and
y even. In this case, every solution to x2−Dy2 = ±1 is just one-half of a so-
lution to x2−Dy2 = ±4. If the minimal positive solution to x2−Dy2 = ±4
has both x and y odd, then D ≡ 5 ( mod 8), every third solution has x and y
even, and all other solutions have x and y odd. In this case, every solution to
x2−Dy2 = ±1 is just one-half of one of the solutions to x2−Dy2 = ±4 that
has both x and y even. When D ≡ 1 (mod 4), the equation x2−Dy2 = −4
has solutions if and only if the equation x2 −Dy2 = −1 has solutions.

When D ≡ 0 (mod 4), considerations modulo 4 show that for any solu-
tion to x2−Dy2 = ±4, x is even. If the minimal positive solution has y even,
then all solutions have y even (and x is always even). In this case, every
solution to x2 −Dy2 = ±1 is just one-half of a solution to x2 −Dy2 = ±4.
If the minimal positive solution to x2 − Dy2 = ±4 has y odd, then every
other solution has y even, and every other solution has y odd. In this case,
every solution to x2 − Dy2 = ±1 is just one-half of one of the solutions to
x2 − Dy2 = ±4 that has x and y both even. When D ≡ 0 (mod 4), it is
possible for there to be solutions to x2 − Dy2 = −4, but not solutions to
x2 −Dy2 = −1. This happens for D = 8, 20, 40, 52 and many more values.
Of course, x2 −Dy2 = −1 never has solutions when D ≡ 0 (mod 4).

When D ≡ 2 or 3 (mod 4), all solutions to x2 −Dy2 = ±4 have both x
and y even. Every solution to x2 −Dy2 = ±1 is just one-half of a solution
to x2 −Dy2 = ±4. The equation x2 −Dy2 = −4 has solutions if and only
if the equation x2 −Dy2 = −1 has solutions.

Table 4 uses the PQa algorithm to solve x2 − 13y2 = ±4. The smallest
` > 0 so that a` = 2a0 − 1, and hence Q` = 2, is ` = 1. As ` is odd, the
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equation x2 − 13y2 = −4 has solutions, and the smallest positive solution is
x = 3, y = 1. Then (3+

√
13)2/2 = 11+3

√
13, (3+

√
13)3/4 = 36+10

√
13,

(3 +
√

13)4/8 = 119 + 33
√

13, (3 +
√

13)5/16 = 393 + 109
√

13, and so on.
These alternately give solutions to the +4 and −4 equations. Every third
solution has both x and y even. Taking half of these solutions generates
every solution to x2 − 13y2 = ±1.

References - Cohen [3], NZM [14], Mollin [12], Leveque [8]. Cohen treats
the cases D ≡ 1 (mod 4) for D squarefree, and D = 4r for r ≡ 2 or 3 (mod
4), r squarefree. The above material is not really addressed directly in

either of NZM or Mollin. But the only matter above that is not trivially
derived from material in one or both of these sources is the proof that the
method for solving the equation works in the case D ≡ 1 (mod 4). Here,
one can imitate the proof in NZM for the equation x2 − Dy2 = ±1, and
make use of Mollin’s Theorem 5.3.4, p. 246. This will result in a proof for
all D ≡ 1 (mod 4), D not a square; not just for the D treated in Cohen.
Leveque only treats the generation of all solutions from the base solution.

Structure of solutions to x2 −Dy2 = N

If r, s is a solution to x2−Dy2 = N , and t, u is any solution to x2−Dy2 = 1,
then x = rt + suD, y = ru + st, is also a solution to x2 − Dy2 = N . This
follows from the relation (rt+ suD)2−D(ru+ st)2 = (r2−Ds2)(t2−Du2).
This fact can be used to separate solutions to x2−Dy2 = N into equivalence
classes. Two solutions x, y and r, s are equivalent if there is a solution t, u
to t2 −Du2 = 1 so that x = rt + suD and y = ru + st. An equivalent test,
which is easier to apply, is that two solutions x, y and r, s are equivalent if
and only if both (xr − Dys)/N and (xs − yr)/N are integers. As r = −1,
s = 0 satisfies r2 − Ds2 = 1 for any D, (−x, − y) is always equivalent to
(x, y).

It may help to view the set of solutions geometrically. If N > 0, then, as
an equation in real numbers, x2−Dy2 = N is a hyperbola with the x-axis as
its axis, and the y-axis as an axis of symmetry. The asymptotes are the lines
x ± y

√
D = 0. Let t, u be the minimal positive solution to x2 − Dy2 = 1.

Draw the graph of x2 − Dy2 = N over the reals. Mark the point (
√

N, 0),
which is on this graph. Now mark the point (t

√
N, u

√
N), which is also on

the graph. Continue marking points so that if (x, y) is the most recently
marked point, then the next point marked is (xt + yuD, xu + yt). All of the
points marked so far, apart from the first, have x > 0 and y > 0. Now, for
each point (x, y) that has been marked, mark all of the points (±x,±y) not
yet marked.
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The marked points divide the graph into intervals. Make the interval
((
√

N, 0), (t
√

N, u
√

N)] a half-open interval, and then make the other
intervals on this branch half-open by assigning endpoints to one interval.
Make the intervals on the other branch half-open by mapping (x, y) in the
right branch to (−x,−y) on the left branch. If there are integer solutions to
x2 −Dy2 = N , then

1) No two solutions within the same (half-open) interval are equivalent,

2) Every interval has exactly one solution in each class, and

3) The order of solutions by class is the same in every interval.

Instead of starting with the point (
√

N, 0), we could have started with
any point (r, s) on the graph, and marked off the points corresponding to
(r + s

√
D) · (±1) · (t+u

√
D)n. The above three comments would still apply.

The situation is similar when N < 0, except that the graph has the
y-axis as its axis, and the x-axis is an axis of symmetry.

If x2 −Dy2 = −1 has solutions, then any of these solutions can be used
to form a correspondence between solutions to x2 −Dy2 = N and −N .

Within a class there is a unique solution with x and y nonnegative, but
smaller than any other nonnegative solution. This is the minimal nonnega-
tive solution for the class. There is also either one or two solutions so that
y is nonnegative, and is less than or equal to any other nonnegative y in
any solution x, y within the class. If there is one such solution, it is called
the fundamental solution. If there are two such solutions, then they will be
equivalent and their x-values will be negatives of each other. In this case,
the solution with the positive x-value is called the fundamental solution for
the class. For N > 0, the fundamental solutions are on the hyperbola in the
intervals (√

N, 0
)

to
(√

N(r + 1)/2,
√

N(r − 1)/(2D)
)

, and

(
−
√

N, 0
)

to
(
−

√
N(r + 1)/2,

√
N(r − 1)/(2D)

)
.

For the first interval, the endpoints should be included, while for the
second interval they should be excluded.

For N < 0, the fundamental solutions are in the interval(
−

√
|N |(r − 1)/2,

√
|N |(r + 1)/(2D)

)
to
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(√
|N |(r − 1)/2,

√
|N |(r + 1)/(2D)

)
,

with midpoint
(
0,

√
−N/D

)
. In this interval, the first point should be

excluded, and the last point included.
When tabulating solutions, it is usually convenient to make a list con-

sisting of one solution from each class. Often, this list will be either the
minimal nonnegative solutions, or the fundamental solutions. Given any
solution in a class, it is easy to find the fundamental solution or the minimal
nonnegative solution for that class.

To summarize, given any solution in a class, all solutions in that class
are found by applying solutions to the equation x2 − Dy2 = 1. If r, s is
any particular solution to x2 − Dy2 = N , x, y is any other solution to the
same equation in the same class as r, s, and if t, u is the minimal positive
solution to the equation x2−Dy2 = 1, then for some choice of sign, ±1, and
for some integer n, x + y

√
D = ±(r + s

√
D)(t + u

√
D)n.

There are recursion relations among solutions similar to those presented
for the ±1 and ±4 equations. For instance, if (x1, y1), (x2, y2), and (x3, y3)
are three solutions in the same class, in consecutive intervals, and t, u is
the minimal positive solution to x2 − Dy2 = 1, then x3 = 2tx2 − x1 and
y3 = 2ty2 − y1.

As an example, consider solutions to x2 − 13y2 = 27. The minimal
positive solution to t2 − 13u2 = 1 is t = 649, u = 180 (Table 3). On the hy-
perbola x2−13y2 = 27 mark off the intervals bounded by the points (±

√
27,

0), (±649
√

27, ±180
√

27), (±842401
√

27, ±233640
√

27),(±1093435849
√

27,
±303264540

√
27), and so on. The points bounding these intervals are ap-

proximately (±5.196, 0), (±3372.303, ±935.307),
(±4377243.997, ±1214029.052), (±5681659335.856, ±1575808774.242).

The minimal positive solutions to x2 − 13y2 = 27 for each equivalence
class are (12, 3), (40, 11), (220, 61), and (768, 213) (methods for find-
ing these are given below). Note that they all lie in the interval (5.196,
0) to (3372.303, 935.307). The next larger solutions, equivalent respec-
tively to the first four listed, are (14808, 4107), (51700, 14339), (285520,
79189), (996852, 276477). These lie in the interval (3372.303, 935.307) to
(4377243.997, 1214029.052). The next larger solutions, again equivalent re-
spectively to the first four are (19220772, 5330883), (67106560, 18612011),
(370604740, 102787261), and (1293913128, 358866933). These all lie in the
interval (4377243.997, 1214029.052) to (5681659335.856, 1575808774.242).
Other equivalent points, and the intervals they fall into are readily com-
puted.
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References - NZM [14], Mollin [12], Chrystal [2], Leveque [8], Rose [18]

Solving x2 −Dy2 = N for N2 < D

When 1 < N2 < D, apply the PQa algorithm with D = D, P0 = 0,
Q0 = 1. Continue the computations until you reach the first `e > 0 with
G2

`e−1 − DB2
`e−1 = 1 (i.e., Q`e = 1 and `e is even. Note that `e = ` or 2`,

above). For 0 ≤ i ≤ `e − 1, if G2
i − dB2

i = N/f2 for some f > 0, add fGi,
fBi to the list of solutions. When done, the list of solutions will have the
minimal positive member of each class.

The list of all solutions can be generated using the methods of the pre-
vious section. Alternatively, all positive solutions can be generated by ex-
tending the PQa algorithm indefinitely.

As an example, consider x2 − 157y2 = 12. Here 122 < 157. Apply the
PQa algorithm with D = 157, P0 = 0, and Q0 = 1. The first `e with
Q`e = 1 and `e even is `e = 34. For i from 0 to 33, those i for which
G2

i − 157B2
i = 12 or 3 (= 12/22) are i = 1, 9, 13, 19, 23, and 31. For these

i, (i, Gi, Bi, G2
i −157B2

i ) are (1, 13, 1, 12), (9, 10663, 851, 12), (13, 289580,
23111, 3), (19, 241895480, 19305361, 3), (23, 26277068347, 2097138361, 12),
(31, 21950079635497, 1751807067011, 12). The corresponding solutions to
x2 − 157y2 = 12 are (13, 1), (10663, 851), (579160, 46222), (483790960,
38610722), (26277068347, 2097138361), and (21950079635497,
1751807067011). These are the minimal positive solutions for each equiva-
lence class.

References - NZM [14], Mollin [12], Chrystal [2]

Solving x2 −Dy2 = N by brute-force search

Let t, u be the minimal positive solution to x2 − Dy2 = 1. If N > 0, set
L1 = 0, and L2 =

√
N(t− 1)/(2D). If N < 0, set L1 =

√
(−N)/D, and

L2 =
√

(−N)(t + 1)/(2D). For L1 ≤ y ≤ L2, if N + Dy2 is a square, set
x =

√
N + Dy2. If (x, y) is not equivalent to (−x, y), add both to the list of

solutions, otherwise just add (x, y) to the list. When finished, this list gives
the fundamental solutions.

This method works well if L2 is not too large, which means that√
|N |(t± 1)/(2D)

is not too large. You must be able to perform the search between the limits
L1 and L2.
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To generate all solutions from these, see the section “Structure of solu-
tions to x2 −Dy2 = N”.

As an example, let’s solve x2 − 13y2 = 108 by the method of brute-force
search. The minimal positive solution of t2 − 13u2 = 1 is t = 649, u = 180
(Table 3), so L1 = 0 and L2 =

√
108(649− 1)/(2 · 13) ≈ 51.882. The y so

that 0 ≤ y ≤ 51.882 and 108 + 13y2 is square are y = 1, 3, 6, 11, 22, 39.
This gives solutions (x, y) of (±11, 1), (±15, 3), (±24, 6), (±41, 11), (±80,
22), and (±141, 39). These are the fundamental solutions for each of the
12 classes. The minimal positive solution equivalent to (−11, 1) is (4799,
1331) (because 108 > 0 we take (−11, 1) times −1 to get (11, −1), and then
“apply” (649, 180) to this to get 4799 = 11 · 649 + (−1) · 180 · 13, 1331 =
11 · 180 + (−1) · 649). Similarly the minimal positive solution equivalent
to (−15, 3) is (2715, 753). Continuing this way, and the sorting the final
results into increasing order, gives minimal positive solutions for each class
of (11, 1), (15, 3), (24, 6), (41, 11), (80, 22), (141, 39), (249, 69), (440, 122),
(869, 241), (1536, 426), (2715, 753), and (4799, 1331).

References - Mollin [12], Leveque [8], Rose [18]

Solving x2 −Dy2 = N by the LMM algorithm

This algorithm finds exactly one member from each family of solutions to
the captioned equation for N 6= 0, D > 0, D not a square.

Make a list of f > 0 so that f2 divides N . For each f in this list, set
m = N/f2. Find all z so that −|m|/2 < z ≤ |m|/2 and z2 ≡ D (mod |m|).
For each such z, apply the PQa algorithm with P0 = z, Q0 = |m|, D = D.
Continue until either there is an i ≥ 1 with Qi = ±1, or, without having
reached an i with Qi = ±1, you reach the end of the first period for the
sequence ai. In the latter case, there will not be any i with Qi = ±1. If
you reached an i with Qi = ±1, then look at r = Gi−1, s = Bi−1. If
r2 −Ds2 = m, then add x = fr, y = fs to the list of solutions. Otherwise,
r2−Ds2 = −m. If the equation t2−Du2 = −1 does not have solutions, test
the next z. If the equation t2 − Du2 = −1 has solutions, let the minimal
positive solution be t, u, and add x = f(rt + sud), y = f(ru + st) to the list
of solutions. Alternatively, continue the PQa algorithm for one more period,
to the next Qi = ±1, take r = Gi−1, s = Bi−1, and add x = fr, y = fs to
the list of solutions. Note that gcd(r, s) = 1, so the solution generated to
the equation x2 − Dy2 = m is primitive (the solution being either r, s, or
(rt + sud), (ru + st)).

When you have done every f , and every z for each f , the list of solu-
tions will have one member from each class. These solutions will be either
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fundamental or the minimal positive solution for the class.
To generate all solutions from these, see the section “Structure of solu-

tions to x2−Dy2 = N”. Alternatively, for each z that gives rise to solutions,
you can extend the PQa algorithm indefinitely.

When N = ±1 this is the method given in the section “Solving x2 −
Dy2 = ±1,” above. When N = ±4 and D ≡ 1 (mod 4) this method is an
alternative to the method presented in the section “Solving x2−Dy2 = ±4.”

If |N | is large, it may be necessary to have an efficient method to factor
N to make the list of f ’s so that f2 divides N . The literature on factoring
is vast. Many mathematical software packages, such as Maple or PARI,
have efficient factoring systems built in. Methods for factoring integers n
include trial division up to

√
n, Fermat’s method, Pollard’s rho method. Pol-

lard’s p − 1 method, using binary quadratic forms, the Brillhart-Morrison
continued fraction factoring algorithm, D. Shanks’ square-free factorization,
Pomerance’s quadratic sieve, Pollard’s number field sieve, and Lenstra’s el-
liptic curve method. See NZM [14], Crandall and Pomerance [4], Pomerance
[16], Bressoud [1], Mollin [12], and many other sources.

Also, if |N | is large, it may be necessary to have an efficient method to
solve the equation x2 ≡ D (mod |m|). Cohen [3] gives some methods for
solving x2 ≡ D (mod p) where p is an odd prime. From such solutions, one
can readily solve the more general equation x2 ≡ D (mod |m|).

When N is large, the other methods (Lagrange’s system of reductions,
cyclic method, binary quadratic forms) also require efficient methods to
factor integers and to solve x2 ≡ D (mod |m|).

Keith Matthews has a program CALC, available at

www.maths.uq.edu.au/˜krm

that applies this algorithm. Use the function patz(D, N).
He also has an online BCMATH solver available at

www.numbertheory.org/php/php.html.

I call this the LMM algorithm because it has been independently dis-
covered by Lagrange, Matthews, and Mollin. Matthews [10] has extended
this algorithm to an efficient algorithm for solving the more general binary
quadratic form equations ax2 + bxy + cy2 = N , where D = b2− 4ac > 0 and
N 6= 0.

As an example, let’s solve x2 − 13y2 = 108 using the LMM algorithm.
The f > 0 so that f2 divides 108 are f = 1, 2, 3, 6. Start with f = 1, so
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m = 108. The solutions to P 2
0 ≡ 13 (mod 108) are P 2

0 ≡ ±11 (mod 108)
and P 2

0 ≡ ±43 (mod 108). The PQa algorithm with P0 = 11, Q0 = 108
and D = 13 is shown in Table 2. As Q1 = −1 we look at G2

0 − 13B2
0 =

(−11)2 − 13 · 12 = 108. So start the list of solutions with (G0, B0) = (−11,
1). Applying the PQa algorithm with P0 = −11, Q0 = 108 and D = 13
gives Q2 = 1, and we add (11, 1) to the list of solutions.

The PQa algorithm with P0 = 43, Q0 = 108 and D = 13 is shown in
Table 5. Here Q3 = 1, but G2

2 − 13B2
2 = 232 − 13 · 72 = −108. As the

equation t2 − 13u2 = −1 has solutions, with the minimal positive solution
being t = 18, u = 5 (Table 3), we add x = 23 · 18 + 7 · 5 · 13 = 869,
y = 7 · 18 + 23 · 5 = 241 to the list of solutions. Note that we also could
have read this solution off the line for i = 7 in Table 5. Applying the PQa
algorithm with P0 = −43, Q0 = 108 and D = 13 gives Q6 = 1, and we add
(41, 11) to the list of solutions.

For f = 2, we have m = 27. The solutions to P 2
0 ≡ 13 (mod 27) are

P 2
0 ≡ ±11 (mod 27). Applying the PQa algorithm with P0 = 11, Q0 = 27

and D = 13 gives Q3 = 1, and gives (5, 2) as a solution to x2− 13y2 = −27.
From this we derive the solution (220, 61) to the equation x2 − 13y2 =
27, and multiply by f = 2 to get the solution (440, 122) to the equation
x2 − 13y2 = 108. Continuing in this manner, we get the list of solutions
shown in Table 6. Each is either the fundamental solution or the minimal
positive solution for its class. Note also that each solution found to an
equation x2 − 13y2 = 108/f2 has x and y relatively prime.

References - Matthews [11, 10], Mollin [13]

Lagrange’s system of reductions

This method can be applied to the equation x2 −Dy2 = N when N2 > D.
If N2 < D, see the appropriate section above.

The basic observation is that if x ≥ 0, y ≥ 0 is a solution to x2−Dy2 = N
with N2 > D, then there are 0 ≤ k ≤ |N |/2, X, Y so that h = (k2 −D)/N
is an integer, X, Y is a solution to X2 −DY 2 = h, and either x = |(kX +
DY )/h|, y = |(kY + X)/h| or x = |(kX −DY )/h|, y = |(kY −X)/h|.

Often, it is necessary to apply this reduction recursively. That is, one
starts with an equation x2 − Dy2 = N , and for each 0 ≤ k ≤ |N |/2 with
h = (k2−D)/N an integer, one gets an equation X2−DY 2 = h. If h2 > D
then one applies the reduction to this last equation. Continue each branch
that may result until you get an equation with h2 < D, which will happen
eventually. This is then solved by methods in previous sections. Take one
solution from each class. Then track back through the several reductions
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to get solutions to the original equation. To find a solution to the original
equation in each class, solve each equation x2−Dy2 = N/f2 for every f > 0
so that N/f2 is an integer, and take fx, fy as solutions to the original
equation.

References - Chrystal [2, pp. 482–485] or Mollin [12, p. 305]

Please send comments to JPR2718@AOL.COM.
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The PQa Algorithm

i Pi Qi ai Ai Bi Gi G2
i −DB2

i

-2 0 1 -11
-1 1 0 108
0 11 108 0 0 1 -11 108
1 -11 -1 7 1 7 31 324
2 4 3 2 2 15 51 -324
3 2 3 1 3 22 82 432
4 1 4 1 5 37 133 -108
5 3 1 6 33 244 880 432
6 3 4 1 38 281 1013 -324
7 1 3 1 71 525 1893 324
8 2 3 1 109 806 2906 -432
9 1 4 1 180 1331 4799 108

10 3 1 6 1189 8792 31700 -432
11 3 4 1 1369 10123 36499 324
12 1 3 1 2558 18915 68199 -324
13 2 3 1 3927 29038 104698 432
14 1 4 1 6485 47953 172897 -108
15 3 1 6 42837 316756 1142080 432
16 3 4 1 49322 364709 1314977 -324

Table 2: PQa algorithm for P0 = 11, Q0 = 108, and D = 13.
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Solving x2 − 13y2 = ±1

i Pi Qi ai Ai Bi Gi G2
i −DB2

i

-2 0 1 0 0
-1 1 0 1 1
0 0 1 3 3 1 3 -4
1 3 4 1 4 1 4 3
2 1 3 1 7 2 7 -3
3 2 3 1 11 3 11 4
4 1 4 1 18 5 18 -1
5 3 1 6 119 33 119 4
6 3 4 1 137 38 137 -3
7 1 3 1 256 71 256 3
8 2 3 1 393 109 393 -4
9 1 4 1 649 180 649 1

10 3 1 6 4287 1189 4287 -4
11 3 4 1 4936 1369 4936 3
12 1 3 1 9223 2558 9223 -3
13 2 3 1 14159 3927 14159 4
14 1 4 1 23382 6485 23382 -1
15 3 1 6 154451 42837 154451 4
16 3 4 1 177833 49322 177833 -3
17 1 3 1 332284 92159 332284 3
18 2 3 1 510117 141481 510117 -4
19 1 4 1 842401 233640 842401 1
20 3 1 6 5564523 1543321 5564523 -4

Table 3: PQa algorithm for P0 = 0, Q0 = 1, and D = 13.



July 31, 2004 25

Solving x2 − 13y2 = ±4

i Pi Qi ai Ai Bi Gi G2
i −DB2

i

-2 0 1 -1 0
-1 1 0 2 4
0 1 2 2 2 1 3 -4
1 3 2 3 7 3 11 4
2 3 2 3 23 10 36 -4
3 3 2 3 76 33 119 4
4 3 2 3 251 109 393 -4
5 3 2 3 829 360 1298 4
6 3 2 3 2738 1189 4287 -4
7 3 2 3 9043 3927 14159 4
8 3 2 3 29867 12970 46764 -4
9 3 2 3 98644 42837 154451 4

10 3 2 3 325799 141481 510117 -4
11 3 2 3 1076041 467280 1684802 4
12 3 2 3 3553922 1543321 5564523 -4
13 3 2 3 11737807 5097243 18378371 4
14 3 2 3 38767343 16835050 60699636 -4

Table 4: PQa algorithm for P0 = 1, Q0 = 2, and D = 13.
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One Step in the LMM Solution of x2 − 13y2 = 108

i Pi Qi ai Ai Bi Gi G2
i −DB2

i

-2 0 1 -43
-1 1 0 108
0 43 108 0 0 1 -43 1836
1 -43 -17 2 1 2 22 432
2 9 4 3 3 7 23 -108
3 3 1 6 19 44 160 432
4 3 4 1 22 51 183 -324
5 1 3 1 41 95 343 324
6 2 3 1 63 146 526 -432
7 1 4 1 104 241 869 108
8 3 1 6 687 1592 5740 -432

Table 5: PQa algorithm for P0 = 43, Q0 = 108, and D = 13.

The LMM Algorithm

f P0 Q0 x y

1 11 108 -11 1
1 -11 108 11 1
1 43 108 869 241
1 -43 108 41 11
2 11 27 440 122
2 -11 27 80 22
3 1 12 141 39
3 -1 12 249 69
3 5 12 -15 3
3 -5 12 15 3
6 1 3 1536 426
6 -1 3 24 6

Table 6: Results of LMM algorithm for x2 − 13y2 = 108.


