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Abstract

An overview of the Triana Problem Solving Environment is provided – with a particular focus on the GAP
application-level interface, for integration with Grid Computing and Peer-to-Peer infrastructure. GAP is a Java-
based subset of the Grid Application Toolkit interface (being implemented in the GridLab project), and an outline
of its current functionality, usage and mappings to three supported underlying middleware derivatives: JXTA, Web
Services, and P2PS (a simplified Peer-to-Peer platform) are provided. The motivation behind the development of
P2PS is given – emphasising its minimal, but effective Peer-to-Peer mechanisms that allow scalable, decentralized
discovery and communication amongst cooperating P2PS peers within highly unstable environments. A summary
of three application use cases illustrating the range of scenarios that such a system addresses is also provided.

Abbreviations: OGSA – Open Grid Services Architecture; P2P – Peer to Peer; NAT – Network Address Translator;
API – Application Programmers Interface; GAT – Grid Application Toolkit; TCS – Triana Controlling Service;
BPEL4WS – Business Process Execution Language for Web Services; WSFL – Web Sevices Flow Language;
GAP – Grid Application Prototype; WSDL – Web Services Description Language; UDDI – Universal Description,
Discovery and Integration protocol; UDDI4J – UDDI for Java; WSIF – Web Services Invocation Framework

1. Introduction

There has recently been an overwhelming interest
in the field of Grid computing and the introduction
of the Open Grid Services Architecture (OGSA) [8]
has gained a significant input from both commercial
and non-commercial organizations ([17] and [31]).
Further, the standardization of the OGSI specifica-
tion [24] has led to a convergence in the infrastructure
adopted for Grid computing implementations. In con-
trast, Peer-to-Peer (P2P) technology has also gained
popularity through services like Gnutella [13] and
SETI@home [26]. Further, since the emergence of
P2P infrastructures, such as JXTA [25] the num-
ber of organizations interested in P2P has increased
significantly.

Although the underlying philosophies of Grid
computing and P2P are different, for certain scien-

tific applications they can be both considered enabling
technologies for accessing the vast computing re-
sources that are available through the Internet and
mobile devices. Both approaches attempt to solve the
same problem [9], that is, to create overlay structures
for the underlying organizational structure of the In-
ternet, but they differ in that they deal with users with
contrasting computational and resource requirements.
For example, whilst Grid computing connects rela-
tively small numbers of virtual organizations [7] that
can cooperate in a collaborative fashion, P2P appli-
cations can connect hundreds of thousands individual
users that exist in highly unstable environments con-
sisting of devices living at the edges of the Internet
(highly transient and behind NAT, firewalls, etc.).

An overview of the Triana problem solving en-
vironment is first provided in this paper, followed
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by details of particular distribution mechanisms that
it uses for component execution. Section 2 provides
the overview of Triana, and compares it with exist-
ing work on Grid Computing Environments. Section 3
outlines the various mechanisms that can be used for
distributed computing within Triana – and includes de-
scriptions of the GAP and GAT interfaces (part of the
GridLab project [15]) that abstract Triana from the un-
derlying middleware. Subsequently JXTA, P2PS and
Web Service bindings for the GAP API are discussed.
This section also describes how Triana can be used to
support task farming. The key motivation here is to
illustrate how Triana can make use of different distrib-
ution mechanisms, based on a common API. The GAP
API is then examined in more detail in Section 4 with
a simple example program, and the implementation of
the various bindings, JXTA, P2PS and Web Service,
illustrated using code samples for a small subset of the
functions. Usage scenarios are subsequently presented
in Section 5 – with a particular focus on how compu-
tational visualisation and steering, data management,
and service discovery may be undertaken with Triana.
Although these scenarios are primarily focused on as-
trophysics applications – the use of Triana is by no
means restricted to this domain.

2. Related Work and Triana Overview

A Problem Solving Environment (PSE) is a com-
plete, integrated computing environment for compos-
ing, compiling, and running applications in a specific
area [11]. In many ways, a PSE is seen as a mecha-
nism to integrate different software construction and
management tools, and application specific libraries,
within a particular problem domain. One can there-
fore have a PSE for financial markets [4], for gas
turbine engines [6], etc. Focus on implementing PSEs
is based on the observation that previously scientists
using computational methods wrote and managed all
of their own computer programs – however now com-
putational scientists must use libraries and packages
from a variety of sources, and those packages might
be written in many different computer languages. En-
gineers and scientists now have a wide choice of
computational modules and systems available, enough
so that navigating this large design space has become
its own challenge. A survey of 28 different PSEs by
Fox, Gannon and Thomas (as part of the Grid Com-
puting Environments WG) can be found in [10], and
practical considerations in implementing PSEs can be

found in Li et al. [19]. Both of these indicate that such
environments generally provide “some backend com-
putational resources, and convenient access to their
capabilities”. Furthermore, workflow features signif-
icantly in both of these descriptions. In many cases,
access to data resources is also provided in a similar
way to computational ones. Often PSE and Grid Com-
puting Environment is used interchangeably – as PSE
research predates the existance of Grid infrastructure.

Based on the surveys above, Triana may be clas-
sified as a graphical Grid Computing Environment
(PSE) (both a problem solving and a programming en-
vironment) – and provides a user portal to enable the
composition of scientific applications. Users compose
applications by dragging programming components
(called units or tools) from toolboxes, and drop them
onto a scratch pad (or workspace). Connectivity be-
tween the units is achieved by drawing cables – which
also account for particular data types – that connect
different units together. An overview of how Triana
operates can be found in [27].

Although Triana shares some common features
with existing Grid portal technologies, providing both
a composition environment and a mechanism for the
distribution of components, is a novel feature. Existing
efforts often focus on one or the other of these aspects.
Additionally, the composition environment is devel-
oped so that it can be used individually, if desired.
An XML-based task graph is generated from the com-
position tool, and supports bindings for distributing
components using Web Services or P2P technologies.
Triana also requires the existence of a Triana execution
environment to exist on each node that is to host a Tri-
ana service. This is also a significant difference from
existing portal technologies; existing systems assume
the presence of a hosting environment on resources.

Li and Baker [19] provide an extensive review of
various Grid portals currently available. Based on their
definition, a Grid portal provides “end users with a
customized view of software and hardware resources
specific to their particular problem domains”. In some
ways, this definition shares common themes with that
of a Grid Computing Environment. The focus in their
work is primarily on Web-based portals – which there-
fore differ from the focus in Triana (where the focus
is on catering for different distribution mechanisms,
rather than just a single one). However, they empha-
sise three generations of portal technologies: genera-
tion 1 being focused on a graphical interface and the
use of the Globus toolkit – and are primarily tightly
coupled with Globus-based Grid middleware tools.
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Generation 2 portals are aimed at specifying “portlets”
– essentially user customisable services which can run
on top of a web server. Grid Portlets are intended to be
independent components that can utilise a number of
different Grid middleware toolkits. This is the current
state of affairs in portals, with GridSphere [23] being a
commonly used toolkit to support the construction of
such Portlets. Generation 3 involves the extension of
the Portlet idea with semantic annotations. Currently
Triana supports a concept similar to Portlets, in that
each individual component present within the Triana
toolbox has an XML-based interface. Such an inter-
face can dynamically bind to a Web Services-based
or a P2P-based distributed mechanism. Furthermore,
the P2PS mechanism employed in Triana can be used
to advertise components in the toolbox based on their
interfaces. The XML description can also be extended
with semantic properties if required.

Triana therefore provides the following novel fea-
tures:
− Support for both a service (component) com-

position, and a service (component) distribution
environment.

− Support for a distribution API that can be mapped
to a number of different underlying middleware
implementations. Three such bindings are dis-
cussed in Section 3, and include JXTA, P2PS and
Web Services.

− Support for interoperability between Triana com-
ponents described as Web Services, and standard
units contained in the Triana toolbox. This is
achieved via a common XML interface for these
components.

− Definition of components based on an XML
data model that can also encode semantic/non-
functional properties associated with components
(such as cost of access, ownership details, etc).

− Support for hierarchy – whereby components can
be aggregated into groups, and either published in
the toolbox, or distributed to a remote machine for
execution.

− A toolbox of components that are pre-provided for
use, when Triana is downloaded. These include
signal processing, image processing, maths and
audio functions.

Based on the survey provided in [10], no other Grid
Computing Environment supports all of these features.

2.1. Triana Overview

Triana was initially developed by scientists in GEO
600 [12] to help in the flexible analysis of data sets,

and therefore contains many of the core data analy-
sis tools needed for one-dimensional data analysis,
along with many other toolboxes that contain com-
ponents or units for areas such as image processing
and text processing. There are around 500 units with
Triana covering a broad range of applications. Further,
a recent development in Triana is the ability to dynam-
ically discover and choreograph distributed resources,
such as Web Services, to greater extend its range of
functionality. Consequently, Triana can be used by ap-
plications and end-users alike in a number of different
ways [28]. For example, it can be used as: a graphical
workflow composition system for Grid applications;
a data analysis environment for image, signal or text
processing; as an application designer tool, creating
stand-alone applications from a composition of com-
ponents/units; and through the use of its “pluggable
workflow representation architecture”, allowing 3rd
party tool and workflow representation to be easily
incorporated into the architecture, for example the
ability to parse WSDL and BPEL4WS.

The Triana user interface consists of a collection
of toolboxes containing the current set of Triana com-
ponents and a work surface where users graphically
choreograph the required behaviour, rather than spec-
ifying it using source code. The modules are late
bound to the services that they represent to create
a highly dynamic programming environment. Triana
has many of the key programming constructs such as
looping (do, while, repeat until, etc.) and logic (if,
then, etc.) units that can be used to graphically con-
trol the dataflow, just as a programmer would control
the flow within a conventional program using specific
instructions. Programming units (i.e., tools) include
information about which data-type objects they can
receive and which ones they output, and Triana uses
this information to perform design-time type checking
on requested connections to ensure data compatibil-
ity between components; this serves the same purpose
as the compilation of a program for compatibility of
function calls.

Triana has a modularized architecture [27] that
consists of a cooperating collection of interacting
components. Briefly, the thin-client Triana GUI con-
nects to a Triana engine (Triana Controlling Service,
TCS) either locally or via the network. Under a typical
usage scenario, clients may log into a TCS, remotely
compose and run a Triana application and then visu-
alize the result locally – even though the visualization
unit itself is run remotely. Alternatively, clients may
log off during an application run and periodically log
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back on to check the status of the application. In this
mode, the Triana TCS and GUI act as a portal for run-
ning an application, whether distributed or in single
execution mode.

Users are free to use the Triana components in
a number of different ways. For example, the con-
ventional operational usage is to graphically compose
applications from collections of interacting units; ex-
amples of this usage are given in Section 5. However,
other usages include using the generalized writing and
reading interfaces for integrating third party compo-
nents and workflow representations within the graph-
ical interface, the mechanism that is used by our the
Data Translation example given in Section 5 to import
and compose the relevant Web Services. In this case,
we have written a WSDL reader/writer for import-
ing Web Services and BPEL4WS [3] reader/writers
that can be used to import/export the components
as a workflow. A workflow composed graphically
in this fashion could be directly imported into an-
other execution or scheduling environment without
modification.

3. Distributing Triana Taskgraphs

The mechanisms that enable the distribution of Triana
components are described. These include the Grid Ap-
plication Toolkit (GAT), the Grid Application Proto-
type (GAP) interface, JXTA/P2PS and Web Services.
The GAT interface is outlined in Section 3.1. A re-
duced version of this – the GAP interface – is then
described in detail in Section 3.2, along with the mo-
tivation for why such an interface is needed. Based on
these two distribution interfaces, Section 3.3 discusses
how the actual service distribution takes place, and the
types of distributed computing techniques that can be
supported (parallel, pipeline, etc). The use of control
units is then discussed in Section 3.5 to demonstrate
how these may be used to manage component execu-
tion (such as support for loops, check for conditionals,
etc.).

3.1. The GAT

The GAT interface provides a generalised collection
of calls to shield Grid applications from implementa-
tion details of the underlying Grid middleware, and
is being developed in the European GridLab project
[1, 2]. The GAT utilises adaptors that provide the
specific bindings from the GAT interface to the under-
lying mechanisms that implement this functionality.

For example, a move_file command may have many
GAT adaptors that implement this functionality de-
pending upon the particular execution environment
used, such as GridFTP, JXTA pipes or a local cp com-
mand. GAT may be referred to as upperware, which
distinguishes it from middleware (which provides the
actual implementation of the underlying functional-
ity). Until recently, application developers typically
interact with the middleware directly. However, it
is becoming increasingly apparent that this transition
from one type of middleware to another is not a triv-
ial one. Using interfaces like GAT, migrating from
one middleware environment to another is easier, and
typically achieved by setting an environment variable.
This is illustrated in the next section where we have
implemented an adaptor to bind to P2P middleware for
operating in P2P environments as well as the Grid en-
vironments supported directly by GridLab. This means
that exactly the same Triana implementation can be
used within both environments transparently.

3.2. The GAP Interface

The Grid Application Prototype Interface (GAP In-
terface) is a generic application interface providing a
subset of the GAT functionality. It is middleware in-
dependent, with bindings provided for different Grid
middleware such as JXTA and Web Services, as illus-
trated in Figure 1. This model means that it should
be possible to seamlessly switch applications (such
as Triana) using the GAP to work with new Grid
middleware, such as OGSA. One key focus for the
GAP is to support Triana P2P interactions on the
“Consumer Grid” [29] for running massively parallel
high-throughput codes.

Figure 1. The GAP Interface provides a middleware independent
interface for developing Grid applications.
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Part of the motivation behind the GAP Interface
is as a stopgap to enable us to develop distribution
mechanisms within Triana while the GridLab GAT is
being developed. When the GridLab GAT becomes
available the GAT-API will replace the GAP Interface
within Triana and should enable Triana to make use
of the advanced security, logging and other GridLab
services. However, the GAP Interface will live on,
both as a simple interface for prototyping Grid and
P2P applications, and as an adaptor within the Grid-
Lab GAT architecture providing various discovery and
communication capabilities. Currently there are three
GAP bindings implemented:

JXTA – The original GAP Interface binding was to
JXTA [25]. JXTA is a set of protocols for Peer-
to-Peer discovery and communication originally
developed by Sun Microsystems. Although we
achieved some initial success with JXTA, we have
since had problems with the speed and reliability
of our JXTA binding. See Section 4.2.

P2PS – a lightweight Peer-to-Peer middleware. See
Section 4.3.

Web Services – The most recent GAP binding allows
applications to discover and interact with Web Ser-
vices – using the UDDI registry [32] and the Web
Service Invocation Framework (WSIF) [34]. See
Section 4.4 for details.

3.3. Triana Service Distribution

Computational Grids typically include a number of
heterogeneous resources owned and managed by dif-
ferent administrators. Each computing resource may
offer one or more services and each service could be a
single application or a collection of applications. The
service paradigm has become an important abstrac-
tion in Grid computing, primarily since the release of
OGSA.

Triana uses this same level of abstraction for rep-
resenting its core services. However, within Triana,
such services may be represented in many different
ways, e.g., Web Services, P2PS or JXTA services, and
since the mechanism that provides the interaction is
supplied by the GAP interface, this gives us the ability
to communicate with these heterogenous set of Triana
services in the same way. Triana services, regardless
of their implementation technology, must support the
following criteria:

Service Parsing – provides interfaces for reading/
writing service descriptions and (optionally) for
representing a collection of these within a work-
flow.

Discovery/Communication – provides support for
discovering and communicating with services. For
example, the GAP interacts with UDDI and uses
SOAP/WSIF for this mechanism, when using a
Web Services implementation.

A user logged into a Triana Controlling Service
(TCS) can elect to distribute parts of their workflow
to be executed on remote machines by distributing the
code to two types of Triana services:

Generic – a service that can execute any workflow
passed to it on Grid resources. A Java Sandbox
may provide limited security for applications on
remote resources.

Specific – a particular Triana network (workflow) may
be constructed and then deployed as a service.
Such a service can only thereafter run this particu-
lar set of units. Using this method, all Triana units
may be deployed as Web Services.

As well as distributing workflow to single remote ma-
chines, a user can elect to use a custom distribution
policy for sending sections of workflow to more than
one machine (in parallel for example). Custom distri-
bution within Triana is makes use of compound Triana
units, which we call Group Units. Group units are ag-
gregates that contain a number of interconnected units
and have the same properties as conventional ones.
They have input/output nodes, parameters etc., and
therefore can be connected to other Triana units using
the standard mechanism. In order to distribute a Group
unit, a user must specify the custom distribution pol-
icy for that group. There are currently two distribution
policies:

Parallel is a “farming out” data parallel mechanism
(see Figure 2) and generally involves no commu-
nication between hosts.

Pipeline involves distributing the group vertically, i.e.,
each unit in the group is distributed onto a sepa-
rate resource and data is passed between them in a
pipelined fashion.

Groups can be hierarchic, and each group can have
its own distribution policy – allowing for complex hi-
erarchical distribution mechanisms, as illustrated in
Figure 2. In this figure, one Triana Service distrib-
utes its group to three other Triana services using the
parallel distribution policy; then each of these Tri-
ana services act as a gateway and distributes their
task-graph (implemented by a subgroup) to two other
services using the pipeline distribution policy.
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Figure 2. Example Triana distribution: a service distributes a task-graph to three other Triana services using task-farming then each of these
distributes their task graphs to another two services using a pipelined approach.

Figure 3. Illustrates the flow of data from the controlling Triana service and the remote Triana services that implement a particular binding of
the GAP interface.

3.4. Triana Distribution Using the GAP Interface

If a workflow to be distributed in Triana consists of
more than a single task, then a Group task must be
created prior to distribution. A user subsequently se-
lects the resource on which this Group task must run,
and the GAP Interface is used to automatically launch
each workflow subsection as a remote service. A Tri-
ana Launcher Service is required on a remote machine
for executing the workflow, and is a GAP-based ser-
vice that, when sent a workflow subsection (serialized
in XML) via its control pipe, uses the GAP Inter-
face to launch that subsection as a new Triana service.
The actual form the Triana Launcher Service and the
new Triana services take depends on the GAP binding
employed (see Section 4); for example, if the Web

Services/GAP binding is used then both the Triana
Launcher Service and the new Triana services are cre-
ated as Web Services. Once remote services have been
launched, they replace the equivalent local tasks in the
users’ workflow. Data is transferred to/from the new
remote services via their input and output pipes, as
illustrated in Figure 3.

A key feature is the capability to advertise work-
flow subsections (if authorized), launched as remote
Triana services, using the GAP bindings (e.g., P2PS
advertisement for the P2PS/GAP binding or UDDI for
the Web Services/GAP binding (see Section 4)). Once
advertised these Triana services can be discovered and
invoked by both other instances of Triana and by non-
Triana related applications. This is a powerful feature
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as Triana can be used to quickly create and launch a
wide range of composed Triana algorithms as services.

When Triana is started it automatically uses the
GAP Interface to search for existing published Triana
services, and any that are found are inserted into the
users tool tree alongside the existing local tools. Ad-
ditionally, a “Discover Services” option may be used
to issue a GAP discover services call. When a remote
service is located it is inserted into the users tool tree.
Once discovered, remote tools can be dragged and
connected into the users workflow in exactly the same
manner as local tools. However, when an input/output
cable is connected to a remote task, Triana connects an
input/output GAP pipe to the remote service instead of
a local cable.

3.5. Control Tasks

As outlined in the previous section, Triana also pro-
vides a standard mechanism for distributing group
tasks across multiple machines either in parallel, as
a pipeline, or using some other custom distribution
topology. In Triana each group task is accompanied by
a control task that receives the data input to the group
before it is passed to the tasks within the group, and
also receives the data output from the group before it
is sent on from the group. The original use of control
tasks was to provide looping over the group; however

this has been extended to allow control tasks to specify
and control the custom distribution of groups. As con-
trol tasks are standard Triana units, Triana users can
implement custom distribution policies to meet their
distribution requirements.

A control task in a custom group distribution is
used to specify the distribution topology. This is done
by splitting and cloning the original group of tasks
into a number of sub-workflows, each of which is
launched by Triana as a remote service using the GAP
Interface. The machines on which these remote ser-
vices are launched can either be automatically chosen
by Triana or explicitly selected by the user. As well
as specifying the distribution groups, the control task
also specifies the connections between the remote ser-
vices and between the local control task and the remote
services. Triana uses this connection specification to
create the input/output pipes that link the local work-
flow and the remote services into a fully connected
distributed workflow. In Figures 4 and 5 we contrast
a group of tasks distributed in parallel to two re-
mote machines with the same group distributed as a
pipeline.

Secondly, a control task in a group distribution
controls the distribution of data to the remote services.
In group distribution, the control tasks can determine
which remote service processes a data item it receives

Figure 4. Triana dynamically rewires the taskgraph at run time to connect to the remote peers it has discovered through the GAP interface
discovery calls. This figure shows the reconnection to two independently running services that can be used in for high throughput, or parallel
computation.
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Figure 5. Triana can also support the dynamic pipelined connectivity of a collection of cooperating remote peers.

through its choice of output node – as illustrated in
Figure 4, i.e., the control task is acting as a sim-
ple scheduler, distributing the data over a number of
parallel remote processes.

3.6. Operational Overview: Using Triana to Task
Farm

Once a particular workflow has been created, sections
of this can be grouped and then distributed to running
Triana services using any of the distribution policies
described in Section 3.3. For the Galaxy formation
example (Section 5), the parallel distribution policy
is used to task farm the data sets across all available
nodes, in order to speed up the recalculation of the
visualization. To achieve this, first the taskgraph that
needs to be distributed is selected, then the data buffer-
ing tool and the processing unit (for recalculating the
new viewing angle) are distributed. A group unit is
then constructed from this combination representing
the code that is to be duplicated on to the available
resources. Right clicking on the group then brings
up a menu where a user can enable the distribution
of the group unit. Once this is selected, the window
in the left side of Figure 6 appears prompting the
user to enter the distribution policy. HTCParallel: the
High Throughput Computing Parallel distribution im-
plementation within Triana is selected in this instance.
The window shown at the right side of Figure 6 is sub-

sequently displayed, and shows the available services
along with a number of other options. For example,
users can select Auto Distribution allowing Triana to
automatically utilize the available services, or Custom
Distribution to allow a specific subset of the servers
listed to be chosen. Also, a Sequence Policy can be
selected that specifies how Triana will re-assemble the
data items when they are returned to the client. The
order of the returned data is not guaranteed by the
GAP, so the sequence policy allows Triana to asso-
ciate an ordering on the data before it is distributed
and then use that order to reassemble the data after
processing.

3.7. Summary

This section of the paper has briefly covered how
Triana provides the ability to perform distributed
computing tasks in a middleware independent man-
ner. We introduced the GridLab GAT and our func-
tional subset, the GAP interface, used by Triana to
abstract different middleware implementations. We
briefly discussed some of the implementations of
the GAP bindings and functionality, including com-
munication, service discovery and service publish-
ing, these are extended in the next section. Fi-
nally we introduced the ideas of Control Tasks
and distribution policies which allow users of Tri-
ana to perform distributed and data parallel process-
ing.
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Figure 6. Distribution mechanism selection window.

4. The GAP Bindings

This section describes how we map from the GAP
interface definitions to the various underlying bind-
ings that are currently supported. The GAP interface
contains a number of calls that are primarily focused
on advertising, discovering and communicating with
remote services. It was inspired by the GAT specifica-
tion and has received input from a number of different
groups. It can support underlying client/server, bro-
kered or decentralized environments through its gener-
alized set of application-level calls, specifically chosen
to provide the right level of abstraction away from
their implementation. The four subsections within
Section 4.1 provide an overview of the calls contained
within this interface including a simple usage exam-
ple. The following three Sections, 4.2 to 4.4, then
describe the particular bindings in more detail, includ-
ing code snippets of how we translate the abstract GAP
calls into JXTA pipes, SOAP invocations or P2PS
discovery calls.

4.1. The GAP Interface Illustrated

The GAP Interface is based on a series of Java inter-
face classes with concrete implementations that form
the GAP bindings. The core interface is the Peer in-
terface that contains the main group of functions for
the GAP. The Peer interface can be split into four
functional areas:
− Service Creation and Discovery
− Pipe Creation and Discovery

− Message Communication
− Information

4.1.1. Service Creation and Discovery
This group of functions is responsible for the cre-
ation of new services, the advertisement of those
service instances so they can be found, and the discov-
ery mechanism for finding them. The function calls
contained in this group are

public Peer createService(String name)
throws PeerException;

public void advertiseService() throws PeerException;

public void addServiceDiscoveryListener(String name,
ServiceDiscoveryListener listener);

public void removeServiceDiscoveryListener(String
name, ServiceDiscoveryListener listener);

public void locateServices(String name);

public RemoteServiceInfo[] getServices(String name)
throws PeerException;

For example to create an instance of a service
we would use the function createService to cre-
ate a service with a given name. To advertise our
newly created service we have the function call,
advertiseService. Service discovery is performed
asynchronously, through Java listeners,1 passing the

1 A Java Listener is an implementation of the publish-subscribe
or observer design pattern. An observer registers with a subject and
subsequently receives notifications about state changes. In the GAP
it is used to implement non-blocking service discovery calls.
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name of the service we wish to discover as a para-
meter of the locateServices function. To make use
of all the services discovered at this point, we can
either use getServices to return a list, or subscribe
to service discovered events, addServiceDiscovery
Listener.

4.1.2. Pipe Creation and Discovery
The next group of functions are concerned with the
creation and discovery of communication channels or
“pipes” between a pair of peers. The function calls in
this group are

public InputPipe createControlPipe(String name,
MessageListener listener) throws PeerException;

public InputPipe createInputPipe(String name,
MessageListener listener) throws PeerException;

public void advertiseInputPipe(InputPipe inpipe)
throws PeerException;

public void addPipeDiscoveryListener(String name,
PipeDiscoveryListener listener);

public void removePipeDiscoveryListener(String name,
PipeDiscoveryListener listener);

public void locatePipes(String name);

public RemotePipe[] getRemotePipes(String name)
throws PeerException;

public InputPipe[] getInputPipes(String name);

public OutputPipe[] getOutputPipes(String name);

public OutputPipe connectOutputPipe(RemotePipe remote)
throws PeerException;

public OutputPipe connectOutputPipe(String name,
long timeout) throws PeerException;

The creation and advertisement of communication
pipes is similar to that of the services that the pipes will
connect. We have a constructor function that takes the
pipe name and a MessageListener and an advertise
function that publishes the constructed pipe. Although
they are functionally the same we differentiate be-
tween control and input pipes. The former is used for
sending instructions such as set up details to a peer and
the latter is the data pipe.

As with the peers themselves the discovery mech-
anism is asynchronous and we can complete the
connection between the local InputPipe and the re-
mote OutputPipe either by using a reference to the
RemotePipe or by name.

4.1.3. Message Communication
The message communication group of functions is
used for sending and receiving messages between
peers. The functions are

public String send(OutputPipe pipe, Object object)
throws PeerException, IOException;

public void send(String pipename, Object object)
throws PeerException, IOException;

public void addMessageListener(InputPipe pipe,
MessageListener listener);

public void removeMessageListener(InputPipe pipe,
MessageListener listener);

Using these functions is straight forward once the
services or peers and the communication pipes have
been created. We use the send function to send a
Java object down a named OutputPipe or a refer-
enced OutputPipe object. There is no corresponding
receive function as all messages are asynchronous. To
receive a message a peer registers itself to receive
MessageEvent items using the addMessageListener
function and then waits for the messages to appear on
it’s InputPipe.

4.1.4. Information and Serialization
The final group of functions are used to get infor-
mation about a service or to serialise the information
about a local service so that it can be sent along a
control pipe and used to get a reference to the local
RemotePipe remotely.

4.1.5. Simple Example
A simple example will illustrate the basic use of the
GAP interface. The example listed below is a simple
peer that performs the functionality of a “chat” service.
Once started the service will attempt to discover other
chat services and establish a communication pipe to
them. Once the pipe has been established a simple user
interface allows the user to chat to the other services.

The Chat class implements two of the GAP event
listener interfaces, ServiceDiscoveryListener and
MessageListener each of which has a single method
that must be implemented. The class has three class
variables

public static String CHAT_SERVICE = "ChatService";
private Peer peer;
private ChatWindow window;

The static string, CHAT_SERVICE, is the name that all
instances of the chat service will use to identify them-
selves. The Peer variable is the GAP Peer that does all



209

the work and ChatWindow is a simple GUI object that
is not included here for brevity.

The constructor initialises the GUI and creates a
concrete instance of a Peer, in this case a P2PS in-
stance. Next we create a ControlPipe, advertise the
service and add the instance of the Chat object as a
ServiceDiscoveryListener of the Peer.

// construct new service
peer = new P2PSPeer().createService(CHAT_SERVICE);

// create control pipe and advertise service
peer.createControlPipe(CHAT_SERVICE, this);
peer.advertiseService();

// listen for other chat discovery
peer.addServiceDiscoveryListener(CHAT_SERVICE, this);

When the discovery mechanism finds another chat
service, the listener call back mechanism calls the
implemented function from the ServiceDiscovery
Listener interface.

// Called when a service is discovered
public void serviceDiscovered

(ServiceDiscoveredEvent e) {
try {

// create output pipe to discovery control pipe
OutputPipe outpipe = peer.connectOutputPipe(

e.getServiceInfo().getControlPipe(
CHAT_SERVICE));

// send introductory message
peer.send(outpipe,

"#" + window.getChatName() + "is online");
}
catch(Exception except) {

except.printStackTrace();
}

}

Here, when a new service is discovered, we get
its control pipe from the service’s information con-
text and connect to it. This enables a uni-directional
connection to the remote service for passing chat
messages though. We then simply notify the other
participant that we are on-line.

The Chat object also implements the Message
Received interface and when a message is received on
the InputPipe the following implemented interface
method is called to display the chat message on the
user interface.

// Called when a message is received by the control
pipe.
public void messageReceived(MessageEvent event) {

// print message to chat window
window.print((String) event.getMessage().

getObject());
}

When the user types a message on the user inter-
face and sends it the following method is called to send
the message to all the other chat clients.

// Called by the chat window when the user sends a
message public void sendMessage(String text) {

try {
// send message to ALL pipes named
CHAT_SERVICE
peer.send(CHAT_SERVICE, text);

}
catch(Exception except) {

except.printStackTrace();
}

}

Note here that the GAP supports one-to-many
communication channels since it could have just as
easily discovered many CHAT_SERVICE peers. One call
to send will propagate this message to all peers that
advertise themselves as a chat service. In this way,
simple peer grouping can be achieved.

If we wanted to produce this same example using
a different implementation of the GAP interface, the
only code we would have to change is the Peer con-
structor in the Chat constructor function of the code.
The new code would be

peer = new JxtaPeer().createService(CHAT_SERVICE);

The following three sections will examine our
implementations of the GAP interface by examin-
ing a subset of the Peer functions. Specifically the
asynchronous locateServices function and the send
message function.

4.2. The JXTA Binding

The JXTA binding for the GAP implementation is
called JxtaServe. The concrete implementation of the
GAP Peer interface within JxtaServe is a class called
JxtaPeer. If we look at the asynchronous locate-
Services function, the implementation in JxtaPeer,
below, calls an equivalent function in the JXTA library
called getRemoteAdvertisements.

public void locateServices(String name) {
PeerGroup group;
ServiceDiscoveryInfo info =

new ServiceDiscoveryInfo(name);
DiscoveryService dserv =

group.getDiscoveryService();
dserv.getRemoteAdvertisements(

info.getPeerID(),
DiscoveryService.ADV,
"Name",
info.getName(),
DISCOVERY_THRESHOLD,
listener);

}
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The send function implementation also maps to an
equivalent JXTA library function. All the work in the
JxtaPeer function deals with creating an appropriate
JXTA message container to wrap the Java Object data
we wish to send. The object is serialised before being
added as the JXTA message content.

public String send(OutputPipe pipe, Object object)
throws PeerException {
// Serialize the data object, code omitted
byte[] serializedObject = byteout.toByteArray();

// Create the Jxta message
msg = new net.jxta.endpoint.Message();

// Add data element
msg.addMessageElement(

new ByteArrayMessageElement(
DataTag,
new MimeMediaType("text/plain"),
serializedObject, null));

// Add Peer info
msg.addMessageElement(... PeerIdTag, ...,

peerinfo.getID());

// Add ServiceInfo
msg.addMessageElement(... ServiceNameTag, ...,

serviceinfo.getName());

// Add adverts for any ControlPipes
PipeAdvertisement[] pipeads =

serviceinfo.getControlPipeAdvertisements();
for (int count = 0; count < pipeads.length;

count++)
msg.addMessageElement(... ServiceControlTag,

..., pipeads[count].getDocument());

// Send the message
((JxtaOutputPipe) pipe).getOutputPipe().send(msg);

}

4.3. The P2PS Binding

Our first attempt at using P2P computing within Triana
used the Java implementation of the JXTA proto-
cols [25]. We found that although these protocols were
well thought out, the implementation was very hard
to use with a steep learning curve. In addition with
the early versions of the implementation we were us-
ing, we had problems with reliably and repeatably
discovering and communicating with peers and creat-
ing communication pipes. We realised that much of
the functionality in the JXTA implementation was not
necessary for our needs and so we developed P2PS as
a lightweight alternative.

P2PS (P2P Simplified) is a lightweight P2P in-
frastructure based on XML advertisements and mes-
saging. As the name suggests, P2PS aims to provide

a simple infrastructure on which to develop P2P style
applications, without the complexity of other similar
architectures such as JXTA and JINI [18].

Like JXTA, the P2PS infrastructure employs XML
in its discovery and communication protocols, and is
independent of any implementation language or com-
puting hardware. Assuming that suitable P2PS imple-
mentations exist, it should be possible to form a P2PS
network that includes everything from super-computer
peers to PDA peers. Furthermore, communication
within P2PS is not tied to any single transport pro-
tocol, such as TCP, and can be extended to include
new protocols, such as Bluetooth. The current refer-
ence implementation of P2PS is written in Java, and
handles pipe communication over both TCP and UDP
by default.

Although P2PS is not an implementation of the
JXTA protocols, its architecture is inspired by that
of JXTA. However, P2PS focuses only on the core
elements required for peer discovery and pipe-based
communication.

At the core of P2PS is the notion of a pipe, a
virtual communication channel that is only bound to
specific endpoints at connection time. When a peer
publishes a pipe advertisement it only identifies the
pipe by its name, id and the id of its host peer. A re-
mote peer wishing to connect to a pipe must query an
endpoint resolver for the host peer in order to deter-
mine an actual endpoint address that it can contact. In
P2PS a peer can have multiple endpoint resolvers, with
each resolving endpoints in different transport proto-
cols or returning relay endpoints that bridge between
protocols (e.g., to traverse a firewall).

Pipes advertised in P2PS are typed, with the stan-
dard types being unidirectional, bidirectional and dis-
covery. Discovery pipes enable peers to broadcast
advertisements to other peers; a typical implemen-
tation of a discovery pipe would be UDP multicast.
Extensions to the standard pipe types are allowed in
P2PS, with obvious extensions being reliable and se-
cure pipes. In addition to named pipes, a peer can also
advertise services; a service in P2PS simply being a
named collection of pipes.

In terms of the GAP Interface, a binding between
the GAP and P2PS is implemented that allows P2PS
to be used via the GAP Interface. This means that
it should be possible to seamlessly use applications
developed on top of the GAP Interface in a P2PS
network just by switching the GAP binding used (in
the same way applications can be switched to a Web
Service binding, a JXTA binding, etc.). In addition
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Figure 7. The architecture an application using P2PS via the GAP Interface compared with an application using P2PS directly.

to enabling an application to be switched between
middleware bindings, using P2PS via the GAP Inter-
face also shields application developers from handling
P2PS advertisements directly; however, on the down-
side, much of the extensibility of P2PS is lost behind
the GAP Interface. In Figure 7 we compare the ar-
chitecture of an application using P2PS via the GAP
Interface with an application using P2PS directly.

The concrete implementation of the GAP Peer in-
terface within P2PS is a class called P2PSPeer. If
we look at the asynchronous locateServices func-
tion, the implementation in P2PSPeer, below, uses a
DiscoveryService in the P2PS library to search for
services.

public void locateServices(String name) {
ServiceDiscoveryInfo info =

new ServiceDiscoveryInfo(name));
ServiceQuery query = (ServiceQuery) peer.

getAdvertisementFactory().newAdvertisement(
ServiceQuery.SERVICE_QUERY_TYPE);

query.setQueryPeerID(info.getPeerID());
query.setQueryServiceName(info.getName());

peer.getDiscoveryService().publish(query);
}

The send function implementation in P2PSPeer
maps to a send function on a P2PSOutputPipe. Unlike
the complicated message creation in the JxtaPeer im-
plementation, the serialization, wrapping around the
data object and message creation is handled by the
P2PSMessage class.

public String send(OutputPipe pipe, Object object)
throws PeerException, IOException {
P2PSMessage message = new P2PSMessage(object,

peerinfo, serviceinfo);
((P2PSOutputPipe) pipe).getOutputPipe().send(

message.toByteArray());
}

4.4. The Web Services Binding

The Web Services implementation of the GAP
interface, WServe, makes use of UDDI and a
UDDIProxy object to locate services. The Peer in-
terface implementation, WSPeer has the following
locateServices method:

public void locateServices(String name) {
ServiceDiscoveryInfo info =

new ServiceDiscoveryInfo(name));
int searchType =

((WSServiceDiscoveryInfo) info).getSearchType();
String searchName =

((WSServiceDiscoveryInfo) info).getSearchName();
Vector vectorServiceNames = new Vector();
vectorServiceNames.addElement(new Name(searchName));

UDDIProxy proxy = initUDDIProxy();
ServiceList serviceList =

proxy.find_service(null, vectorServiceNames,
...);

// Code omitted
}

The send function implementation makes use of
the Axis framework.2

2 Apache Axis is an implementation of the SOAP “Simple
Object Access Protocol” submission to W3C.
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public String send(OutputPipe pipe, Object object)
throws PeerException, IOException {
String sendid = String.valueOf(sendcounter++);
threads.addTask(new AXISInvoke(this,

(WSRemotePort) pipe, object,
isConvertObjectArrays(),
isCustomSerialization(), sendid));

return sendid;
}

In this section we have illustrated the GAP inter-
face through the use of a simple “chat” client example
that makes GAP function calls to discover other chat
services and then send and receive messages between
them. We outlined the major GAP function call groups
and examined three different binding implementations
by looking at two functions, locateServices and
send. Although the binding implementation technolo-
gies are very different the GAP abstraction of service
discovery and message communication can be ap-
plied to all three. Triana currently uses each of the
bindings in isolation but the GAP should allow the
inter-operation of any service using any binding, so
that a P2PS service could talk to a Web Service or
a JXTA service. It is easy to see how, with very lit-
tle code changes, an application can use whichever
binding it requires.

5. Triana Application Scenarios

Application scenarios are presented in this section to
illustrate how Triana units and distribution mechanism
can be used in practise. Although two of the three ap-
plications mentioned here are particularly focused on
astrophysics, the data management and unit execution
mechanisms may also be utilised in other application
domains.

5.1. Galaxy Formation Visualisation

Galaxy and star formation using smoothed particle
hydrodynamics generates large data files containing
snapshots of an evolving system stored in 16 dimen-
sions. Typically, a simplistic simulation would consist
of around a million particles and may have a raw data
frame sizes of 60 Mbytes, with an overall data set size
of the order of 6 GBytes. The dimensions describe
particle positions, velocities, and masses, type of par-
ticle, and a smoothed particle hydrodynamic radius of
influence. After calculation, each snapshot is entirely
independent of the others allowing distribution over

the Grid for independent data processing and graphic
generation (see [30]).

A user of the galaxy formation application would
like to view the chronological changes in the galaxy as
an animation and be able to alter their point of view,
changing the two dimensional view of the three dimen-
sional space. The application consists of three main
data management activities, which are implemented as
three individual units within Triana:

File Parsing – data files are parsed according to their
format and the data loaded into data structures,
each data segment representing a distinct time
frame within the animation

Data Set Projection – the 3D data sets are projected
down onto a 2D plane from a viewpoint, this cal-
culation comprises the majority of the required
processing. A Triana component is used to alter the
position the user views the galaxy forming from,
using a convenient three scrollbar user interface,
representing the X, Y and Z coordinates. Setting
these parameters once on the client simultaneously
updates any Triana services that have been task-
farmed to perform parallel processing on the data.
The user selects the precise viewpoint and presses
the start button to initiate the recalculation of the
view of the galaxy.

Visualization – the 2D frames are returned to the
client for viewing

Triana helps in this example by allowing the user to
distribute the Data Set Projection unit over all avail-
able Triana services and perform parallel processing
on the discrete data frames without having to write a
single line of parallel code.

5.2. Inspiral Search Algorithm

Einstein’s theory of General Relativity predicts the
existence of “gravitational waves”. We have indirect
evidence for the existence of gravitational waves but
no direct observation has so far been made. Such
waves are generated by compact binary stars orbiting
each other – until their collision. Some Laser interfero-
metric detectors such as GEO600, LIGO and VIRGO
should be able to detect the waves from the last few
minutes before collision. A gravitational wave passing
through the interferometer causes displacements of the
mirrors and a shift in the interference pattern. The am-
plitude of the displacement will be extremely small.
To search for an inspiral signal, the detector output is
examined for signals of particular shape. This shape
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is called a template and it is constructed using theo-
retical knowledge about relativistic binary systems. It
is determined by its family of parameters, the most
important of which are the masses of the compact
objects.

For the inspiral search application, the search algo-
rithm works by correlating the data with the templates,
a technique known as template matching or matched
filtering. The correlation is achieved by using the fast
correlation algorithm by taking the Fourier transform
of both the template and the data, multiplying them
together, then taking the inverse fourier transform of
the result. There are typically tens of thousands of
templates (in each bank), each containing different
parameters defined at a certain granularity within the
search space. The key factor is to be certain that the
search space is fine-grained enough to catch the in-
coming waves. Existing C code is currently used to
calculate the bank parameters and write them to a text
file. This is read, the templates are generated and the
correlations are performed. For a modest search, we
would need to have a computing resource capable of
speeds in the range of 10 Gigaflops to keep up in real
time with an on-line search. For example, the gravita-
tional wave signal is sampled at 16 kHz and sampled
at 24-bit (stored in 4 bytes). However, the meaningful
frequency range is up to 1 KHz and therefore a sam-
pled representation of this contains 2,000 samples per
second. The real-time data set is divided into chunks of
15 minutes in duration (i.e., 900 seconds) which results
in a 7.2 MB of data (4 × 900 × 2000) being processed
at a time. The algorithm has the following steps:

File Transferring – this data is transmitted to a node,
currently this is achieved by a central coordinator,
i.e., the client but we are currently in the process
of converting this mechanism into a decentralized
distributed process.

Processing – the node initialises, i.e., generates its
templates (a trivial computational step) and then it
performs fast correlation on the data set with each
template in a library of around 10,000 templates.
This process takes about 5 hours on a 2 GHz PC
running a C program (around 20 dedicated PC’s
with fast communication abilities would need to be
employed full-time to keep up with this dataset).
To perform a search in real time we must filter each
segment of data through the bank before the next
segment comes in.

Results – Results containing a minimal amount of
data, e.g., the GPS second and the correlation
ratio of the detected binary, are returned to the

client if detected. Such events, typically of the or-
der of a few per year are a trivial but important
step. On the client side, we will employ the use
of various notification schemes upon successful
detection, e.g., email notifiation, SMS notifica-
tion and screen alerts, which are readily available
within the system.

The Inspiral Search algorithm is an indication of
the scale of problem that can be addressed by Triana.
The implementation in Triana [5] uses approximately
fifty separate algorithmic components connected to-
gether to form a work flow task-graph, and is shown in
Figure 8. Here, we really see Triana used as a graph-
ical programming tool that reuses much existing code
in order to generate new methods for analysing data.
The enormous advantage to the application scientist
of this approach is that experimenting with new novel
detection methods is trivial and typically only involves
inserting or replacing a unit and slightly rewiring
the existing task-graph. This can all be accomplished
within the environment. The traditional steps of code,
compile, execute are reduced to insert component and
execute.

5.3. Data Translation

Simple string input tools are often useful in many ap-
plication scenarios, often for translating one type of
data source into another. We demonstrate one such,
based on two Web Services: read_bible [35], a ser-
vice for extracting specified verses from the bible; and
BabelFish [35], a service that converts text between
two languages (English to French in this example).
The result from this workflow, specified verses of
the bible converted into French, is displayed in the
standard Triana string viewer component. Such an ap-
plication illustrates how third party services (in this
case obtained from xmethods.net) may be combined
together using Triana.

Figure 9 illustrates the workflow in Triana. In this
case, service descriptions are specified as a Web Ser-
vice Description Language (WSDL) document, and
can be published into a UDDI registry [32]. When a
WSDL description of a Web Service is discovered or
imported, it is parsed by Triana and a Triana tool repre-
senting each of the operations available on the service
is generated. The input and output nodes on each tool
represent the input message parts required by the Web
Service and the message parts returned from the Web
Service operation respectively; for example, if a Web
Service operation requires two input message parts
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Figure 8. The Coalescing Binary search showing most of the units displayed on one work-space. Some units, e.g., Overlap, are themselves
group units containing further task-graphs.

then the generated tool has two input nodes. The Tri-
ana units generated from discovered/imported WSDL
documents are inserted by Triana into the user’s tool
tree, alongside the available local tools. These Web
Services can thereafter be used as standard Triana
units.

Invocation of Web Services is currently done using
the Web Services Invocation Framework [34]. When
data is sent from a local Triana unit to a Web Service,
the data from each input cable for that service is pack-
aged into a WSIF input message, and any data type
conversions (e.g., string to double) are achieved. The
Web Service is then invoked with the input message,
and the data returned by the Web Service is passed to
the next tool in the workflow along the relevant out-
put cable. If the next tool is a Web Service then the
return data is used to invoke that service, allowing Tri-
ana to choreograph workflows involving multiple Web
Services. This feature combined with the BPEL4WS
reader that we are developing will allow us to import
and choreograph BPEL4WS workflows.

5.4. Future Work

Currently, Triana is being applied to implement the
inspiral search workflow on a number of resources
distributed across Europe within the GridLab testbed.
We consider the following issues to be of significance
in order to fully support a functioning testbed. These
issues are currently being addressed and will be con-
sidered significant additions to work already presented
here:

Data Management – the data will be stored in a de-
centralised fashion across the GridLab testbed and
interfaced through the GridLab data management
services. The data management team have already
replaced the communication layer of the gravi-
tational wave IO library for reading/writing data
(called the Frame library) which allows geograph-
ical transparency by allowing local and remote
access to be treated identically using a logical file
reference. The user provides a GPS time as the
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Figure 9. Web Services Workflow in Triana.

logical filename, which is converted into the file
location on the set of distributed resources.

Security – currently, security considerations are not
built into the GAP interface (unlike the GAT).
We intend to integrate the Grid Security Interface
based on X.509 certificates into the GAP. This will
enabling us to contact the secure GridLab services
that are currently available to us and deployed on
the GridLab testbed.

Job Submission – based on the security infrastruc-
ture, we will be able to use GridLab services from
within a Triana workflow in the same way that we
can invoke Web Services now. This will not only
allow us to connect to the GridLab GRMS service
(for Globus-based job submission) but it will al-
low us to choreograph job submission workflow
for complex submissions, e.g., job submission
could involve a number of steps: CVS checkout,
compilation, service deployment etc.

These services will be integrated at the GAP level and
therefore extend its current functionality into a broader
set of Grid services for application integration.

6. Conclusion

The use of Triana as a problem solving and composi-
tion environment for Grid-based resources is demon-
strated. Triana enables users to compose applications
based on workflow principles, allowing a variety of
user developed and third party services to be inte-
grated. Services may be executed on local or remote
resources, parallel distribution of services is also sup-
ported. By isolating the mechanisms of distribution,
via a collection of interfaces we call upperware, from
implementation technologies, generally called middle-
ware, we enable a variety of distributed infrastruc-
tures to co-exist. This has been a significant motiva-
tion for our work, and we demonstrate distribution
mechanisms based on Web Services and Peer-to-Peer
middleware technologies. Both the generic API and
subsequent implementation of this are discussed.

As Grid computing matures, and embraces
commercial-grade infrastructure (such as Web Ser-
vices), it is essential that a variety of implementations
for service management and execution co-exist. It is
unlikely that all user communities will converge on
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one technology for deploying applications – this has
been a significant focus and motivation for this work.

Triana is now available as an open source software
package, and includes the Galaxy formation visual-
ization example, and the distributed Triana prototype.
The current download includes the P2PS and Web
Services binding and can be downloaded from the
website [16].
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