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ABSTRACT To study local structures in
proteins, we previously developed an autoasso-
ciative artificial neural network (autoANN)
and clustering tool to discover intrinsic fea-
tures of macromolecular structures. The hid-
den unit activations computed by the trained
autoANN are a convenient low-dimensional
encoding of the local protein backbone struc-
ture. Clustering these activation vectors re-
sults in a unique classification of protein local
structural features called Structural Building
Blocks (SBBs). Here we describe application of
this method to a larger database of proteins,
verification of the applicability of this method
to structure classification, and subsequent
analysis of amino acid frequencies and several
commonly occurring patterns of SBBs. The
SBB classificationmethod has several interest-
ing properties: 1) it identifies the regular sec-
ondary structures, a helix and b strand; 2) it
consistently identifies other local structure fea-
tures (e.g., helix caps and strand caps); 3)
strong amino acid preferences are revealed at
some positions in some SBBs; and 4) distinct
patterns of SBBs occur in the ‘‘random coil’’
regions of proteins. Analysis of these patterns
identifies interesting structural motifs in the
protein backbone structure, indicating that
SBBs can be used as ‘‘building blocks’’ in the
analysis of protein structure. This type of pat-
tern analysis should increase our understand-
ing of the relationship between protein se-
quence and local structure, especially in the
prediction of protein structures. Proteins
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INTRODUCTION

In the analysis of protein structure, continuous
regions of local structures along the polypeptide
chain are defined as secondary structures. The clas-

sical examples are the a helices and b sheets origi-
nally predicted by Pauling and coworkers.1,2 Because
of their regular hydrogen-bonding patterns and re-
peating backbone dihedral angles, these structures
are called regular secondary structures. Later, the
category of b turn or reverse turn was described,3

and the definition of these structural elements has
been refined by several researchers.4–7

The helices, sheets, and turns together only ac-
count for about 50–55% of all protein structure on
average.8 The remaining structure has been termed
‘‘random coil,’’ and attempts to categorize these
nonregular structures have resulted in the classifica-
tion of several types of loops8,9 (reviewed in reference
10). Specific turn and loop types between regular
secondary structures, such as the ba and ab loops,
have also been identified.11–14 Compared to a helix
and b strand, the loop and turn secondary structural
elements are more difficult to identify because they
lack the regular hydrogen bonding and repeating
backbone dihedral angle patterns of the regular
secondary structures; however, even though they are
difficult to classify, it is clear that recurring motifs do
appear in the nonregular structures along the poly-
peptide backbone.
A rigorous and objective categorization of the

secondary structural elements is an important step
in understanding protein structure and function and
in understanding those interactions that stabilize
proteins. Several algorithms for quantitatively as-
signing helix, strand, and loop regions for proteins
with known three-dimensional coordinates have been
developed.15–18Although these algorithms often agree
on the location of the regular secondary structures,
they usually differ on the exact endpoints of these
structures.19 Furthermore, the algorithms frequently
disagree on the locations of the more irregular
helices and strands and can disagree on up to one
third of these classifications.
The discrepancies in secondary structure assign-

ment and the lack of an objective classification
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scheme for the ‘‘random coil’’ regionsmake secondary
structure predictionmore difficult. To date, the exten-
sive efforts to predict protein secondary structures
from amino acid sequence information have been
only somewhat successful. Predictions of a helix, b
strand, and turns by a variety of methods20–26 have
only attained accuracies of approximately 65%.More
recent work has shown that an accuracy of about
72% may be attainable by using information on the
evolutionary relatedness of proteins and by combin-
ing the results of several different prediction algo-
rithms.27–30 An improved representation of all local
protein structures, especially one that classifies non-
regular structures, may enable secondary structure
prediction methods to exceed these levels.
Several groups have attempted to produce such

representations by objectively reclassifying protein
secondary structures based on clustering of residue
three-dimensional coordinates or dihedral angle dif-
ferences.31–33 While these algorithms have been suc-
cessful in identifying the classical helix and strand
structures, and in some cases have identified new
structural motifs, there are several problems with
the algorithms that might limit their usefulness.
Using the ‘‘raw geometric data’’ (distances and angles)
directly in clustering algorithms is problematic be-
cause the standard clustering algorithms are ill-
suited for handling high-dimensional data. These
algorithms are also very sensitive to the input infor-
mation used in clustering and to its properties, such
as magnitude, value range, and correlation.34 In
addition, it is unclear whether the similarity criteria
adopted, such as the root mean square (rms) errors in
the three-dimensional coordinates, areappropriatemea-
sures of the similarity of protein local structures.32

To produce a more useful, objective representation
of protein secondary structures, these limitations
must be overcome. We have used an autoassociative
neural network (autoANN)35 to accomplish this. An
autoANN is a machine learning algorithm for a
network that learns to reproduce the activity of its
input units at its output units, mediated by a smaller
layer of hidden units36 (Fig. 1). We have previously
encoded the geometry of seven-residue protein seg-
ments from a small database of proteins as input for
such a network.37 Since all information from the
input layer passes through the smaller, hidden layer
in order to produce the output layer activations, the
intrinsic features of the input data (in this case, the
geometry of local protein structures) are encoded in
the activation values of the smaller hidden layer as
the network trains. This hidden layer vector has
lower dimensionality than the raw data presented as
input, can be computed from the raw data, and can
be used to reconstruct the raw data through the
nonlinear transformations of the trained autoANN.
Classifications of local protein structures were gener-
ated by clustering the hidden unit vectors for all of
the segments in the database. As previously de-
scribed, the resulting structure categories, called

structural building blocks or SBBs, included the
well-known regular secondary structures (helices
and strands) as well as helix and strand capping
structures.37

The data generated from this small database
suggested that recurring patterns could be found in
the random coil regions of proteins and that there
were amino acid preferences in these structures;
however, the database was too small to determine
the statistical significance of these results. We have
now extended this work to a larger database of
well-resolved, nonhomologous proteins. As the origi-
nal version of the network was written in LISP for
the CM5 massively parallel computer, the network
algorithm has been rewritten in the C programming
language for use on Unix workstations. This new
network was trained on the larger database and the
previous results were confirmed. The results of the
training and clustering algorithms were also more
extensively verified. Using the SBB categories, amino
acid frequencies were analyzed and statistically
significant patterns in the nonregular secondary
structure regions were identified. By examining
backbone geometries in commonly occurring SBB
sequences, several potential structuralmotifs havebeen
identified. The results suggest that SBBs are useful for

Fig. 1. Design of the autoassociative neural network used to
compute the important structural features of the seven-residue protein
segments. The a-carbon geometry of each seven-residue peptide is
represented as a43-unit vector; eachunit of the vector is a real number
between 0 and 1 and represents some aspect (atomic distances, d,
virtual bond angles, t, or virtual dihedral angles, f) of the peptide
backbone geometry.37 During training, the network attempts to repro-
duce the input layer as the output layer; thus both the input and output
layers of the network are 43-unit vectors. The hidden layer of the
network is an eight-unit vector and is fully connected by weighted links
to both input and output layers.35 A standard backpropagation algo-
rithm36 is used to train the network by altering the weights’ values and
the network is fully trained when it can reproduce the input to an rms
error of less than 0.08. After the network is trained, the weights are
frozen and the geometry of each seven-residue peptide is again
presented to the network. The activation values of the hidden layer
calculated by the network for each segment are used to represent the
geometry of that segment; thus the segment geometry is represented
by an eight-unit vector rather than a 43-unit vector. These hidden unit
activations are then clustered by a k-means clustering algorithm.
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understanding structural regularities in proteins, espe-
cially in the capping regions and so-called loop regions.
These recurring motifs could be used in ‘‘spare parts’’38

or segment-based23 approaches to protein structure
prediction and can help to further our understanding of
the relationship between amino acid sequence and local
protein structure.

METHODS
Description of the Databases

Two databases were used in the work described
here: 1) the original database described in reference
37; and 2) a new, larger, better-resolved database.
The original database was built from an older ver-
sion of the Brookhaven Protein Database39 and
contains 75 protein chains, with 13,114 residues and
12,664 seven-residue segments. The proteins are
well-resolved, with a crystallographic resolution of less
than 2.5 «, and have limited sequence homology, as
verified by the BLAST sequence homology program.40

In the current work, this older database was used to
verify the results obtained from the new autoANN, that
was rewritten inC, as described below.
For more complete statistical analysis of SBB

patterns in globular proteins, an extended database
of proteins with limited sequence similarity was
selected from the PDBSELECT database at EMBL.41

These proteins have 25% or less sequence identity
with one another. These globular proteins have been
solved by x-ray crystallography to a resolution of less
than 2.2 Å and a refinement value of less than 0.2.
The resulting database contains 116 different protein
chains, for a total of 23,355 residues and 22,659 seven-
residue segments. Most examples of tertiary structure
architectures of globularproteinswhose structureshave
been solved crystallographically are represented in this
database. These proteins are listed in Table I.
From the old database 19 protein chains were

found to be the same as or similar to protein chains
in the new database, and these are marked by an
asterisk in Table I. For some validation procedures,
reduced versions of the two databases were used.
The reduced databases were created by removing the
19 proteins identical or similar to the ones in the
other database. The reduced version of the new
database contained 97 protein chains and 19,438
segments. The reduced version of the old database
was 56 protein chains with 9,471 segments. This
allowed the validation tests described in the Results
section to be done by using databases that had no
protein chains identical or similar to those on which
the networks were trained.

Encoding the Protein Segment Geometry as
Input for the autoANN

The actual network and data encoding is similar to
that previously described.35,37 The geometry of con-
tiguous seven-residue protein segments was used as
input for the neural network. All segments that
spanned gaps or chain breaks, and were therefore

noncontiguous, were eliminated from the input data-
bases. The input data were generated by computing
the distances (d), virtual bond angles (t), and virtual
dihedral angles (f) of the a-carbons in each seven-
residue segment along the protein sequence, advanc-
ing one position in the sequence for each segment.
Thus, most residues in the protein database ap-
peared as the first residue in one SBB segment, the
second residue in the next SBB segment, and so on;
consequently, all residues except the three N- and
C-terminal residues were classified in each of seven
distinct, but overlapping, segments (Fig. 2). Since
the three N-terminal and three C-terminal residues
of each protein chain were not the centers of seven-
residue segments, the number of SBB segments was
less than the number of residues in the database.
The raw data for the seven-residue segments,

representing distances, virtual bond angles, and
virtual dihedral angles of the a-carbon conforma-
tions, were encoded as N 43-dimensional vectors for
input to the autoANN, where N is the number of
seven-residue segments in the database, as previ-
ously described.35 Each of the 15 distances between
nonneighboring a-carbons in a segment was encoded
by two input units. Two units were used because the
distribution of the data for each Ca(i)-Ca(j) distance
was bimodal. The two-unit representation reflected
these bimodal distributions. When a distance fell in
the first mode of the distribution, the first unit was
set to a value between [0,1] that was proportional to
the relationship between the distance and the range
of the first mode. The second unit was set to zero.
When a distance was in the second mode of the
distribution, the first unit was set to one and the
second unit was set to a value between [0,1] that was
proportional to the relationship between the dis-
tance and the range of the second mode.
Different representations were used to encode the

virtual bond angles and the virtual dihedral angles.
The five virtual bond angles (t) between a-carbons
were each encoded by one input unit. The angles
range from 0° to 180° and were normalized to the
range [0,1]. Each of the four virtual dihedral angles
(f) was encoded by two input units: one unit each for
the sine and cosine of the angle, normalized to the
range [0,1]. This representation reflected the continu-
ity of the dihedral angles, that is, that a dihedral
angle of 180° is the same as an angle of 2180°.

Description of theAutoassociative Network

Originally the autoANN software was written in
LISP and run on a Thinking Machines CM5 mas-
sively parallel computer. In this work, the autoasso-
ciative neural network (autoANN) software was
rewritten in the C programming language to run on
Unix workstations. The results obtained from train-
ing this network on the original database were
compared to the results obtained from the previously
published work. The autoANN is a feedforward net
work36 that has the same number of input units as
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TABLE I. Database of Proteins and Summary of SBB and DSSP Secondary Structure
Category Assignments

Name-Ch Nr

SBB counts (%) DSSP counts (%)†

Descriptiona b z h t i H E T B G I S O

1aap-A 56 12.0 36.0 14.0 8.0 18.0 12.0 14.3 25.0 7.1 3.6 8.9 0.0 16.0 25.0 Proteinase inhibitor
1aba 87 127.2 22.2 14.8 1.1 11.1 13.6 34.5 18.4 14.5 2.3 0.0 0.0 8.0 21.8 Glutaredoxinmutant
1abk 211 151.2 7.3 14.6 4.2 5.4 7.3 56.9 0.0 10.0 0.0 4.3 0.0 11.9 17.1 Endonuclease III
1ads 315 131.1 17.5 14.2 2.9 12.0 12.3 33.6 11.8 12.7 3.2 4.8 0.0 8.9 25.1 Aldose reductase
1arb 263 19.0 39.7 14.0 0.9 14.0 12.5 5.7 31.6 13.3 0.8 9.9 0.0 10.3 28.5 Ach. protease I
1ayh 214 1.4 52.4 10.1 9.1 14.4 12.5 1.9 47.7 8.9 3.3 4.2 0.0 10.8 23.4 Glucanohydrolase H
1bab-B 146 72.1 1.4 10.7 8.6 3.6 3.6 68.5 0.0 4.8 0.0 12.3 0.0 2.7 11.6 Hemoglobin Th-Ville
1bbh-A 131 70.4 2.4 9.6 8.0 4.0 5.6 65.7 0.0 6.1 3.1 8.4 0.0 3.1 13.7 Cyto c8 (C. vinosum)
1bbp-A 173 17.2 44.9 13.2 0.2 13.2 11.4 9.8 48.0 8.1 0.0 3.5 0.0 11.0 19.7 Bilin binding protein
1bgc 152 71.2 5.5 8.9 5.5 4.8 4.1 73.7 0.0 8.6 0.0 2.0 0.0 3.3 12.5 Granulocyte Col-Stim factor
1btc 491 130.9 20.2 13.6 4.2 11.1 9.9 33.0 11.4 12.2 1.0 7.3 0.0 9.4 25.7 b-Amylase
1caj 258 10.3 38.1 15.1 9.9 13.5 13.1 8.1 29.5 10.5 1.9 8.1 0.0 15.5 26.4 Carbonic anhydrase I
1cmb-A 104 132.7 22.5 13.3 1.2 10.2 10.2 38.5 12.5 8.7 1.9 3.9 0.0 9.6 25.0 Met apo-repressor
1cob-A 151 12.8 39.3 14.5 5.9 14.5 13.1 0.0 39.1 15.9 2.7 4.6 0.0 14.6 23.2 Superoxide dismutase
1cpc-A 162 72.4 1.3 10.3 7.7 4.5 3.9 77.8 0.0 7.4 0.0 0.0 0.0 5.6 9.3 C-phycocyanin (A)
1cpc-L 172 72.9 3.6 7.8 7.2 3.6 4.8 71.5 0.0 12.2 0.0 1.7 0.0 3.5 11.1 C-phycocyanin (L)
1cse-I 63 115.8 31.6 14.0 2.3 19.3 7.0 17.5 30.2 19.1 3.2 4.8 0.0 4.8 20.6 Eglin-C (complex)
1dri 271 39.3 23.4 10.2 9.8 7.2 10.2 45.0 22.5 10.7 0.0 0.0 0.0 6.3 15.5 Ribose-binding protein
1end 137 46.6 10.7 13.0 9.9 9.9 9.9 43.1 0.0 11.0 2.9 8.8 0.0 7.3 27.0 Endonuclease V
1ezm 298 34.3 15.1 13.0 13.0 13.0 11.6 37.3 11.7 11.7 3.4 2.4 0.0 12.1 21.5 Elastase
1fas 61 0.0 45.5 12.7 9.1 14.6 18.2 0.0 39.3 9.8 0.0 0.0 0.0 26.2 24.6 Fasciculin 1
1fba-A 360 39.3 22.3 10.2 9.6 11.0 7.6 41.4 14.4 11.7 0.6 3.1 0.0 5.3 23.6 F-1,6-Bisp aldolase
1fcs 154 73.7 0.7 10.1 10.1 2.0 3.4 70.8 0.0 7.1 0.0 7.8 0.0 2.0 12.3 Myoglobinmutant
1fdd 106 31.0 16.0 15.0 12.0 15.0 11.0 17.0 11.3 15.1 0.9 16.0 0.0 7.6 32.1 Ferredoxinmutant
1fia-B 74 67.7 2.9 7.4 11.8 4.4 5.9 70.3 0.0 12.2 1.4 0.0 0.0 2.7 13.5 Fis protein
1gky 186 38.9 21.7 13.3 9.4 8.3 8.3 43.0 22.0 10.8 0.5 1.6 0.0 5.9 16.1 Guanylate kinase
1glt 284 28.8 26.3 13.3 10.8 10.1 10.8 31.3 29.2 9.2 0.0 5.6 0.0 7.8 16.9 Glutathione synthase
1gmp-A 96 10.0 26.7 20.0 14.4 15.6 13.3 11.5 19.8 20.8 1.0 3.1 0.0 12.5 31.3 Guanyloribonuclease
1gox 344 35.5 17.8 12.4 11.0 12.1 11.2 39.8 12.8 11.3 1.2 4.6 0.0 8.7 21.5 Glycolate oxidase
1gpb 823 45.5 18.5 11.4 10.0 8.5 6.1 45.1 15.3 10.1 0.5 4.6 0.7 7.1 16.6 Glycogen phosphorylase B
1hil-A 217 2.8 48.3 12.8 10.9 13.7 11.4 4.1 50.7 13.8 0.9 1.4 0.0 7.4 21.7 Immunoglobulin Fab
1hiv-A 99 4.3 53.8 10.8 7.5 11.8 11.8 4.0 56.6 12.1 0.0 0.0 0.0 11.1 16.2 HIV-1 protease
1hsb-A 270 25.8 34.5 9.8 9.5 11.0 9.5 24.4 38.9 11.5 0.7 2.2 0.0 9.6 12.6 HistocompatibilityAg
1ifc 131 10.4 50.4 8.8 9.6 8.8 12.0 11.5 58.8 13.7 0.0 0.0 0.0 3.1 13.0 FattyAcid binding protein
1isu-A 62 8.9 17.9 23.2 16.1 19.6 14.3 9.7 6.5 25.8 12.9 4.8 0.0 9.7 30.7 High-Pot Fe-S protein
1l92 162 51.9 5.1 12.8 12.8 7.7 9.6 64.2 8.6 7.4 0.6 1.9 0.0 7.4 9.9 Lysozymemutant
1lga-A 343 37.4 16.6 13.4 11.3 11.9 9.5 34.7 3.5 12.0 2.9 6.4 0.0 15.2 25.4 Lignin peroxidase
1lts-A 185 16.2 19.6 17.9 15.1 16.8 14.5 21.1 22.2 13.0 1.1 10.8 0.0 7.6 24.3 Enterotoxin (A)
1lts-D 103 21.7 37.1 10.3 10.3 10.3 10.3 22.3 36.9 12.6 0.0 0.0 0.0 10.7 17.5 Enterotoxin (D)
1nxb* 62 0.0 53.6 10.7 8.9 10.7 16.1 0.0 41.9 16.1 0.0 0.0 0.0 9.7 32.3 Neurotoxin B
1ofv 169 34.4 19.0 14.1 12.3 10.4 9.8 29.0 21.9 17.8 0.0 8.9 0.0 5.9 16.6 Flavodoxin
1omp 370 39.8 19.2 11.8 11.8 8.8 8.5 41.9 17.8 11.9 2.2 2.4 0.0 7.6 16.2 Maltodextrin-binding protein
1osa 148 56.3 3.5 12.0 12.7 7.8 7.8 62.2 0.0 7.4 2.7 0.0 0.0 9.5 18.2 Calmodulin
1paz* 120 13.2 37.7 14.0 11.4 11.4 12.3 14.2 36.7 13.3 0.8 2.5 0.0 10.0 22.5 Pseudoazurin
1pda 290 31.0 26.4 10.9 10.9 12.7 8.1 32.8 24.5 14.1 0.0 4.1 0.0 6.6 17.9 Porphobilin deaminase
1phb 405 43.6 12.0 15.5 11.5 9.0 8.3 44.0 9.6 11.9 0.7 7.7 0.0 7.2 19.0 Cyto P450 (P. putida)
1poa 118 41.1 10.7 14.3 13.4 11.6 8.9 40.7 6.8 17.0 2.5 5.9 0.0 7.6 19.5 PhospholipaseA2 snake
1poc 134 25.0 23.4 13.3 15.6 11.7 10.9 26.9 17.2 11.9 3.7 0.0 0.0 14.9 25.4 PhospholipaseA2 bee
1ppf-E 218 6.1 37.3 14.6 11.8 15.1 15.1 3.7 34.9 18.4 3.7 4.6 0.0 11.5 23.4 Leukocyte elastase
1ppn 212 18.9 28.6 13.1 13.6 12.6 13.1 23.1 17.9 13.2 4.3 2.8 0.0 10.4 28.3 Papain
1rbp 174 7.1 45.8 11.9 10.7 11.9 12.5 7.5 47.1 13.2 0.0 1.7 0.0 9.2 21.3 Retinol binding protein
1rnd 124 18.6 38.1 12.7 11.0 11.0 8.5 17.7 33.1 14.5 2.4 3.2 0.0 9.7 19.4 RibonucleaseA
1rro 108 47.1 2.9 17.7 12.8 9.8 9.8 48.2 3.7 11.1 0.0 9.3 0.0 11.1 16.7 Oncomodulin
1s01 275 23.4 25.3 13.4 13.4 11.9 12.6 29.8 17.1 16.0 2.6 0.0 0.0 9.5 25.1 Subtilisin BPN
1sbp 309 38.3 18.8 13.5 12.5 7.9 8.9 45.0 17.5 11.3 0.7 4.9 0.0 7.8 13.0 Sulfate-binding protein
1sgt 223 7.8 38.3 14.8 11.5 14.3 13.4 9.4 34.5 15.7 1.8 2.7 0.0 13.5 22.4 Trypsin
1sha-A 103 13.4 29.9 13.4 17.5 13.4 12.4 15.5 31.1 19.4 1.0 0.0 0.0 13.6 19.4 Tyrosine kinase
1shf-A 59 0.0 37.7 17.0 13.2 17.0 15.1 0.0 40.7 8.5 5.1 5.1 0.0 17.0 23.7 Tyrosine kinase (SH3)
1smr-A 299 9.6 41.0 15.7 9.9 13.0 10.9 9.7 46.2 14.7 2.0 7.7 0.0 5.4 14.4 Renin
1snc 135 26.4 23.3 14.7 10.1 14.0 11.6 24.4 29.6 15.6 2.2 2.2 0.0 10.4 15.6 Staph nuclease
1ten 89 1.2 56.6 8.4 8.4 15.7 9.6 0.0 53.9 11.2 0.0 0.0 0.0 7.9 27.0 Tenascin
1tfg 112 13.2 34.9 11.3 13.2 16.0 11.3 18.8 38.4 4.5 2.7 2.7 0.0 8.9 24.1 Growth factor b-2
1tgs-I 56 14.0 38.0 10.0 10.0 12.0 16.0 16.1 19.6 5.4 0.0 0.0 0.0 17.9 41.1 Trypsin inhibitor
1trb 316 25.2 32.0 11.3 11.6 9.0 11.0 23.7 26.9 9.8 1.3 5.1 0.0 13.3 19.9 Thioredox reductase
1tro-A 104 71.4 0.0 11.2 6.1 7.1 4.1 77.9 0.0 7.7 0.0 0.0 0.0 3.9 10.6 Trp repressor
1ttb-A 127 5.0 48.8 9.9 11.6 12.4 12.4 5.5 48.0 13.4 0.0 0.0 0.0 10.2 22.8 Transthyretin
1utg 70 68.8 0.0 14.1 6.3 6.3 4.7 71.4 0.0 7.1 0.0 4.3 0.0 4.3 12.9 Uteroglobin
1ycc 108 34.3 16.7 14.7 12.8 10.8 10.8 40.7 0.0 14.8 1.9 0.0 0.0 5.6 37.0 Cytochrome c
256b-A 106 75.0 0.0 9.0 6.0 5.0 5.0 76.4 0.0 8.5 0.0 2.8 0.0 3.8 8.5 Cytochrome B562
2aaa 476 25.5 24.0 14.9 12.6 11.5 11.5 26.9 17.9 15.3 2.3 6.3 0.0 8.4 22.9 a-amylase
2aza-A* 129 10.6 36.6 12.2 13.8 14.6 12.2 11.6 33.3 17.1 2.3 4.7 0.0 8.5 22.5 Azurin
2bop-A 85 26.6 40.5 11.4 7.6 7.6 6.3 28.2 35.3 4.7 0.0 3.5 0.0 7.1 21.2 BPV-1 E2 Protein
2ccy-A* 127 73.6 2.5 9.1 7.4 3.3 4.1 70.9 0.0 10.2 1.6 3.9 0.0 1.6 11.8 Cyto c8 (R. molisch.)
2cdv* 107 15.8 11.9 23.8 18.8 13.9 15.8 25.2 9.4 13.1 1.9 2.8 0.0 21.5 26.2 Cytochrome c3
2cpl 164 13.9 29.1 15.8 14.6 13.9 12.7 12.2 29.3 17.7 3.1 1.8 0.0 11.0 25.0 CyclophilinA
2ctc 307 34.9 20.6 13.0 11.3 10.6 9.6 36.8 16.3 12.1 1.3 1.0 0.0 13.0 19.5 CarboxypeptidaseA
2cts* 437 52.9 7.2 12.3 9.7 10.4 7.4 58.8 1.4 10.5 1.1 2.3 0.0 6.2 19.7 Citrate synthase

(continued)
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output units and a smaller number of hidden units
(Fig. 1). It trains to reproduce the activation values
of its input units as its output. If the network learns
to do this, then it must have developed a concise
representation of the input data in the activations of
the small hidden layer; thus, we hypothesized that a
large input vector encoding a peptide conformation
could be reduced to a smaller vector in the hidden
layer and that the activation values of the hidden
units would still contain the relevant local structural
information. Given the limitations of clustering algo-
rithms,34 this reduced representation of the raw data
would be more suitable for clustering than the raw
data themselves.
The autoANN was trained on the input data

(protein segment geometry) using a standard back-
propagation algorithm.36 All of the segments from
the database were presented to the network, and the
accumulated differences of the outputs from the
associated inputs were then used by backpropaga-
tion to modify the weights in the network; one
complete cycle of data presentation and weights
modification is called an epoch. This process was

repeated until the rms difference between the actual
output and the input was less than 0.08, which
usually took about 1000–2000 epochs. Earlier work
stated that the networks trained to an rms difference
of 0.01.37 The network implemented onUnixworksta-
tions could not be trained to this level. We investi-
gated this difference and were unable to explain it.
Additional training to as many as 8000 epochs did
not significantly lower the rms difference between
the input and the output, nor did it improve the
ultimate biological relevance of the clusters. The
same data trained on a public domain backpropaga-
tion network42 produced rms values similar to our
current results. Furthermore, we compared the hid-
den unit activation values from a network created in
the original study to one of our networks trained on
the same database. The correlation between the
activation values was better than 0.99, thus we
assumed that the new networks were returning data
quite similar to those previously reported. The time
to train a network using the new autoANN software
is about 10 hours on a Silicon Graphics (SGI) Indigo2

TABLE I. (Continued) Database of Proteins and Summary of SBB and DSSP Secondary Structure
Category Assignments

Name-Ch Nr

SBB counts (%) DSSP counts (%)†

Descriptiona b z h t i H E T B G I S O

2cyp* 293 40.8 14.3 14.6 10.8 10.8 8.7 45.7 5.5 12.3 2.1 4.4 0.0 8.5 21.5 Cyto c peroxidase
2er7-E 330 6.8 41.1 13.9 12.7 13.9 11.7 7.6 44.2 14.2 1.2 3.6 0.0 10.6 18.5 Endothiapepsin
2had 310 37.8 19.4 12.8 12.2 8.9 8.9 34.2 14.2 14.8 0.0 7.7 0.0 8.7 20.3 Dehalogenase
2hpd-A 457 45.2 13.5 14.2 10.6 8.9 7.5 48.1 10.9 9.9 0.4 5.3 0.0 8.1 17.3 Cyto P450 (B.mega.)
2ihl 129 32.5 5.7 17.9 17.9 12.2 13.8 29.5 6.2 23.3 4.7 10.9 0.0 8.5 17.1 Lysozyme
2lal-A 181 0.6 48.6 14.3 9.1 13.1 14.3 0.0 46.4 16.6 2.2 1.7 0.0 9.9 23.2 Lentil lectin (A)
2lal-B 47 2.4 63.4 9.8 7.3 9.8 7.3 8.5 63.8 0.0 0.0 0.0 0.0 8.5 19.2 Lentil lectin (B)
2mhr 118 67.0 2.7 10.7 7.1 5.4 7.1 64.4 0.0 7.6 0.0 5.9 0.0 5.1 17.0 Myohemerythrin
2mnr 357 35.6 24.8 12.0 8.3 9.1 10.3 40.1 18.8 11.2 3.1 1.7 0.0 8.4 16.8 Mandelate racemase
2msb-A 111 15.2 31.4 11.4 14.3 16.2 11.4 18.9 30.6 12.6 1.8 0.0 0.0 10.8 25.2 Mannose binding proteinA
2pia 321 16.5 33.3 13.3 11.4 13.7 11.8 15.0 29.9 18.1 0.3 1.9 0.0 9.7 25.2 Phthalate Diox Reductase
2rn2* 155 33.6 29.5 9.4 9.4 10.1 8.1 34.8 28.4 12.3 1.9 0.0 0.0 7.1 15.5 RibonucleaseH
2scp-A 174 61.3 2.4 10.7 11.9 7.7 6.0 56.3 4.6 11.5 0.0 7.5 0.0 8.1 12.1 Sarcoplasmic Ca-binding Protein
2sga 181 5.7 44.0 12.6 10.3 15.4 12.0 6.6 54.1 13.3 1.1 3.3 0.0 4.4 17.1 ProteinaseA
2sn3* 65 10.2 23.7 20.3 13.6 13.6 18.6 12.3 18.5 18.5 6.2 0.0 0.0 13.9 30.8 Scorpion neurotoxin
3adk* 194 50.5 16.5 8.0 8.5 7.5 9.0 54.6 12.9 11.9 0.0 0.0 0.0 5.2 15.5 Adenylate kinase
3b5c* 85 35.4 13.9 17.7 11.4 10.1 11.4 24.7 22.4 25.9 1.2 7.1 0.0 3.5 15.3 Cytochrome B5
3chy 128 38.5 21.3 13.9 8.2 8.2 9.8 45.3 17.2 8.6 0.0 0.0 0.0 9.4 19.5 CheY
3cla 213 28.0 31.9 11.6 8.7 11.1 8.7 28.2 28.6 13.2 0.0 1.4 0.0 8.5 20.2 Chloramph ace-transferase
3dfr* 162 19.9 33.3 12.2 10.3 12.2 12.2 19.1 31.5 9.3 1.2 5.6 0.0 12.4 21.0 DHF reductase
3grs* 461 27.7 29.2 11.2 11.2 9.5 11.2 28.6 24.1 12.2 1.1 5.6 0.0 9.1 19.3 Glutathione reductase
3il8 68 21.0 32.3 11.3 9.7 16.1 9.7 22.1 25.0 10.3 2.9 4.4 0.0 10.3 25.0 Interleukin 8
3rub-S 123 20.5 22.2 13.7 12.8 17.1 13.7 22.0 22.0 14.6 1.6 0.0 0.0 12.2 27.6 Rubisco
3sgb-I 50 20.5 34.1 9.1 9.1 13.6 13.6 20.0 22.0 14.0 2.0 0.0 0.0 10.0 32.0 Ovomucoid inhibitor
3sic-I 107 13.9 38.6 15.8 11.9 6.9 12.9 15.0 36.5 11.2 0.9 0.0 0.0 15.9 20.6 Strepto subtilisin inhibitor
4blm-A 256 34.8 21.2 14.0 12.8 7.6 9.6 35.6 18.8 13.3 0.0 7.8 0.0 7.0 17.6 b-Lactamase
4enl 436 35.8 18.1 13.3 11.9 10.7 10.2 39.2 16.3 10.8 0.7 6.0 0.0 7.6 19.5 Glycerate hydrolase
4fxn* 138 40.9 22.0 9.9 10.6 7.6 9.1 34.1 21.0 16.7 1.5 2.2 0.0 8.7 15.9 Flavodoxin
4gcr* 174 3.0 42.3 11.9 8.3 14.9 19.6 2.9 46.0 8.1 2.3 6.3 0.0 12.1 22.4 Gamma-B crystallin
4sgb-I 51 0.0 44.4 15.6 13.3 15.6 11.1 0.0 23.5 21.6 5.9 0.0 0.0 3.9 45.1 Potato inhibitor
5fbp-A 307 30.9 27.2 11.3 10.0 10.3 10.3 29.3 23.8 10.1 2.3 8.1 0.0 8.5 17.9 Fructose-1,6-bisphosphatase
5p21 166 31.9 33.1 11.3 8.8 8.1 6.9 34.3 26.5 12.1 0.0 1.8 0.0 7.8 17.5 H-Ras P21 protein
7aat-A 401 40.5 18.0 12.4 11.1 9.4 8.6 46.1 14.0 12.7 0.0 1.5 0.0 4.7 21.0 Asp aminotransferase
8abp* 305 40.1 21.1 11.4 9.0 9.4 9.0 42.6 21.3 8.9 0.7 4.9 0.0 7.5 14.1 Arabinose binding protein
8acn 753 28.3 26.2 13.4 11.2 9.9 11.0 29.6 17.8 13.2 2.8 5.4 0.0 8.6 22.6 Aconitase
8rxn-A* 52 0.0 13.0 30.4 19.6 19.6 17.4 0.0 15.4 26.9 7.7 17.3 0.0 1.9 30.8 Rubredoxin
9ldt-A 331 37.9 20.6 10.5 8.9 12.0 10.2 40.2 17.5 8.5 0.3 5.1 0.0 8.8 19.6 Lactate dehydrogenase
9rnt* 104 14.3 37.8 10.2 12.2 13.3 12.2 15.4 26.9 17.3 1.9 0.0 0.0 12.5 26.0 Ribonuclease T1
9wga-A* 171 8.5 16.4 18.8 25.5 11.5 19.4 9.4 9.4 13.5 7.0 14.6 0.0 17.0 29.2 Wheat germ agglutinin
Totals for dataset:

31.2 24.0 12.8 11.2 10.7 10.2 32.4 20.7 12.2 1.4 4.2 0.03 8.8 20.1

*denotes same or similar protein in original database
†DSSP Legend: H, a Helix; E, b strand; T, 3,4,5 turn; B, b bridge; G, 3-helix; I, 5-helix; S, 5-residue bend; O, not classified by DSSP.
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R8000 workstation. The network results were vali-
dated as described in the Results section.

Clustering of the Hidden Unit Activations

After training was complete, the autoANN weights
and biases were frozen and the activation values of the
hidden unit vectors for each seven-residue segment
were computed. These eight-unit vectors were clustered
using a k-means clustering algorithm,43 implemented
within the Splus statistical software package (StatSci)
on an SGI workstation. In a k-means clustering algo-
rithm, the number of clusters, k, is chosen and k vectors
are arbitrarily assigned as initial cluster centers or
‘‘seeds.’’Each eight-unit vector is then assigned to one of
the clusters by calculating the euclidean distance be-
tween the vector and each center and thenassigning the
vector to its ‘‘closest’’ center. After all eight-unit vectors
are assigned to a cluster, cluster centers are recalcu-
lated. This process of assigning segments and recomput-
ing the cluster centers is repeated until it converges,
that is, the centers and the segment assignments do not
change. To validate the clustering process, each cluster-
ing analysis was repeated a minimum of 70 times
starting with different random choices of cluster cen-
ters.

K-means clustering does not provide a method for
automatically determining the optimum number of
clusters, so various numbers of clusters were tried,
with k varying from 2 through 12. Six clusters gave
the most consistent results (see Results), so the six
clusters were designated as six structural building
block (SBB) categories. The six SBBs were given the
designations alpha (a), beta (b), zeta (z), eta (h), tau
(t), and iota (i), based on their structures (see
Results). A seven-residue protein segment is said to
belong to a particular SBB category when the hidden
unit vector calculated by the autoANN from that
segment’s geometry is assigned to the cluster corre-
sponding to that SBB category.

Analysis of AminoAcid Frequencies
in the SBBs

For each position in the seven-residue segment, 1–7,
of each SBB category, the frequency of occurrence of
each amino acid type was calculated. The normalized
frequency of occurrence of aminoacid typeXatposition i
in each SBB category swas calculated as

fx,s,i 5 (Xs,i/Xtot)/(Ns,i/Ntot) (1)

where Xs,i is the total number of type X residues at
position i in SBB category s, Xtot is the total number
of type X residues in the database, Ns,i is the total
number of all residues at position i in SBB category
s, and Ntot is the total number of all seven-residue
segments in the database.
The statistical significance of the amino acid fre-

quency data was determined by applying a chi square
test for each amino acid type at each position of each
SBB category.A log linear model was used to determine
the expected distribution of data. Frequencies are re-
ported as significant at a 0.95 confidence level.

Analysis of Patterns in the SBBs

In the database of protein chains classified into
SBBs, some SBB pairs and triples occur more often
than their individual, independent occurrenceswould
warrant, leading us to analyze pairwise and triplet
occurrences of the SBBs in the database. (Occur-
rence of some quadruples was significant, but quin-
tuples were not done because there were not enough
data to determine statistical significance.) Pattern
analysis was done using a program, RelFreq, written
in the C programming language. This program takes
as its input the SBB assignment for each seven-
residue segment in the database. The program ana-
lyzes the occurrences of the SBBs, individually, in
pairs, and in triples. These data prepare queries for
the SPlus statistical software package (StatSci) pro-
portions test. Based on the occurrence data for the
individual SBB categories, SPlus determines if the
occurrence of pairs or triples of SBB categories signifi-
cantly differs from that expected of independently occur-
ring pairs or triples at a 0.99 confidence level.
To evaluate whether the SBB pairs and triples

represent structural motifs, the sequences of f and c

Fig. 2. The overlapping nature of SBB categories. Because SBBs
are classifications of the local structure of a seven-residue protein
segment, two successive SBBs in a protein overlap six of their seven
residues. The SBB classification for a segment is associated with the
residue in the middle of the segment, thus the SBB classification for
residue Ri is actually the local structure category of the seven-residue
segment centered at residueRi. For the SBB pair SBBi and SBBi11 the
central two residues are Ri and Ri11, and the central four residues are
Ri-1, Ri, Ri11 and Ri12. For the SBB triple SBBi-1, SBBi and SBBi11 the
central three residues areRi-1, Ri andRi11, and the central five residues
are Ri-2, Ri-1, Ri, Ri11 andRi12.
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angle values at each position of the instances of the
pairs and triples were analyzed. To recognize similar
backbone conformations despite variations in f and
c values, the Ramachandran (f, c) map was divided
into six regions using a simplified version of the
regions proposed by Zimmerman and colleagues44(Fig.
3). The sequences of the Ramachandran regions for
the two and four central residues in pairs and the
three and five central residues in the triple instances
(Fig. 2) were examined to see which Ramachandran
region sequences occurred most often. The frequency
of occurrence of the most common sequences for each
pair and triple were computed.

RESULTS
Overview

The autoANN software used in this work was
rewritten to run on Unix workstations. It was veri-
fied by correlating its results to those produced by
the previously written software trained on the origi-
nal protein database. The original database and new
network software were then used to empirically
optimize the network and clustering parameters.
However, the small size of the original database
prevented an analysis of the statistical significance
of the pair and triple patterns in the SBBs. Thus, a
new, larger database was developed. This new data-
base was used to train the autoANN with the same
network parameters that were optimized for the
original database. The generality of the trained
networks and of the clustering results was validated
by comparison of the results from the network
trained on the larger database to results from the
network trained on the original database. The new
database of SBBs was then analyzed for amino acid
composition and patterns of SBBs.

AutoANN Training and Parameter Selection

The autoANN was trained with a momentum
constant of 0.9 and an initial learning rate of
0.00001.36,45 The learning rate was incremented
0.000001 every 100 epochs until it reached a maxi-
mum value of 0.000043. These training parameters
were experimentally determined to yield the smooth-
est reduction in rms error during training, until the
rms error cutoff of less than 0.08 was reached.
Momentum constants ranging from 0.0 to 0.75 and
initial learning rates from 0.0000001 to 0.01 were
tested, but resulted in either slower reduction in rms
error or networks that became unstable. In the
unstable networks, the rms error increased dramati-
cally, varied erratically, and did not subsequently
decrease significantly during the course of the run. A
wide variety of learning rate change schedules were
also tried, including relatively large changes to the
learning rate over the course of training and large
initial learning rates that were reduced over the
course of the training. Of all values tried, the learn-
ing rate schedule described above produced the most
consistent results for those networks that trained to
a low rms; these empirically determined values were

subsequently used to train all networks described
here.

Validation of theAutoANN Training

The generality of the trained autoANNs was vali-
dated. Ideally, the performance of the trained net-
work should reflect the general geometric regulari-
ties of the virtual bond angles, dihedral angles and
distance data in globular proteins. But, an autoANN
with large numbers of weights and biases can overfit
to, or partially memorize, a particular database.45 In
this case, the results of the network are too closely
based on the values found in the dataset on which it
was trained and the network will perform poorly
when tested on other proteins. To determine if the
autoANNs were generalizing from the database or if
they were overfitting to the database on which they
were trained, a simple cross-validation technique
was used. Networks trained on each of the two
databases, the original database37 and the new data-
base, were evaluated using those proteins from the
reduced version of the other database on which they
were not trained. The network rms values produced
by these training and test sets were compared to
evaluate whether the nets were generalizing or
overfitting. The network trained on the original
database was trained to an rms value of 0.071. When
this network was tested on the 97 nonhomologous

Fig. 3. Ramachandran map regions used for analyzing SBB
triples. The Ramachandran map (f and c angles) was divided into
six regions using a simplified version of the regions described by
Zimmerman et al.44 Region A contains conformations where
2180° , f # 240° and 290° , c # 20°, or 2110° , f # 240°
and 20° , c # 50°. Region E includes conformations in the range
2180° , f # 240° and 50° , c # 180°, or 2180° , f # 240°
and 2180° , c # 2140°, or 2180° , f # 2110° and 20° , c #
50°. Region H classifies all other conformations where f # 0°.
Region A represents helical conformations, region E extended
conformations, and region H is a rarely occupied, energetically
unfavorable conformation. RegionsA*, E*, and H* are the symmet-
ric equivalents of A, E, and H created by rotating 180° around the
origin.44 Region A* represents left-handed helical conformations.
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proteins from the new database that were not in the
original database (Table I), the resulting rms was
0.072. Another network trained on the new database
was also trained to the cutoff rms value of 0.078.
When this network was tested on the 56 disjoint
proteins from the original database, the rms was
0.082. If the networks were memorizing or overfit-
ting to the training data, significantly lower rms
values for the training than for the testing databases
would have been observed; however, each network
had similar rms values for both its training and test
sets (0.071 compared to 0.072, and 0.078 compared
to 0.082), even though the two sets were disjoint.
This result supports the contention that both net-
works are generalizing to the regularities of the
a-carbon angles and distances in globular proteins,
rather than overfitting to the particular values pre-
sented in their respective training databases.

Validation of the ClusteringAnalysis

According to our hypothesis, each eight-unit vec-
tor (the hidden unit activations of the autoANN)
should contain all of the relevant structural informa-
tion encoded in its associated 43-unit input vector
and should, therefore, be a concise representation of
the most important structural features of the protein
segment. Thus, clustering on these vectors should
produce relevant classes of local protein structure.
Previously, different cluster sizes were tested and six
categories (given the letter namesA through F) were
found to give the most consistent results by cross-
validation.37 For the rewritten autoANN, the cluster-
ing validations were done more thoroughly. Three
separate issues needed to be addressed. First, the
meaningfulness of six clusters or categories (rather
than three, five, seven or some other number) needed
to be demonstrated. Second, to show that the cluster-
ing wasmeaningful, and not arbitrary, clustering the
hidden units from a single networkmust be reproduc-
ible. Third, to demonstrate that the classifications
produced from distinct networks were general, clus-
tering hidden units from separate networks must
produce comparable results.
The activation values of the eight-unit hidden

vectors computed by the trained autoANN on the
original database were clustered using a k-means
clustering algorithm. K-means clustering algo-
rithms require that the number of clusters or groups
be specified, so separate tests were done on vectors
from a single network with numbers of clusters
ranging from two to twelve. For each test, clustering
was performed seventy times. The number of dis-
tinct results obtained from the seventy attempts
ranged from one (for two clusters) to seventy (for ten,
eleven, and twelve clusters), with a distinct plateau
for five, six, and seven clusters (data not shown). The
increase in the variability of the clustering beyond
seven suggests that clusters of five through seven
gave the most consistent results among sizes large
enough to represent a set of plausible local struc-
tural categories. Furthermore, of the 70 runs for

each of five, six, and seven clusters, one result
always predominated, demonstrating that cluster-
ing runs on data from a single network produced one
clear winner, at least for five, six, and seven clusters.
To determine if multiple net runs produced similar

groupings and to make a decision on the cluster set
that produced the most general, reproducible catego-
ries, a second analysis was done using five networks
trained from different starting weights and biases.
For each network, the hidden unit activations were
clustered by the k-means algorithm into five, six, or
seven groups. For each cluster set, the five classifica-
tions from the different networks were correlated.
These ten pairwise correlations of categories for each
cluster set were examined. None of the classifica-
tions for a cluster set of seven were closely corre-
lated. For a cluster set of five, four of the ten pairwise
comparisons were highly correlated. For a cluster set
of six, six of the ten comparisons resulted in highly
correlated classifications. On the basis of this analy-
sis, a cluster set of six was chosen as that giving the
most general and reproducible classifications. Fur-
ther, this experiment demonstrated that clustering
results from different networks produce comparable
(but not perfect) results.
To further confirm that the clusterings underlying

the SBB categories reflect general geometric regulari-
ties in local protein structure and are not arbitrary, a
‘‘negative control’’ database of seven-residue seg-
ments was developed. The virtual dihedral angles of
a seven-residue segment were rotated through 30°
increments and the a-carbon coordinates were saved
at each increment. The segments were not tested for
physically overlapping conformations. The resulting
database of 20,736 segments differed from the SBB
database in two respects. First, the segments in the
database were a sampling of the continuum of the
virtual dihedral angle combinations of the seven
residues. This is in contrast to the SBB database,
where the geometries in the segments are only those
physically realizable geometries that actually oc-
curred in the SBB database of proteins. Second, the
control database only contained one example of each
sampled conformation, whereas the SBB database
contains many examples of similar segments (e.g.,
helical segments). If clustering on the control data-
base produced categories comparable to those of the
SBBs, the hypothesis that SBBs represent local
structural regularities would be undermined.
The control database was then used to train an

autoANN with the same training parameters as the
other networks described here. This net trained to
an rms difference between input and output values
of 0.056. The hidden unit activation values obtained
from the autoANN trained on the control database
were then clustered into six groups 70 different
times. These clusterings produced inconsistent re-
sults; 70 clustering runs produced 70 distinct cluster-
ings. Similar results were obtained for other cluster
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set sizes. Although the inability to find consistent
clusters in a uniform sampling of possible geom-
etries was not surprising, it supported our hypoth-
esis that the clusters from the SBB database reflect
classes of local protein structure. Clusterings of
hidden unit activation values computed by the net-
work from actual protein geometries resulted in
consistent, reproducible results, whereas data uni-
formly sampled from all virtual dihedral angle com-
binations did not, suggesting that the SBB classifica-
tions, that is, the clusters, are based on the allowed
conformations in the local structure of globular
proteins.
To measure cluster separation, the euclidean dis-

tances from each segment in a given cluster to the
cluster center were computed. The average of these
‘‘within-cluster’’ distances was compared to the ‘‘cen-
ter-to-center’’ distances between clusters (Table II).
In all but two cases, the center-to-center distance
between any two clusters is greater than the mean
distance of all vectors in the cluster from its center
plus one standard deviation. In these two cases, z to i
and h to t, the center-to-center distance is close to
the mean distance plus one standard deviation. This
result indicates that the individual clusters are
fairly well separated from one another.

Description of the Structural Building Block
Categories in the New Database

Following complete validation and optimization of
the new autoANN on the original database, the
network was trained on the new, extended database.
Following training, the hidden unit vectors for each
of the 22,659 segments were computed and clustered
into six categories to produce the six SBB categories,
a, b, z, h, t, and i, described here. We found 7062
(31.2%) SBB-a segments, 5431 (24%) SBB-b seg-
ments, 2908 (12.8%) SBB-z segments, 2534 (11.2%)
SBB-h segments, 2424 (10.7%) SBB-t segments, and
2300 (10.2%) SBB-i segments. The percentage of
each SBB type found in every protein are presented
in Table I. For comparison, the DSSP program15

applied to the 116 proteins our database found 7577
(32.4%) helix (H) residues, 4841 (20.7%) strand (E)
residues, 2859 (12.2%) turn (T) residues, 2048 (8.8%)
5-residue bends (S), 329 (1.4%) b-bridge (B) residues,
992 (4.2%) 3-helix (G) residues, and 6 (0.03%) 5-helix
(I) residues (Table I). 4703 residues or 20.1% of this

database were not assigned to any category by the
DSSP algorithm.
Examination of globular protein structures sup-

ports the hypothesis that the hidden unit activations
encode biologically relevant structural information.
Sulfate binding protein from Salmonella typhimu-
rium (1sbp)46 and b-lactamase, chain A, from Bacil-
lus licheniformis (4blm)47 were chosen to display the
results, although similar patterns are found in all
proteins that were examined. Sulfate binding pro-
tein, which is composed of 309 residues and was
solved to a resolution of 1.7 Å, is a two-domain
protein consisting of two a/b domains and contains
parallel b sheets. b-Lactamase chain A is 256 resi-
dues in length, has been solved to a resolution of 1.0
Å, and is also a two-domain protein. One domain is
an a 1 b domain with an antiparallel b sheet; the
other domain is largely a-helical, with one small
antiparallel b sheet. Thus, a variety of common
globular protein domain types are represented in
these two proteins.
The structures of sulfate binding protein and

b-lactamase, chain A, are displayed in Figure 4,
colored by their DSSP classification or by the SBB
category of the central residue in each seven-residue
segment. In Figure 5, the SBB classification and
DSSP assignment are compared for each residue in
these proteins. As found with the original software
and database,37 two SBB categories closely corre-
spond to the helix and sheet structures. Residues
assigned to SBB-a and b correlate with DSSP catego-
ries H (a helix) and E (b sheet), respectively. The
central residue of the SBB-a category is classified by
the DSSP program as H 87.9%, as T 4.9%, as G 5.2%,
and as unclassified (other) 1.2% of the time. The
central residue of SBB-b is classified by the DSSP
program as E 65.6%, S 6.1%, B 1.7%, and T 0.1% of
the time; 26.4% of the central residues in SBB-b
segments are not classified by DSSP. These correla-
tions are found in all proteins in the database (Table
I and Fig. 6).
Ourmethod did not distinguish between the confor-

mations of b strands that participate in parallel and
antiparallel b sheets; both are found as runs of
SBB-b residues (see the parallel (1sbp) and antipar-
allel (4blm) b sheets in Figures 4 and 5). This result
is expected because strands that participate in paral-
lel and antiparallel b sheets have similar local

TABLE II. Separation of Six Clusters that Correspond to the Six SBB Categories

Within-category distances Distance from other category centers
Mean (SD) SBB-b SBB-z SBB-h SBB-t SBB-i

a 0.179 (0.170) 1.361 0.708 0.705 0.998 0.998
b 0.402 (0.128) 0.932 0.886 0.587 0.632
z 0.528 (0.102) 0.642 0.858 0.629*
h 0.559 (0.083) 0.567* 0.783
t 0.499 (0.096) 0.658
i 0.485 (0.122)

*Indicates that the mean within category distance plus one standard deviation is greater than the
center-to-center distance between the two categories.
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Fig. 4. Positions of SBB (A and C) and DSSP (B and D)
classes in the tertiary structure of sulfate binding protein (1sbp, A
and B) and b-lactamase (4blm, C and D). A, C: Each residue is
colored by the SBB category of that segment of which it is the
central residue: SBB-a, red; SBB-b, blue; SBB-z, orange; SBB-h,
magenta; SBB-t, yellow; SBB-i, cyan. The three N-terminal and
three C-terminal residues are delineated as white because they
are not the central residue of any SBB segment. SBB-a and b
largely correspond to the regular secondary structures, helix and
strand. SBB-z and h are often found at the N- and C-termini of
helices (orange and magenta arrows, respectively), while t and i
are found at the N- and C-termini of strands (yellow and cyan

arrows, respectively). SBB-z, h, t, i, and, rarely, a and b,
categories are also found in the nonregular secondary structure
regions. Examples of short patterns in the coil regions are
indicated by bicolored arrows: SBB-z followed by SBB-h (orange-
magenta), a ‘‘tight’’ turn and SBB-i followed by SBB-z (cyan-
orange), an ‘‘S-type’’ turn. B, D: Residues are colored by their
DSSP category assignment: helix (H), red; strand (E), blue; turn
(T), yellow; 3-helix (G), green; bend (S), magenta; and b bridge
(B), orange; residues unclassified by DSSP are white. (Pictures
were printed from a Silicon Graphics R8000 Extreme graphics
workstation using the InsightII modeling package from Biosym
Technologies, Inc.)
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backbone conformations at the level of a-carbon
geometry, but differ in their relationship to other b
strands; as it is currently encoded the autoANN is
only given local a-carbon geometries and would not
be expected to recognize tertiary interactions. Runs
of SBB-b residues are found in extended regions that
are not part of b sheets (not shown), further demon-
strating that the SBB categories represent local
geometries that are not necessarily part of larger
hydrogen-bonded structures and thus are not ex-
pected to fully correlate with the DSSP-assigned
structures.
Further patterns can be found in the two proteins

shown in Figures 4 and 5. Stretches of SBB-a
residues (helices) often begin with one or two SBB-z
residues and end with one or two SBB-h residues.
Similarly, runs of SBB-b residues (strands) fre-
quently begin and end with SBB-t and SBB-i resi-
dues, respectively. Thus, SBBs classify separate
structural categories for the N- and C-terminal caps
of both helices and strands.
The patterns seen in sulfate binding protein and

b-lactamaseare consistentwith thoseobserved through-
out the database. Figure 6 shows that SBB-a and -b
contain the largest fraction of residues that are classi-
fied as helix and strand by the DSSP algorithm, respec-
tively, while all positions of all SBBs contain residues
classified as ‘‘coil.’’Evidence for the capping structures is

also apparent in this figure. SBB-h contains a substan-
tial amount of DSSP-classified helix in the first four
(N-terminal) residues of the seven-residue strand,while
SBB-z contains a substantial amount of helix in the last
four (C-terminal) residues. Furthermore, SBB-i and
SBB-t contain a significant amount of strand at the first
and last four residues of the seven-residue segment,
respectively. However, other than the correlations be-
tween helix and SBB-a and strand and SBB-b, no
strong correlations were found between any of the six
SBB patterns and any of the DSSP categories (data not
shown). Similar patterns were also observed in the
smaller dataset.37

These results demonstrate that both helix and strand
capping structures canbeobjectively recognizedby their
local a-carbon geometry. Our classification system of an
autoANNand clustering algorithm is a unique example
of amethod that objectively recognizes these structures.
However, all SBB structures, a, b, h, t, z, and i, are also
found in the nonregular structures or the ‘‘random coil’’
regions (Figs. 5 and 6), demonstrating that segments
with these local geometries are not solely found in the
regular secondary or capping structures.Analysis of the
patterns in the random coil regions is presented below.

Fig. 6. Comparison of the six SBB categories to the classical
secondary structures in the database of 116 proteins. Each seven-
residue segmentwas assigned theSBBcategory of its central residue,
then each residue in the seven-residue segment was assigned to helix
(black bars), strand (gray bars), or coil (striped bars) by the DSSP
program.15 The total percentage of each secondary structure type was
calculated for each position and these data are illustrated as a
histogram.ThecorrelationofSBB-awithhelix andSBB-bwith strand is
clear. The concentration of helix at the C-terminus of SBB-z segments
and at the N-terminus of SBB-h segments suggests that these
categories act as helix-capping structures. Likewise, the concentration
of strandat theC-terminusofSBB-t segments andat theN-terminusof
SBB-i segments suggests that these categories act as strand-capping
structures.

Fig. 5. Comparison of SBBs (this work) and DSSP secondary
structure assignments in the sequences of sulfate binding protein
(A) and b-lactamase (B). The first row is the amino acid sequence,
given as the one-letter amino acid code. The second row is the
SBB category (a, b, z, h, t, and i) for the central residue of each
seven-residue segment, and the third row is the DSSP category
(H, helix; E, sheet; T, turn; S, bend; G, 3/10 helix; and B, isolated b
bridge). Adash indicates that a residue is unclassified by DSSP. To
improve readability, the SBB categories a, b, z, h, t, and i are
labeled as their English equivalent, a, b, z, h, t, and i, respectively.
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Structure of Each Class of SBBs

Thedistinct geometry of eachSBB category is demon-
strated by comparison of the virtual bond angles and
virtual dihedral angles (Table III), but is more easily
represented by superposition of all segments classified
in each SBB category in sulfate binding protein (Fig. 7).
Note that only a-carbon geometry was encoded as input
into the autoANN, but the complete backbone,N, Ca, C,
andO, are shown in this figure; despite this, the general
structural cohesiveness of each SBB category is still
quite evident. SBB-a is clearly helical, while SBB-b is
extended. SBB-h can be described as a fiddlehead,while
SBB-i resembles a shrimp and SBB-z resembles a nose.
(Except for a and b, each has some similarity to the
shape of the Greek letter chosen to represent that
category.) These observationsdemonstrate that theneu-
ral network can meaningfully reduce the number of
parameters needed to represent the geometry of each
seven-residue protein segment and that these vectors
can be clustered.
As expected, the structures do not superimpose

perfectly (Fig. 7) and the standard deviations of the
virtual bond angles and dihedral angles can be
rather large (Table III). There are two reasons for
this. First, only a-carbons were used to describe
segment geometry. More coherent categories might
be achievable if all backbone atoms (including the
carbonyl oxygen and the b-carbon of each residue)
are encoded as input to the autoANN. Second, pro-
tein structure is not definable as six precise struc-
tural categories. As these are general classifications,
there will always be a ‘‘fuzziness’’ to them.

AminoAcid Residue Frequencies in the SBBs

The normalized frequency of occurrence, f, of each
amino acid at each position in the six SBBs was
calculated (Fig. 8). Clear amino acid preferences at
specific positions exist. The preferences for the heli-

cal SBB-a and helix caps, SBB-z and SBB-h, are
consistent with the known amino acid prefer-
ences.20,21,48–53 For instance, proline and glycine are
known as helix breakers and have a very low fre-
quency of occurrence in most positions in SBB-a.
Serine and threonine are also found infrequently in
SBB-a. Consistent with helix dipole preferences,
lysine and arginine are favored at the C-termini of
SBB-a, while glutamic acid (but not aspartic acid) is
found in the N-terminus of these segments. The
hydrophobic amino acids alanine, leucine, and me-
thionine are preferred in SBB-a segments.
In SBB-z, the helix N-capping structure, proline is

strongly preferred at positions 3 and 4 and disfa-
vored at positions 5 and 6. Consistent with the
previously characterized helix capping box,54,55 ser-
ine is preferred at positions 2, 3, and 4, while
glutamic acid is preferred at positions 4 and 5 of
SBB-z. Valine, leucine, and isoleucine are all disfa-
vored at positions 3, 4, and 5 in this structure. In
SBB-h, the helix C-capping structure, glycine is
strongly favored in positions 4 and 5, consistent with
previously proposed capping structures.56,57 Again,
isoleucine, leucine, and valine are disfavored in
positions 3 and 4 of this capping structure.
SBB-b, the extended or b strand structure, and

SBB-t and SBB-i, often found at the N-termini and
C-termini of these strands, respectively, also exhibit
amino acid preferences (Fig. 8). The b-branched
residues isoleucine, threonine and valine are pre-
ferred at the central positions of SBB-b segments.
The negatively charged residues, aspartic acid and
glutamic acid, are not commonly found in the central
positions of SBB-b. Proline and serine are found at
the C-termini and glycine is found at the N-termini
of SBB-b segments. In SBB-t, the strand N-cap
structure, valine, leucine, and isoleucine are disfa-
vored at positions 2 and 3. Proline is favored in

TABLE IIIa. Virtual Bond Angle Means and Standard Deviations

Central a-carbon of angle
SBB 2 3 4 5 6 All positions

a 92.5(5.0) 92.3(4.2) 92.4(4.9) 92.7(4.9) 94.4(8.3) 92.8(5.7)
b 119.3(14.4) 120.3(13.4) 121.0(13.4) 121.4(13.0) 116.9(15.7) 119.8(14.1)
z 116.2(15.0) 110.3(16.5) 95.4(9.7) 96.2(10.6) 102.0(15.0) 104.0(15.9)
h 101.5(15.0) 96.4(10.4) 100.3(12.3) 112.9(15.8) 112.2(15.8) 104.6(15.5)
t 98.0(10.9) 107.8(17.0) 116.8(15.1) 118.4(14.0) 114.7(15.9) 111.1(16.5)
i 115.1(16.1) 115.8(15.4) 118.2(13.9) 100.0(13.5) 102.0(16.7) 110.2(17.0)

TABLE IIIb. Virtual Dihedral Angle Means and Standard Deviations

Central a-carbon pair of dihedral angle
SBB 2–3 3–4 4–5 5–6 All positions

a 52.4(17.5) 52.8(24.3) 50.9(22.9) 45.7(37.5) 50.5(26.8)
b 263.2(129.4) 272.7(120.2) 271.2(121.9) 274.5(121.4) 270.4(123.3)
z 257.8(112.9) 232.9(97.6) 44.3(32.1) 39.3(75.3) 21.8(96.0)
h 15.0(81.6) 17.7(56.5) 21.7(110.7) 232.8(124.6) 5.4(99.5)
t 23.8(63.5) 15.0(129.0) 250.9(119.5) 267.7(115.7) 220.0(117.0)
i 241.3(125.6) 242.8(120.6) 271.3(104.1) 37.6(39.0) 229.8(110.9)
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positions 1, 2, 5, 6, and 7, but strongly disfavored in
position 3. Glycine and asparagine are strongly
favored in positions 2 and 3. Colloc’h and Cohen58

found proline to be disfavored in their strand N-
capping structures. These researchers also found a
strong preference for charged residues at the N-
termini of parallel b strands that is not observed in
any position of SBB-t, except for aspartic acid at
position 2; however, the data calculated by Colloc’h
and Cohen were for b strand ends in a small set of
parallel b sheet proteins,58 while our data were
collected on a large general database of proteins. In
SBB-i, the strand C-cap structure, proline is strongly
preferred at position 5 and somewhat less so at
position 4. Interestingly, asparagine and aspartic

acid are preferred at positions 4 and 6 and serine is
preferred at positions 4, 5, and 6, suggesting the
possibility of specific capping structures, similar to
the helix capping box previously described.54,55

These data show that the SBBs exhibit both amino
acid preferences consistent with previously published
data, as well as novel amino acid preferences not previ-
ously recognized. The amino acid preferences are not as
strong as those found for specific structures, but our
database is not limited to a specific type of protein
structure, nor have we imposed visual examination or
researcher bias in the selection of structures. The dis-
tinct positional preferences of some residues suggest
that interactions important for protein folding and
structure can be found in these structures.

Fig. 7. The structures of each of the six SBBs. All segments
belonging to each SBB from sulfate binding protein were superim-
posed. In sulfate binding protein, 116, 57, 41, 38, 24, and 27
segments belonging to SBB categories a, b, z, h, t, and i,

respectively, were found.As described, only the a-carbons of each
protein segment were used to describe the geometry to the neural
network, however, the complete backbone (N, Ca, C, O) is shown
in these superpositions.
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Recurring Patterns in the
‘‘Random Coil’’ Regions

Closer examination of Figures 4 and 5 suggests
that patterns of SBBs are also found in the coil
regions of proteins. For example, two easily observ-
able patterns are SBB-i followed by SBB-z, together
forming an ‘‘S-type’’ turn, and SBB-z followed by

SBB-h, comprising a ‘‘tight’’ turn. Although these
structures are found frequently in sulfate binding
protein and b-lactamase (Fig. 4) and in other pro-
teins, the DSSP algorithm does not consistently
classify them (data not shown).
This observation suggests that other significant

patterns in the nonregular secondary structure re-

Fig. 8. Hinton diagrams representing the normalized frequency of
amino acid occurrence and its statistical significance at each of the
seven positions in the six SBBs. A: SBB-a. B: SBB-z. C: SBB-h. D:
SBB-b. E: SBB-t. F: SBB-i. The amino acids (represented by their
one-letter codes) are plotted on the y-axis and the position within each

segment (1–7) is plotted on the x-axis. The size of the square is
proportional to the normalized frequency of occurrence for each amino
acid at each position. Black squares are those frequencies that were
determined to be statistically significant at the 0.95 confidence level, as
described in theMethods section.
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gions might be found and that these patterns might
result from specific residue-residue interactions that
could be classified. Thus, patterns of all possible
consecutive SBB pairs, triples, and quadruples were
analyzed for frequency and statistical significance in
this database of 116 proteins. Table IV presents the
percentage of occurrence of all consecutive SBB
pairs. As indicated, all but one pair was found
significantly either more often or less often than
expected based on chance alone, at a confidence level

of 0.99.As expected, the pairs aa and bb, correspond-
ing to successive segments (Fig. 2) of helix or strand,
are found most often, 6116 times (27.13%) and 3810
times (16.9%), respectively (Table IV). The two pat-
terns mentioned above that are commonly found in
coil regions, iz (an ‘‘S-type’’ turn) and zh (a ‘‘tight’’
turn), occur more often than expected, with pattern
iz occurring more often than the capping patterns tb
and bi (Table IV). Further, two of the capping pairs,
tb, and bi occur more often than expected, at a
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confidence level of 0.99. The helix capping pattern ah
is found in about the expected numbers. The final
capping pattern, za, is found less often than expected (at
a confidence level of 0.99), but just barely (Table IV). In
addition, the pairs ht, zz, hh, ti, and tt occur more
frequently than expected. Strikingly, the patterns ab,
ba, and ta never occur in the database. Given the
number of occurrences of these SBB categories and the
number of patterns in the database, 1684 occurrences

each of ab and ba and 752 occurrences of ta are
expected. The patterns bz,bh, and ai occur rarely.
SBB triples, three overlapping seven-residue seg-

ments (Fig. 2), were also analyzed. Forty SBB triples
occur more often than expected at a 0.99 confidence
level (Table V). Examples of their structures can be
seen on close inspection of Figure 4. Again, the most
common triples are aaa and bbb, corresponding to
runs of helix and strand, respectively. All eight helix
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and strand capping triples, zaa, zza, aah, ahh, tbb,
ttb, bbi, and bii, are found more often than statisti-
cally expected.As with pairs of SBB categories, given
the number of occurrences of the SBB categories and
the number of patterns in the database some triples
are expected to be present in the dataset, but are not.
Seventy such triples are expected, but did not occur
(data not shown), again showing that, as expected,
successive SBB segments are highly correlated.
Some consecutive SBB quadruples are present in

statistically significant quantities anda fewof thesewill
be discussed further below. Most consecutive SBB qua-
druples and quintuples could not be analyzed for statis-
tical significance because of the size of the database.
These data demonstrate that consecutive SBB

occurrences are highly correlated. This result is
expected because consecutive residue conformations
in proteins should be correlated and because consecu-
tive SBB segments are seven residues long and
overlap (Fig. 2). However, coil regions have recurring
motifs that are difficult to classify, and SBB patterns
and SBBs themselves provide a convenient, objective
method for classification of the random coil regions
in proteins. These patterns could potentially provide
a wealth of information about structurally important
interactions within proteins, similar to the hydrogen

bonds and hydrophobic interactions recently ob-
served in helix capping structures.54–56

Comparison of SBBs to Previously
Observed Helix Caps and Other Local
Protein Structures

To demonstrate the utility of using the SBB classi-
fications for discovering new structure motifs in
proteins, a comparison of the SBB helix capping
structures to previously published capping struc-
tures is presented. The N-terminal helix capping box
is a structure defined by two reciprocal hydrogen
bonds, one from the backbone of the first helical
residue, Ncap to the side chain of the third helical
residue, N3, and one from the side chain of Ncap to
the backbone of N3. In this structure, the most
common amino acids at Ncap are serine and threo-
nine, while the most common amino acid at N3 is
glutamic acid.54,55

The SBB assignments (this work) and the DSSP
secondary structure assignments15 for the helix N-
capping box described by Rose and coworkers54,55 are
reported in Table VI. In a remarkably consistent
manner, the Ncap-N1-N2-N3 residues involved in
the capping box are always classified as izza. While
DSSP consistently determines the ends of these
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helices at the N1 position, the Ncap residue is
inconsistently classified as B (bridge) or left unclassi-
fied by DSSP.
Two distinct structures at the C-termini of a

helices that contain a glycine at the C8 residue have
also been described.14,56,57,59,60 The Schellman motif
contains two backbone-backbone hydrogen bonds,
one from C‘ to C3 and one from C8 to C2 . The aL

structure consists of one backbone-backbone hydro-
gen bond from C8 to C3. In Table VII, SBB and DSSP
assignments are compared to the Schellman and aL

motifs previously described.56 For the Schellman
motif, the C1-Ccap-C8 residues are defined as ahh 10
times and aht three times. Of the 10 ahh patterns,
seven are ahht, two are ahhi, and one is ahhh. Nine
of the ten ahh patterns and all three of the aht
patterns are classified by DSSP as HTT. For two of
the Schellman motifs (2cts., 276–292 and 3grs.,
383–391), the SBB classification of the helices differs
from that of Aurora and colleagues.56 For these two
motif instances, the Aurora group’s classification of
the helices extends one residue further at its C-
terminal end than the SBB helix classifications of
the motifs (Table VII). Thus, the SBB classification
for these two helix C-capping motif instances is still
ahh, but it is shifted by one residue compared to the
classification scheme ofAurora and colleagues. These
two Schellman motifs were identified by Aurora and
colleagues as having high temperature factors, which
may account for the offset.
The aL motif is defined as aht four times and ahh

one time. Of the four aht patterns, three are ahtt
and one is ahtb. These aL motifs are not consistently
classified by DSSP. Thus, while our pattern recogni-
tion algorithm does not perfectly discriminate be-
tween these Schellman and aL motifs, it does recog-
nizemotifs at the C-termini of helices. Given that the
auto-ANN was only presented with the a-carbon
geometry of the protein segments, it is astonishing
that SBBs can discriminate at this level of structure.
Can we discern the previously described amino

acid preferences from the SBB patterns? Further
analysis of the 116 protein chains in our training
database shows that there are 576 instances of the
pattern izza, which corresponds to the helix N-
capping box. Of these 576 occurrences, 480 (83%) are
followed by at least two additional a (a-helical)
residues. Analysis of these 480 instances of izza at
the N-terminus of a helical segment shows that
serine is found at the Ncap (corresponding to the
central residue of SBB-i in the izza quadruple)
position 81 times (16.9%) and threonine is found at
this position 75 times (15.7%). Similarly, glutamic
acid is found at the N3 (a) position 78 times (16.2%).
Interestingly, at the Ncap position, aspartic acid was
found 74 times (15.4%), asparagine was found 49
times (9.6%), and proline was found 45 times (9.4%).
Besides glutamic acid at the N3 position, aspartic
acid was found 46 times (9.6%) and glutamine was
found 44 times (9.2%). These are strong amino acid
preferences, and they are consistent with the amino

acid patterns previously seen in helix N-capping
boxes.54,55

Analysis of the C-cap structures shows that the
pattern ahh occurs 381 times in the 116 protein
chains. Of these occurrences, 329 (86%) of them are
preceded by at least two SBB-a segments. Glycine is
found at the third position of the ahh pattern 130 out
of 329 times (39.5%). This site corresponds to the C8

position of the helix and is consistent with the
previous identification of glycine at this site.56 Prefer-
ences for alanine and lysine are found at the second
position of ahh (the Ccap residue). Lysine, alanine,
and glutamic acid are found at the first position of
ahh pattern 14.6, 14.3, and 11.9% of the time,
respectively, which corresponds to the C1 helix posi-
tion. Alanine, leucine, lysine, and arginine are pre-
ferred at position C2, the residue just before the ahh
pattern, consistent with the data previously re-
ported.56

It appears that we can easily discern the helix
capping structures from the SBB patterns, but that
several types of capping structures are described by
the patterns. This is expected because only a-carbon
coordinates are used in the description of SBBs. In
fact, it is amazing that a-carbon patterns alone can
provide such useful structural information.

Use of SBB Patterns To Discern Unique
Structures and Structural Motifs

To assess whether patterns of successive SBBs
represent unique structural motifs, and whether
they can be used as ‘‘building blocks’’ for represent-
ing protein structure, the backbone geometry of all
SBB pairs and those SBB triples that occurred
significantly more often than expected in the data-
base was analyzed. The backbone f and c angle
values of the pairs and triples’ instances were used to
identify structural regularities. The two most com-
monly occurring Ramachandran region sequences
and their frequencies are given for each pair (Table
IV) and triple (Table V). The central two or four
residues were used in analyzing the pairs, and the
central three or five residues for the triples (Fig. 2).
The analysis showed evidence of structural motifs

in the central four residues of at least some SBB
pairs. Of the 36 possible SBB pairs, 33 occur in the
database. For a majority of the pairs (21 of 33) one or
two Ramachandran region sequences comprise over
half of the instances of the pair. There is a strong
trend toward a single, dominant Ramachandran
region sequence-in 22 of the 33 pairs, the most
common Ramachandran region sequence occurs over
10% more often than the next most common one. As
might be expected, the variability in the Ramachan-
dran region sequences is predominantly in the resi-
dues at the ends of the overlapping SBBs making up
the pairs. For all of the SBB pairs, the center two
residues are the most common Ramachandran re-
gion sequence of length two (Table IV). For the pairs
the frequency of occurrence of the most common
two-residue Ramachandran region sequence is an
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average of 0.17 higher than that of the highest
frequency four-residue one, strongly indicating that
a coherent structure underlies many of the pairs,
especially among the central residues.
The regular secondary structures and their caps

are easily recognized in the analysis of the pairs. All
four positions in the most common Ramachandran
region sequence for the pair aa occupy the Ramach-
andran helix region, A (Fig. 3), as do those of the
helix N-cap za. The helix C-cap ah occupies the
helical region in all but the final (C-terminal) posi-
tion. Analogous results are found for the strand
conformation pair bb and its N- and C-caps, tb and
bi. The structure for the iz ‘‘S-type’’ turn suggests a
transition from helical to extended conformation,
and that of zh, the ‘‘tight’’ turn, a turn connecting
extendedconformations. The repeating pairs hh and
ii both have a residue in a left-handed helical
conformation (region A*). The conformations of the
remaining pairs that occur at significantly higher
than expected frequencies, zz, tt, ht and ti, suggest
transitions from one allowed region of the plot to
another.
Eight Ramachandran region sequences are shared

by two pairs each (aa and za, bb and tb, bi and ti, zz
and az, tt and bt, ah and ai, ib and bz, zb and bh)
and one is shared by three pairs (hz, ia and tz). In six
of the cases where a Ramachandran region sequence
is shared by two pairs, the two pairs have a common
SBB (e.g. SBB i in bi and ti).
The Ramachandran region sequence analysis indi-

cates that many of the significantly over occurring
SBB triples also represent unique structures (Table
V). Pairs and triples share some common character-
istics. The most common one or two Ramachandran
region sequences comprise over half of the instances
of that triple for 19 of 40 patterns. In 28 of the 40
triples, the most common Ramachandran region
sequence occurs over 10% more often than the next
most common one. The variability in the triples’
Ramachandran region sequences is concentrated at
the ends of the triples; for 39 of the 40 triples, the
Ramachandran region sequence of the center three
residues of the five-residue sequence is also the most
common three-residue Ramachandran region se-
quence (Table V). For these 39 triples the frequency
of occurrence of the most common three-residue
Ramachandran region sequence is an average of 0.17
higher than the highest frequency five-residue Ram-
achandran region sequence. Just as for the pairs,
this is evidence that many of the triples represent
structural motifs.
The analysis of Ramachandran region sequences

suggests that in many cases the triples represent
unique structures. As expected, the regular second-
ary structure triples aaa and bbb occupy the helix
and strand regions, respectively, at very high frequen-
cies. The Ramachandran region sequences for triples
marking the ends of regular secondary structures
(aah, zaa, bbi, and tbb) are in the conformations of
the corresponding secondary structure at very high

frequency in all positions. Two of the triples repre-
senting C-caps (aah, bbi) vary in the C-terminal
position of theRamachandran region sequence. Other
patterns suggest interruptions in extended conforma-
tion regions (bbt, bib, ibb, and tbt). Of particular
interest are those triples, especially ahh, hht, and
zhh with their highly preferred Ramachandran re-
gion sequences, that contain regions of left handed
helix. As described earlier, ahh is the SBB classifica-
tion for most of the Schellman motif instances and
some of the aL motif instances. It may be the case
that the other two triples, hht and zhh, represent
previously unrecognized motifs in coil regions. Over-
all, SBB triples appear to represent unique struc-
tural motifs, more so than the SBB pairs, but it must
be kept in mind that all SBB pairs were analyzed,
whereas only those SBB triples that occur signifi-
cantly more often than expected were analyzed here.
Eight Ramachandran region sequences are shared

by two triples each (aaa and zaa, bbb and tbb, bbi
and tbi, tiz and biz, btb and ttb, bbt and tbt, tti and
bti, izi and ibi). In each case the two triples that have
the same most common Ramachandran region se-
quence also share two common SBBs. That different
but related pairs and triples occupy the same Ram-
achandran region sequences is not surprising. The
SBB categories are based solely on a-carbon geom-
etries. The Ramachandran region sequence uses
information about the full backbone. Also, the divi-
sion of the Ramachandran plot used (Fig. 3) is a very
coarse-grained classification of backbone conforma-
tions. Thus, it is not the occurrence of sharedRamach-
andran sequences that is surprising, but rather that
the Ramachandran region sequence analysis distin-
guishes so many unique structures, despite the
a-carbon-only representation used to create the SBBs
and the coarse Ramachandran regions used.
Can the SBB patterns be used to find newmotifs in

protein structures? Once an SBB pattern is ob-
served, can the amino acid pairwise correlations be
used to discriminate among the various local struc-
tures that are described by this pattern? While such
analysis is beyond the scope of this paper, the
various results shown here suggest that unique
structures and important residue-residue interac-
tions might be uncovered by analyzing the local
structures found in the statistically significant SBB
patterns and demonstrate the biological relevance of
the SBB local structure assignments.

Dissemination of Results

In order to promote the widest possible dissemina-
tion of this work, much of the data reported here has
been made available on the World Wide Web. The
URL http://barbara.bio.albany.edu/compbio links to
a site containing the SBB classification data for all
116 protein chains in the database used for this
paper. For each SBB in each protein, the SBB
category and the sequence identification and amino
acid for each of the seven residues in the SBB are
given. In addition, the SBB cluster analysis data for
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all pairs and significantly over occurring triples is
available from this site.

DISCUSSION

The combination of an autoANN and a clustering
algorithm is a novel method to automatically, consis-
tently, and objectively classify all residues in a
protein into local structural categories without vi-
sual examination or researcher bias in parameter
selection. By using an artificial neural network to
reduce the dimensionality of the input geometry and
to represent the geometry descriptions consistently,
we can then use a simple clustering algorithm to
automatically identify structural categories in the
‘‘coil’’ regions of the protein, as well as in the regular
structures. Two of the SBB categories, a and b,
correspond closely to the classical a helix and b
strand secondary structures and exhibit amino acid
preferences consistent with these structures. The
remaining four categories, SBB-z, h, t, and i, are
consistently found at N- and C-termini of helices and
strands, respectively, and are also found in regions
typically identified as ‘‘loops’’ or ‘‘random coil.’’Within
the ‘‘coil’’ regions, patterns of SBBs are found. This
algorithm identifies the SBBs from atomic coordi-
nates, so that SBBs can be identified for any globular
protein whose structure has been solved.
The differences between the SBB local structure

classifications described here and the classical helix,
strand, and coil structures should be emphasized.
One major difference is that helix, strand, and coil
assignments are usually made on a residue-by-
residue basis—each residue is given a single second-
ary structure classification. SBB classifications, on
the other hand, are applied to seven-residue seg-
ments. Therefore, each residue in the protein (except
for the first three and the last three) is a member of
seven different SBB categories (Fig. 2). Five- and
six-residue segments with the same amino acid
sequence can have different conformations in the
context of the protein tertiary structure,61,62 and we
hoped the conformation of the longer segments would
be more uniquely determined by the amino acid
sequence.
The second difference between SBBs and classical

secondary structures is the structure assignment
method. For classification into classical secondary
structures, the definition of each category is provided
(e.g., as hydrogen-bonding patterns or backbone
dihedral angles) and each residue is checked to
determine whether or not it fits into any category.
Thus, some residues remain unclassified. In the SBB
classification scheme, all seven-residue segments
are necessarily assigned to a cluster, corresponding
to an SBB category. No segments are unclassified.
Six categories were chosen because the data clus-
tered into six groups most consistently.
The third difference between classical secondary

structures (especially those assigned by the DSSP
algorithm15) and SBBs is in the tertiary, hydrogen-
bonding information used in the assignments. The

DSSP algorithm uses hydrogen bond information in
secondary structure assignment, thus it does not
find single stretches of extended strand. On the other
hand, SBB assignments are done purely by local
a-carbon geometry. Thus, local stretches of strand
are classified as SBB-b, even though they are not
necessarily part of a larger hydrogen-bonded sheet.
Because of these differences between SBB and classi-
cal secondary structure classification systems, quan-
titative, one-to-one comparisons of the structures
cannot be made. Qualitative comparisons (as pre-
sented in Figs. 5 and 6 and Tables VI and VII) can be
done, but it should be kept in mind that SBB
assignments apply to seven-residue segments, not to
single residues.

General Applicability of the Method

Is this general strategy of autoANN and clustering
algorithm useful for finding other structural motifs
in proteins? The data presented on helix capping
motifs and backbone angle sequences of SBB pairs
and triples would indeed suggest that the six SBBs
presented here will lead to the identification of some
interesting structural patterns, and we are in the
process of analyzing some of those patterns. How-
ever, this approach is not limited to seven-residue
segments and patterns in longer segments could
easily be selected in a similar fashion. The approach
is likewise not limited to six clusters or classifica-
tions. The data can be analyzed so that the data itself
suggests the proper number of clusters. Finally, the
approach is not limited to a-carbon geometry. If
complete backbone or side chain geometries are
encoded as input into the neural network, this same
general strategy could be used to search for patterns
in these structures, as well.

Comparison of OurAlgorithm to Other Local
Structure Libraries

Other researchers have used smaller segments
and tried clustering on the raw conformation data or
on rms differences.31,32 Clustering algorithms do not
work well on the high-dimensional data needed to
describe protein segment geometry. Simplified de-
scriptions of the protein backbone geometry have
been used to overcome this limitation31–33; however,
these simplified descriptions are still high-dimen-
sional. One result of clustering on high-dimensional
data is a lack of generality, which can produce over
100 building block units.32 It is advantageous to use
an autoANN to compute a suitable representation
before clustering. It not only reduces the dimension-
ality of the data, but also transforms the data
(nonlinearly) to make the important information
explicit. Furthermore, in our representation, the
relative weighting of distance and angle information
does not require manual optimization. Other at-
tempts at secondary structure reclassification have
required manual optimization of parameters33 or
subjective division of the Ramachandran plot.31
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Comparison of SBB Structures to Previously
Observed Local Structures

Because the hidden layer of the autoANN can be
used to distinguish between helices and strands, our
original hypotheses that the hidden layer contains a
concise encoding of structural features and that
clustering these hidden unit vectors yields biologi-
cally relevant information are strongly supported.
Further, it is significant that the network’s hidden
layers can distinguish between the structures of the
N- and C-terminal caps in helices and strands. The
existence of helix capping structures has previously
been proposed,49,50 and in some cases the importance
of these structures for protein stabilization has been
verified by experiment.63–69 Structures that act as
strand caps or b breakers have also been proposed
for a very small set of parallel b sheets.58,70 Our
algorithm is the first to use neural network tech-
niques to automatically and consistently extract this
local structural information in proteins. Further, all
residues in a protein are assigned to a specific SBB
category so that no residues are lumped into a
‘‘random coil’’ or leftover category.

Future Work

Clearly, patterns in SBB structures will be useful
for identifying local structural motifs in proteins. For
this work to be useful in protein structure prediction,
SBB categories must be predictable from the pri-
mary amino acid sequence and local protein struc-
ture must be reconstructable from the categories.
Because SBBs do not represent global interactions,
the reconstruction will not be perfect; furthermore,
the six SBBs represent an average segment conforma-
tion. The distinct amino acid preferences at specific
positions of the SBBs, however, suggest that the
SBBsmight be predictable. Further, each amino acid
in the protein (except the first and last three) is a
member of seven unique SBBs and this additional
positional information for each residue can be used
in reconstruction.
The architecture of an autoANN itself suggests a

method of reconstruction, in that the second half of
the network, from the hidden layer to the output, can
act as a ‘‘decoder’’ to regenerate the 43 parameters
that specify the geometry of each seven-residue seg-
ment, thus we may not have to generalize segment
structure into just six SBBcategories, but could attempt
to predict the hidden unit vector for each segment.
Because all parts of the protein (not just the regular
secondary structures) are categorized into SBBs, we
should be able to reconstruct all parts of the protein,
including the loop and nonregular structures. Even
if reconstruction is too inexact to produce an entire
protein, these structures can be used to produce
probable loop structures during model building.
Other patterns in protein structuremight be found

using the combination of autoANN and clustering
algorithm. This approach might be improved by
including all backbone atoms and Cb, rather than
just a-carbons, in the geometric representation of

each seven-residue segment and using the network
and clustering to recompute other structural catego-
ries. Significant patterns that are important for
understanding protein structure might be found
with this more detailed representation.
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