1901.

 J. Bombay NaT. HisT. Soc.

 J. Bombay NaT. HisT. Soc.} 13:592-610.

A PLEA FOR THE COLLECTIVE INVESTIGATION OF INDIAN CCLICIDILE, WITH SUGGESTIONS As TO HOOT POINTS FOR ENQUIRY, AND A PRODROIICS OF SPECIES KNOUT TO THE AUTHOR.
 By Gao. M. Gie;, Lt.-Col., I.M.S. (Licuab before the: Bombay Natural History Sucicty on 11 at December, 1500.)

Within the last week wo have received in Indian tho dena at :l, experiments conducted in the London School of Tropical Muses under the direction of Dr. Manson, which conclusively demand....
 quito cs. A number of mosquitoes of the genus Anopheles wee ann..... to bite a patient suffering from tertian ague in Italy. They wow n:- : transported to England and made to bite two healthy young Em: students. Both these gentlemen developed tertian malaria.: inc. and the characteristic parasites of the disease were form in thar hin i.

I can see in this experiment no possible source oi thlaty. is \therefore absolutely conclusive of the fact that this is at the very la ni can : the methods of the transmission and propagation of the dimers, : :... a very little consideration will shew any one conversant with : $:$, of parasitism that it is also necessarily the only one, saris only the intravenous injection of the blood of a patient sufficing from ria into the vessels of a healthy subject, a method havel lay :occur in mature.

The reason for our assurance of this is that the material requires two successive hosts-a human being and a mosyuth-i.... sexual maturity and propagation. In the blood of the firer tace. multiplies non-sesual!y; in the tissues of the mosquito it dives :- : $:$. ally. Now there are a large number of parasites which have an we.. parallel history, the most familiar being thin of the tallow, ra...... lives and multiplies asexually in Herbirorct and otic eaten a.f.i.... and passes its sexually mature life in the Cobrivara, and ciber:ans eating animals. Just as it is possible to introduce an asoxituly na $\quad \therefore$ ing malarial protozoon mechanically into the veins of a headily: :... would it, doubtless, be practicable in these days of abdominal sure: lay open the intestine and introduce into it a living tapeworm, v:.
ond, doubtless, continue to thrive in its now host. But in the ordiary plan of nature the eggs discharged from the bowel of the cating amal are discharged in situations whon they are likely to be allowed by the enten animal, and in the latter produce the aspaually ...:hiplying bladder wonm. This, when swallowed with its eaten host, welopes in the eating animal once more into the sexually multiplying \therefore-worm.
Suw, although we are acquainted with a large number of parasitic lifo-\because-ories of this chamcter, we know of no instance in which a parasite wh such a history is capablo of maintaining the continuity of the $\because \cdot \operatorname{cirs}$ in any other mamer, and it will be, indeed, astonishing if the Exial parasite should prove an exception to what has been hithorto inamd to be an unvarying law of parasitism.
In fact, no one who has any special knowledge of the subject will Ehere that there can under the circumstances be any other route of isfection. Either the idea that the mosquito is the alternative host of the malarial parasite is a huge mistake, or it is, under natural circumanos, the one and only method of infection. There is no tenable aitle position.
Jost of the apparent exceptions depend on the fact that, like most Ah: two-host life-history parasites, the host carrying the sexual phase \therefore, the malarial parasite may do so for years withont any perceptible imnvenicnce. A bladder worm may have to lie imbedded in the tissues \therefore Ar ox for years before the animal is turned into beef and devoured : a man.
Then its opportunity has come and it developes into a tape-worm, ch sexually monltiplied strikle of which is a complete hermaphrodite va:lly mature animal.
\therefore so with the malarial parasite. An infected person may have no able symptoms, but lurking in his tissues are the parasites ready to $a r:$ again on their course of asexual multiplication should any acciEat liring the resisting power of the hust safficiently low.
Honco persons who have had no recent opportunity of being bitten mosquitoes often do develop a typica! agne: but the fact remains A..: they must have been bitten at some time, and as a matter of fact, \therefore interval is a concern of but little moment to the parasite. The A.s, in fact, though apparently well, has latent malaria; in other
words, he harbours but a harmless number of quicscont parasites, and: : exception is only apparent. The fact of the possibility of the:c..... mission of malaria in this way having thus boen now conc:.:-in, domonstrated, wo may tako it as pmetically certain that evory mand ... pationt has at somo time been bitton by an infected mosquito. Furi...: i: appears probable that only mosquitoes of the genus Anophelds::0c a. ablo of acting as the host of the asoxual stage of the parasito, l,: $:=$. is not cortain. Now the malarial parasite is responsitlo for ly f... : : . greatest proportion of all sicknoss and death in the tropics.

Cholera and Plague are comparativoly insignificant enomics th...: - :haps lill a few thousands a year, in on impressive way it is true. 1l..: : quiet, insidious malaria sweeps off its millions, and the utmost einat :. . . has yet boon mado in Indial has been the vote of the magninicem :....: Rs. 30 per monsem by the city-fathers of Calcutia, to hire a:.... destroy mosquito larve. I doubt if India will over be a $\quad \therefore$:.... residence for the white mon for the greater part of the your, $1 . .1 \times$ by no means sure that the tropics would not be well nigit as i......; a residence as the temperate zone, could wa but do away wilt :an...

Under these circumstances, it is obvious that the first st: $: \%:$: attack of the problem of prevention is the acquisition of an exic: :. ledge of the life-history of the various species of mosquito .: malarial country, and this is a task which might well be tuke: :? the members of this Society, and it is to urge :yon you law: might be done by a body animated by a common interest in: history, such as the Bombay Natural History Society, th.: :.:\% ... glad to comply with the request that your Honcrary Secres.:done me the honour to make to me of contributing a paju ... \therefore subject to yonr transactions. Such experimenis and observ.... badly wanted, for the number of workers is extremely sman!, :...: .: surprising how dificult it is to induce people to no to tho lew: :. either to observe or even to avail themselves of what is alrualy : to protect themselves from the attacks of the most wider: $\because:$ and destructive of trovical diseases.

Such boing the case, I would suggest to the mombers of ther the following points for coilective effort and investigation:-

1. To make a representative collection of the mosquiturs of! In which connection I shall be barry to receive, and, as far :an 1
and all collections sent to me. Wherevor possible, it will be well to .d a series of specimens, so that it may provide for sending duplicate .an to Mr. Theobald, who is also working at the group for the imi:isi Jruscum, and to admit of spocimens boing retumod for the focence of the colloctor, as well as providing specinens for the Sy ci...uetion.
2. Tho identification of larve and pupe with their corresponding . Aisitinsects, which is best ascertained by "breeding out." In conducting usin osporiments it is important to copry as mearly as possible, natural ...itions. It is, for example, very diffenlt to keep Anopheles larra Aire fur any length of time, except in a large apparaius in which awn conditions aro followed. A large mand, half filled with mad :: m an Anopheles porl, and filled with its water corered with a rrejpondingly largo net, is required.
:. Tho manner in which cach species tides over the season unSwomblo to its multiplication. Anopheles, e.g., at any mato, in Northem In:a, is rare in the hot weather, but I am inclined to beliove that a . nitul search will discover all stages of the insect all tho year romi. And, in any zase, the adalts, though scurce in the hot weather, are wer untiocly absent, but it may be that larva also survive in asho localities. At present, in the North- T_{a} est P:orinces, for csmple, larre are to be found in great numbers, but pupe are very $=: \therefore$. It may be, therefore, that the duration of larval life is protracted, rI that the change with the pupal stage is indefivitely posiponed \because a cold which is yet insufficient to kill tho larva outright.
It has been suggested that the adults deposit their egres on dry -and, in places likely to be covered with water in the misis. Zoologiay spensing, this is in the last degreo improbable, but the question \therefore Uud be tested. To do so, a known Anopheles pool should be corered i., :fier it has dried up, with wire gauze.

It the idea be founded on fact, larro should be found during the ...wing rainy season in the pool thus protected from the visit of .ait females.
It has also been suggested that the larva can resist dissecation. I -are esperimented on this point and find that the larro die and decom\cdots lone boore the mud in which they have beon stranded is anything cary; but confirmatory observations are desimblu.
t. The methord and place of deposilion of ora.-As reganis Ahay inh. there is a good deal of doubt. I have never found tho egas except ea water, and it is in the last degree unlikoly that thoy are prom deposited elsowhero. Observations of insects pliced under suct unvataral surroundings as the intorior of a test tube are valueless in such connection, as the gravid insect must drop her eges somewher, As a colleague of mine romaks; he knew of a case of a haty wim was confined in a hake-ran, but it does not follow that a tranian motion is the natural lying-in place of the human female. I law, known Culex pipiens deposit eggss in a pill box, but the owa so dejoinind though promptly placed in water, failed to hatch out.

It is rather difficult to distinguish the erges of Arojhele, owing in the smallness of the groups. Tho best plan of searching for ther:a is to skim the surface of the pool with a tablo-spoon and to camine the water so skimmed in a shatiow glass vessel placed on a shect of whan paper mons of a powerful hand lons. A rery good wengen fir skimning is tho tablo appliance known as a "crumb-scoop."
5. Methods of destroying mosquitocs.-I fear that the tain a. preventing malaria by the systematic destruction of Anopheles liert:, is a much larger order than we have been led to believo. It has twe: gravely suggested that a map of such pools should bog pirparen in. every town, but in India, in the rains, such maps would hawe to he is: a large senle, for they are simply everywhere. As a ruie, you will 10 : find them in large collections of water, especially in the opea, 1 , every depression in the road-sido cuitch, every garden impation to.: overy hydrant-fed puddle is full of them. I have mot with idemin depression in the asphalted platform of a busy railway junction, :.: brickfields, in soakage pools, in river locis in the hur wasme in in : in every possible situation. Nor do they seem rery particuler :as : the cleanliness of the water, or as to its being rich in green :! 1% It would, indeed, require a small sanitary army, and an ingunisori.: soarch of private premises, such as would never be tolerated in $1: \ldots$. to deal with them by kerosine or other invocides.

But this admitted, there is no douit a good denl might wo don. is. the way of diminishing their uumbers even if they cannot minated, and in the matter of indiriaial prophylasis a groatcicat we. be accomplished, as these insects rarely fly far, and there mu:
hundreds of Europeans whose bungalows are so far from neighbonrs, that they might secure a practical immunity from mosquitoes of all sorts, by the expenditure of a very little tecublennd attention. In this part of the world at any rate tho great source of mosquitops of all sorts, Anopheles included, aro the small pukha tanks which are to be fon:ed in nearly every compound for storing water for the gardon. In mosi gardens there will be hali a dozon of theso comected with each othor and tho well-head by means of cemented channels. All that is required is to insist that these and all naunds and other small storages of water shall bo emptied to dryness, and left so for a fow hours, once every week or ten days.
If orery one in an European cantonment wonld do this they would ho but hesle troubled with mosquitoos even in the rains and might almost banish them in the hot weather. Secondly in the rains search the compound and its environs for pools. Fill up the small ones with a fee shevels of earth and kerosino the large ones. The excavation made at the end of the run for the bullocks from the wellhead is an almost certain find for Anopheles in the rains. It should i, kerosined weekly. Such measures, howerer, cannot deal with adult mosiguitoes that are already harboured in the house, and they are longfired insects. It is usual to lime-wash houses in the cold weather. This should be preceded by a therough fumigation with sulphur; :astiles for which purpose, each sufficient for 1,000 cubic feet of riom-space, have been made for me by Messrs. Waldie of Camnpore. Farourite lurking places, such as bath-romms, should be periodically iumigated by burning one of these pastiles. It is almost needless to say that all doors and other openings should be closed oeiore lighting the pastile and that it should be left closed for a few hours. lgain a good denà can be done by keeping "chicks" down at dusk minawn; just the times they are wanally freely opened. It seems :igh impossible to induce people to adopt these simple and not very we:ons preazutions, but will some of the members give the matter a systematic trial and report on the resuit thercot?
With the view of assisting members who are unscoustomed to the wimological Branch of Natural History stadics, your Secretary has Wrily consonted to reproauce the following notes on methect of Gincing which I hare drawn up for priate circuation among friends
who helped me by collooting but which has not as yet been issued as 1 have not yet recrived the fair proof:-

> .JTES ON THE COLLEUTION AND PRESERVATION OF MOSQEITOES.
-

Nosquitoes or gats are smail, twowinged insects (Dipteru) and are all. except in the small gencre Corciara and Mochloilyr, provided with a loce. suctorial proboscis. In all cases, the males havo beantifulty phomed amena. while these of the fomalen, though also 14 or 15 -jointed, have only a in scanty hairs. They are too well known to require minate desmana, and are unitikely to be confused with any family but the Ciniromumine omidges, from which they may be distinguished by the fact that, in $:=:$ mosquitoes the veins of the wings are fringed with seales, like those of :histerflies and moths.

Springing from either side of the root of the proboscis are two feclers: palpi which, in the males, are usually abont the length of the proboses. int, in iso females, difier in length in the different genera.

Behind the wings are a pair of club-shaped oranns, the balteres or bat: \because. cers, which represent the hinder wings of four-winged insecis, but in gin" are probably auditory orcans. The thorax also carries three parsoila. each consisting of two short pieces, the coare, at their root, followed br:s.. femur, tibia, and five tarsal joints, the first of which last is generally to :0: as, or longer than the tibia. Each leg ends in a paiz of clams, ofter ofe:... plex form in the males, between which are plume-shaped epipodia whici, i: retaining air, enable the insect to pitch and loat upon the surface of wa. .

The abdomen shows eight visible segments and terminates in the was a pair of claspers, and in the females in lobed apperdages.

Like all other Diptcra, gnats underso a complete metamorphosis.
The adult insects deposit their egest on the surface of standirg water, co: from these are hatched out larra, which may be found, in warm climar. f.: slmost every small collection of water.

After about ten days, the larte chance into small, tadpole-sharicd crca:-: the nympos or pupe, provided with a pair of breathing horms, spir .:. from the back "f the thorax. While in this stane they do now cat and .i: : about three days, the pupa-skin bursts alng the midde, and the fuil-zi: grat slowly extricates itself and thes off. They generaliy pair inmania.. after, but many species do not depnsit their eass until they have ohta: : a feet of blood. es a rule, it is only the fenales that biec, and ilay $\because=$ occasionally; the more habitual food of these insects leing the jutio plants.
The adult insects are found, not only in houses, but in grores, foccs:n, i.. in any other situations where shade can bo obiained during the day, wit: . :.. larre and pupa are common in ail amall collections of watur where thra
nn strong current. In the hills, they are common in pools in trater courses. They are to be found in all countries from the Tropics to the Polar regions, and some species have so wide a distribution as to rival that of man. In all countries the adults may bo found at all scasons of the year, tho maintenance of the specics being socured by the surviral of impregated femalcs, wlich bide and remain quiescent during seasons unfarourable to the well-being of $\therefore 3$ larra. No instance of survival of quioscont larre is known, but the Naibility of such a habit should be borne in mind and l oked for.
In attompting to duscribo a monquito, tho exact position of ull bandings, I.. ., Whether at the base or apex of joints and segments, and of all spots on the rincs, or elsewhere, should be carefully noted.

The gnat family (Culicidr) includes somo seven or pight well-established araca, of which the two following are most important :

ANOPMELES.-Palpi about as long as the proboscis in both sexcs, int iapered in the females, while they are cinboed in the males. They rest on walls, \&c., with the body at an angle to it, the proboscis pointing at the wall. Their eggs are deposited either singly or in small groups; and their darra have no long breathing tube but lie nearly horizontal at the surface of the water. There are about 30 species.
CULEX.-Palpi about as long as the proboscis in the male, but rarely clubbed; very short in the female. Rest on walls with the body parrellel to the surface; egss deposited in boat-shaped masses consisting of 200 to 300 egrs. Larræ lie in the water as if suspended by the tail from the surface, and are provided with a long breatbing tuba, springing from the back of the eighth abdominal segment. There are orer 160 known species.

Less importani genera are
AEDES.-Palpi very short in both sexes.
JiEGARHINA.-Palpi usually lons in both seses -Largo, brilliantly coloured, sylvan species.
CORETERA and MOCHLOAYX.-Small, hairy gnats, unprovided with the usuai long proboscis. In the latt.r genus, the first tarsal joint is short.

COLLECTING.

Wisquitoes may be collected-
(4) By slip:ing over them a small wide-mouthed bottle, as they sit on a wall or winduw, for which purpose a small " killing buttle" is b. st.
(b) By means of a net :-Bend 2 yards of stout ircn wire so as to form aring $9^{\prime \prime}$ in diameter, with a.handle alout 2 ft . long, formed of the tro ads twisted togethor. The net is a bag 2 ft . deap, secured to th ring, and should be mado of fine silk gauze (chifion) and a strip of cloth should bo

Wund round the twisted wire of the hamdo to afiord a more comarnas. arin.
(c) By brecding ont from larrie and pupe:-The larvo are fou:d :is pools, and in domestic collections of water, and when undisturbed, generahy remain at the surface.
Place a score or so of full-grown larve and puye, in tho water in which, they havo lived, in a tumbler, and tic ovar it a covering of game supporida a:

 Wぃ:

 manher morder whentiy then with the abot fand insed.

KILLING COLTECTED MOS ? CITOES.
Tho first sten in the prescration of eollected specimens is to kithta mosquitocs, and for this the best plan is to omploy a kihing butse" which any one can easily manafacturo for himself.

Those supplied by dealers are almays far too larore for smail $D_{i z}$ tera suri: as the Culicida.

Select a wide-mouthed phial about $3 \frac{1}{2}$ "high by ${ }^{2 \prime \prime}$ mide, fitted with citlic a well-fitting cork, or prefcrably with a metal screw-iop.

In the latier case the disc of cork in the top of the cap shouli $:$, removed and replaced with one of thick rubber, which may be secured it. position by means of ordinary bicycle tyre-repaining cement. Dix ecand bulks coarsely pordered cyanide of potassium, and dry plaster of Baris. and put a depth of $\frac{\beta}{4}_{4 \prime \prime}$ in the botiom of the botile; dust orer this a li: il . dryplaster ; and then pour orer all, $\frac{1}{\prime \prime}^{\prime \prime}$ in depth, of liquid plaster of the consistence of cream. When the plaster has set, the bottle is ready f, F use.
Δ bottle such as this is verg handy for slipping orer and carching sitio: mosquitoes, as in a few seconds the insect is stupified, and drops into :.... bottle uninjured by attempts to escepe. When the insect bas beer ti...e.

 smose from the lips into the pill box or botile, if it has been caugh: in that way.

Galoruform is useless in the purpose, as the insecis rocover after seting, : at a scrap of blotting paper moistesed wich dilute hydrocyauic acid, and Apped into the pill hox or bottle, answers very well.

PRESERVING THE INSECT.
It is of course rery eass to mount mosquitocs as microscopis specimens in balsam, or to preserre them in botiles in spirit; lut such specimens are abechitily uselcss for identijication, as their coloration depends entirely on the reffection of light from the scales with which they aro clothed, and is lost if they be immorsod in balsam or any other finid.
For identification, the insects must be pinned as described below :-

Requisiles-

1. No. 20 Insect pina : (Obtainabio from D. F. Tayler \& Co., New Hall Works, Birmingham). A quarter of an ounce, costing about half a crown, will last a lons time.
2. Card discs-cut from rather thian cardboard by means of a 20 -bore gun-punch.
3. A small flat piece of cork, corered with white paper, on which to place the insects while pinning them.
4. Ordinary toilet pins of medium size.
5. An insect box.-Any small wooden box, not less than $1 \frac{1}{3}$ inches deep, may be utilized for the purnose by corering tine inside of the botiom with a sheet of "cork corpet," cork, or solah pith. If intended for ransmission by post, they must be very strongly made. If intended fo: receiring a permanent collection, they should hare dust-proof lids and be made as nearly air-tight as may be. In any case a small musin bag, full of naphtinaiin or camphor, should be securely pimed into a corner of the box so that it cannot more, and it is a good additional precaution to paint the entire inside with strong spirituous solution of perchloride of mercury.

TO PIN THE MOSQCITO.

1. Take a disc and write on it date and place of collection. "Eouse," "bites," "sylvan"-or other information; also a distinguishing letter if there be several species.
2. Place the dise, writing upwards, on the piece of cork and then tate an insect pin in a pair of forceps close to the point and transfx the disc near the middle.
3. Place the mosquito on the cork on its jack.
4. Take a pin, with the disc on it a a pair of forceps near the head and, holding it so, pass the point through the thorax of the insect between the roots of the legs from renter to dorsum.
5. Pass a common pin through the disc, near the edge, and force the point of this into the cork at the bottom of the box.
6. Spread out and arrange the legs and wings in suitable position ly meaus of a fine handled needle.
After a fer trials, it will bo found that pinning an insect in tho may abora doscribed involves far less trouble than making it iuto a microscopic specimen; but, if materials for pianing be wanting, fairly recomizaile. specimens may bo made by mounting tho insect dry, in a deep celi os in one of the slides ecommended by the late Dr. Carpenter for monating foraminifera.

These conaist of a slip of deal $\cdot 3^{\prime \prime} \times 1^{\prime \prime} \times \mathrm{d}^{\prime \prime \prime}$ with a holo $\mathrm{a}^{\prime \prime}$ in tho midne, This perforation forms the wall of the cell and is closed on both sides with ordinary cover squares, secured in place by perforated labels, so that tho specimen brtween the covers can be riewed from either side. The sir os of tho perfor tiou should be brushed with creosote to prevent mildew, and the proparation dried a rapidly as possible in the sun.
Wings.monnted dry as miczoscopic specimens are however raluable, bat when mado. great care shoula be taten to mark with correspording letters, slide and pinned specimen, without which latier such slides are valueless.

Specimean may also be transmitted fainly safels, in short lengths of olas tubing of :a size just sufficient to admit the insect, but too small for is to shake about easily. The tubes should be simply tied un in a square oi muslin, as if sealed ; the contents are cortain to miducn; but whatever pas: jou adopi, ON NO ACCOUNT PACII INSECTS IN COTRON WOOL, it is impossible to extricate them from it withoui breahing.them.

Just as mature insects can be obtained from larra, so it is generally possible to get larra from the former ; but a somewhat larger apparates in necessary. Take an carthenware dish, at least 1 foot in diametor and ; taches deep and fill it with pucdele water which has been strained through muslin to avoid the falacy of its already containing larve. A cover is made for this consisting of a square of thin plank a few inckes wider than the dish, with a large hole occupying the creater rart of its contre. In the four corcers are small holes into which are fixed four small upright sticks about $18^{\prime \prime}$ high so as to form the supperts of a miniature mosquito net made of gauze or the material known as "leno," and is made close ly mears if tin tacks, to the edges of the plant.

The whole thing can be lifted off and on to the dish, and when in position a mosquito introduced into the net is securely confined. The triangui:: corners of the board can be utilized to carry banana or syrup as food, or may be smeared with mud in order to asceatain if tho species ever deposit eres in such situations. It is best to exp ciment with females that have had a feed of blood; or, in the caso of syavan gnats, with specimens taken in the open, as culess fully fed, they will rarely deposit their eggs. The form of the effo boats, or gronps in which the eggs are deposited, should be carefully noted, and the larse preserved, when suficientiy grown.

I: is rarely necessary to confinc males as most species couple immediatoly at:cr escape from the pupa.
The above appliance is also useful for obtainino from larvie, large numbers nf individuals for use in obscrvations on malaria, filariasis, \&e. A pioce of anctoard is slipped under the opening so as to close it, and in this way the cociained mosquitocs can be carried without injury to the subject of cxperiment, and liberated under his mosquito not by simply romoving the card and inverting the net.

Tec writer will be extrewely grateful for any specimens collectors may s.nd him to the undermentioned address-

> G. M. GILES, M.B., F.B.C.S., Lieut.-Cul., I.JI.S., Byfield Mannamead, Plymouth, England.
(Author of "A Handbook of the Guits or Mosquitoes." London : john Bale, Sons, and Daniclsson, 83, 85, Gt. Titchficld Sireet, Lordon, W.)

A PRODROMUS OF THE INDIAN CULICID E.
Two years' ago, when I took up the tisk of collecting the litorature of thy Culicilde, it is an actual fact that no more than fous species wero recorided as having been found in all India. There was in fact bardly any other known country with such soanty records of the subject.
The subjoined list includes 32 species, and I have little doubt the final woth of species will be found to be not far off : hundred, as new species are constantly tuming up, and I find that many European spocies are to in met with in the Himalayas, while the wide range of climate of the pains renders the occurrence of a wide varisty of forms a practical ceruinty.
The species enumerated below it must be understood are merely those that have beon verified by myself. When Jir. Theobald's work on the collections that have been made for the British Museum appears, the number will doubtless be largely increased: In the case of new species it must be understood that the names arp provisional, as it is very possible that, thongh we are in correspoudence some may have been described under a differont new name ty him.
The short descriptions are based on a systematic plan in which unif a few points are noticed, and the number preceding the name rofers to the position tike species takes, or would take, in the system o: tabulation adopted in my recently-published Handbook of tha group.
(i0) JJURVAL, BOMBAY NATURAL IISTORY SOCIETY, Vol, XHM.
Family CCLICIDA.
Subfamily Culicine.
Genus I. MEGARHINA, R. Desvoidy.
6. Migcanhina mmisentcons, Walker.

Caudal adornmont yollow and black. Tarsi with certain broad hand, whitish. Thorax metallic green; scales on costa blachish. Calcum:, Travancore, Coylon, Burma.
S. Lúmainhisa sickimensis, Giles.

Caudal adornmont yellow and black. Tarsi with certain joints or bands whitish. Thorax chocolato-coloured, with a greenish lustre. Col. Brit. Mus. sent by Mr. G. A. Dudgeon.

Genus II. ANOPHELES, Moicon (1818).
5. Anophiles rossir, Giles.

Wings with four black spots on the white costa, and sume oi tha other voins with altornate portions white-scaled and black-scaled, forming iudistinct additional spots ; tarsal joints pale groy with minne apical bands; ablomen indistinctly bauded, the lighter basal portion of the segments greatly preponderating; thoras without longitadin: marking. Found throughout India.

15. Anopheles flelgivosus, Giles.

Wings yery dark, but with three small white interruptions on the costa ; abdomen uniformly black. The last iwo hind-tarsal joints withe. the rest black, saving a minute ring on articulation hetween the sncond and third joints : apex of palpi white. Found throughout India.

16. Anopheles atgerrines, Giles.

Wings intensely black, except two vory small yellow interruption: on the costa, the outer one of which is sub-apical, and a few whis dots on the longitudinal veins ; abdomen entirely black; tarsi with apical whitish rings to some of the joints; apes of palpi black.

This may possibly br. identical with An. pseudopictus, Grassi. Found throughout India.

21. Anopheles cindesail, Gilos.

Wing not distinctly spotted, but with the costa and somo of th, anterior veins black-scaled, giving a diffused darker appearanco to thin portion of the wing, the rest of its ecales being grey, with the excc:tion of a small whitish spot at the apex of the wing ; tarsi witho: \therefore anis. Thorax black, with a large well-defined patch, forming the

Herater part of the dersum, grey, saving a vory fine black median line. ildomen nearly black, the hinder bordor of the sogments darkest.
Taken at Bakloh, Punjab Himaliavas, and also at Naini Tal; not common.
Pazibly purely a hill species. I have not been able to find its larvo. Genue III. PS(IROPHORA, R. Desv.
4. Psorophora sp.
o. Wings brindled with alternato ochreous aud dark brown scalos; apical and internal fringe with eight dark interruptions. Legs banded, ochreous, and white. Palpi of q half the length of the proboscis.

Reccived from Major Close, I.MI.S., Moradabad.

j. Psorophora sp.

I am inclined to think that the above are identical, but the point cannoi be decided without comparison. Both are large insects covered with woolly tomentum and looking much more like dung flies than like ordinary mosquitoes.

Hyingan, Burma. Coll. Brit. Inseum. Genus V. CULEX, L.

1. Culen mhatices, Noe. (1599).

Wings spotted; anterior margin black, interrapted by three linear, pale yellow intervals about equal to the black spots in length. Body with smooth tomontum? Abdominal segments with pale basal bands ; tarsal joints with white basal bands. Proboscis banded. The fomom of the middle legs are thickened at the base. A small specics whici mimics An. superpictus, the wings presenting a strong superNa! resemblance to those of that species. Lengia aboat 5.6 mm .
A.Ean at Bakloh, Punjab Himalayas, in May; at Shahjahanpur, I.-IV. P., in early October ; in the Nilgiri Hills ; and apparently common all over India.
3. Culex annolates, Schrank.

With five, or more rarely form, black wing-spots. Tomentum mooth ; tarsi conspicuously banded ; thorax not dorsally ornamented ; palp: of the male longer than the proboscis.

Bakioh, Naini Tal, in the rains.
4. Colex spathipalpis, Rondani (1872).

Wiags with threo black spots formed by accumulations of scales; tasi with obvious bands; tomentum smooth: thoras dorsally
ornamented with white marks; palpi of the male rather shorter thau the proboscis, the last joint somewhat spatulate (approaching the charactors of Anopheles).

Naini Tal, in the rains.

13. Culex rantatts, Meigen.

C. èlegans, Ficalbi (1889), C. rossii, Giles (1899), "Joar. Pro;", Medicine," p. 64.

Wings unspotted ; joints of the tarsi with basal snow-white ring : thorax black with a pair of submedian, snow-white linos forming a V behind, and two lateral semilunar patches, prolonged posteriorly into fine lines of the same; abdominal sogmonts biack with basal white bands best manked in front ; nape with six silvery lines.

A truly cosmopolitan spesics, common throughout India. Varies greatly in size. A dwarf variety from Calcutta is the smallest true grew I dave met with.
21. Culex albopictus, Skuse.

Wings unspotted ; tarsal joints banced white, on the first iwu of the fore and middle, and on all tbose of the hind legs; dorsum of thorax traversed by a line of silvery scales for rather mose than its anterior half ; ihe pleure silvery spotted ; abdominal segmens: narrowly banded silvery, and with lateral silvery spots: ienura slightly tipped silvery.

Mr. Theubald regrrds this as a synonym of C. scutellaris, Woller, but as the latter 'has three thoracic stripes, not one, I conclude the species are distinct. Appears common all over India.
45. Culex mpellens, Walkor.

Wings unspotied ; tarsi brown with very minute basal lighter Lated to all the joints, and a light knee-joint; thoras unadorned, brown; abdomen brown, with yellowish basal bands to the segments. Proboseis hrown, with a broad yellowish band beyond the middle.

Shahjahanpur ; October. This corresponds with my notes on thi type, but, without actual comparison, the identification must not be considered final. This species persisis throughout the cold weather in the N.-W. P.
\checkmark 45a. Culex triteniorhycichus, sp. n.
Wings unspotted; tarsi minutcly basally banded pale ochreous; thorax unadorned, fuscous; abdominal segments fuscous, with miner
narrow jellowish-white basal bends. Proboscis with three ochreous bands.
Travadcore-From Captain James, I.M.S. 46a. Culex perterbans, Walker.
Wings unspotted ; tarsi with lighter basal bands ; thorax unadorned ; atlomen with ochroous apica! bands. Proboscis with a single ochreous tend, a little boyond the middlo. Wing soales of tho usual form.
54. Culex dives, Schiner.

Wings unspotted ; tarsal joints basally white-ringed; thorax and abdomen dark brown, with minute white dots laterally. Apices oi palpi, bases of antennx, and frons white-scaled.
I have not personally verified the occurrence of this form, and porhaps istabitat hardly entitles it to be considered an Indian species.
\checkmark 63a. Culex pseddoteniatus, sp. n.
Wings unspotted; tarsi black with white rings formed on the bases and apices of contiguous joints. Thorax black, elaborately adorned with fine white lines (almost as in C. teniatus, Meig.) ; abdominal segments black with narrow basal bands: venter pale fawn. The general colonro ${ }^{2}$ on is an intense violet-black.

Mr. Theobald r gards this as a synonym of \mathcal{C}. notoscriptus, Skuse, but there are several notable difforences, and Skuse's description is too minute to assume these as due to oversight.
Batloh and Naini Tal.
$\because 64 a$. Culex gubernatoris, sp. n.
Wings unspotted; tarsi each with two bands, one at the baso of the first, the second over articulation between first and second joints; thorax sooty, with a roand anterior median and four lateral sputs at the corsors o: the notum; abdominal segments black with large snowy lateral spots, and a minute terminal median spot on the …st : venter sooty. Allahabad Government House Garden.
\checkmark 98a. Culex biteniorhynches, sp. n.
Wings unspotted; tarsal joints deep brown with ochreous bands at base and apex so that two joints combiue to form :ings at the articulations ; thorax unadorned, black, covered with mingled black and golden scales; abdominal segments black with distal ochreous bands. Procoseis black with two ochreous bands at the tip and in the middle. Travancore-from Captain James, I. M. S.

95. Colex atmipes, Skuse.

Wings unsputted ; tarsi uniformly coloured ; thorax dark viclet, with prothoracic lobes, the pleurr, and a spot in front of the wings silvery; abdominal segments not banded, but with a silvery spot on either side ; knees with a minute spot.

The specimens 1 refer to this specios were received from Calcutit and are considerably ruthed. I am very doubtful as to the icentification as the venter is not entiroly slivery but more or lejs kandod.

In the absenco of perfect specimens, however, it is madrisatle to attempt to establish a new species.
\checkmark 95a. Culex panalectoris (Alcock's gnat), sp. n.
Wings unspotted; tarsi unbanded, nearly black; thoras dark mouse colour, adorned with lighter lines of the samo tint precisely. as in C. teematus, Meig.; aldomen sooty, dorsally unadorncd, but with lunate silvery apical bands to the segments as in C. rentralis, Walker.

This species may possibly be C. ventralis, Walker, but the wings do not correspond to my notes on the much mutilated type in :he British Museum.

Received from Mrajor Alcock, Superintendenc. Indian Museum, Caicutta.

97. Cclex fatigast, Wied.

Wings unspotted; tarsi uniformiy brown ; thorax with a mechian and two lateral dark lines, the latter much the most conspictious; abdominal segments brown, with basal whitish bands; knees anspotted. This is a most puzzling species. Mr. Theobald tells me thas it would be possible to differentiate some 30 species or varicties more or less ranning into each other. In most of these there are no sigus of thoracic ornament. He differentiates all, however, from C. pipiens, L., by the closeness of the posterior transrerse to the middle transverse rein. In any case, during the dry weather, it is out and away the commonest of Indian mosquitoes, and some of its forms are to ine: found throughout the year. During the past hot weather it was : perfect plague in Lucknow.

$$
\checkmark \text { g9a. Cuter pulchriventer, sp. n. }
$$

Wings anspotted; tarsi unbardc.? black; thorax golden-scaled, with a fine median and broader laterai bare black lines; abdomimal
:rynont black, snowy basal binds, and the vuitre elaborately adorned with golden snowy white and black markings.
Naini Tal.

100. Cclex buscandes, Wied.

Wings unspottel ; tarsi unbanded ; thorax rathor dusky, with grizely hris arranged so that the grocr: !-colour shows through as four (darker) litiso ;abdominal segments diasivy, with light grey apical hands.
"East India."
I have as yet met with no species corresponding to this description.
108. Culex concolor, R. Desvoidy.

Wings unspoited; tarsi unbanded ; thorax pale red with three indistinct brown lines; abdomen pale yellow with dark incisure, i.e., apically lighter; wings with the veins nearly nude.
Appears to be common all over India in the rains.
\checkmark 122a. Culex micropterus, sp. u.
Wings unspotted; tarsi unbanded; thorax dorsilly unadorned but with white spots on pleura ; abdominal segments black, with whito h,acal bands expanding iuto lateral spots, and a distal fringe of yellowish i...is; wings proportionately very small.

Allababad, Lucknow ; in the rains.
\checkmark 130a. Culex albolineatus, spi. n.
Wiogs unspotted ; tarsi unbanded, brown ; thorax unadorned, blackrourded, with bronzy tomentam; abdominal segments black with mreenish-white basal bands and a broad brownish-white median line.
Shahjakanpur ; October.
131. Culex pipievs, I.

Wings unspotted; tarsi unbanded, brown; thoras pale testaceous, unadorned, black when denuded; abdominal segnents readish-brown, with yellowish basal bands, narrow in middle, but expanding laterally ; kneos unspotted.

Naini Tal.
V131a. Culex vinidipexter, sp. n.
Wings unspotted; tarsi unbanded, dusky; thoras chocolati-brown with bronzy tomentum; abdominal segments with yellowish basal bands having a blunt backward median prolongation; venter almost $r . \therefore$ save for a few colomless scales, green in fresh specimens; knees ain minute lighter dots.

Mr. Theobald regards this as one of the numerous varicties of C. fatigans, Wied., but the doltoid extonsion of the abdominal band, makes it easily distinguishable in the fresh state ; and it is moreovor a bill species, whose larva are capable of maiutaining them in pools in the course of hill torrents.
150. Celes obtumbans, Walker.

Wings unspotted ; tarsi wainaded; thoras with brown tomentum, unadorned; abdomen cupreous-greenish, with a white dot noar the tip.

Appears to be common all over India during the rains.
Subfamily Coretrarne.
Genus Vir. CORETHRA. •
9a. Corethrs asiatica, spi. n.
Wings unspotted ; legs uniformly colourod, antenne ustanded; generally pale, the thoras with a faint darker median line.

Shahjahanpur, N.-W. P.; October.
This is the first record of the occurrence of any member of the subfamily, so far as 1 am aware, in Asia.

c. Ectigans, Bled.

Wing of C. Impellent, Walker. $x 3$ dams.

p. f......... posterior fork cell

