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THE ONE-ELECTRON ATOM 
 

One-electron atoms include the hydrogen atom, He(II), Li(III), Be(IV), and so on.  The mass-
energy and angular momentum of the electron are constant; this requires that the equation of 
motion of the electron1 be temporally and spatially harmonic.  Thus, the classical wave equation2 
applies and 
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where ( , , , )r tρ θ φ  is the function of the electron in time and space.  (In each case, the nucleus 
contains Z  protons and the atom has a net positive charge of ( 1)Z e− .)  All forces are central 
and Special Relativity applies.  Thus, the coordinates must be three-dimensional spherically 
harmonic coordinates plus time.  The time, radial, and angular solutions of the wave equation are 
separable.  The motion is time-harmonic with frequency nω .  To be a harmonic solution of the 
wave equation in spherical coordinates, the angular functions must be spherical harmonic 
functions. 
 
THE BOUNDARY CONDITION OF NONRADIATION AND THE RADIAL 
FUNCTION—THE CONCEPT OF THE "ORBITSPHERE" 
A zero of the spacetime Fourier transform of the product function of two spherical harmonic 
angular functions, a time-harmonic function, and an unknown radial function is sought.   
 
THE BOUNDARY CONDITION 
The condition for radiation by a moving charge is derived from Maxwell's equations.  To radiate, 
the spacetime Fourier transform of the current-density function must possess components 
synchronous with waves traveling at the speed of light [1].  Alternatively,  

 
For non-radiative states, the current-density function must not possess spacetime 
Fourier components that are synchronous with waves traveling at the speed of light. 

 

                                                 
1 The equation of motion of an extended electron is postulated based on first principles and should not be confused 
with the energy equation of a point-particle probability density wave such as the Schrödinger equation of quantum 
mechanics. 
2 This is not to be confused with the Schrödinger equation which is not a proper wave equation. 
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DERIVATION OF THE CONDITION FOR NONRADIATION 
The condition for radiation by a moving point charge given by Haus [1] is that its spacetime 
Fourier transform does possess components that are synchronous with waves traveling at the 
speed of light.  Conversely, it is proposed that the condition for nonradiation by an ensemble of 
moving point charges that comprises a charge-density function is that its spacetime Fourier 
transform does NOT possess components that are synchronous with waves traveling at the speed 
of light.  The Haus derivation applies to a moving charge-density function as well because 
charge obeys superposition.  The Haus derivation is summarized below. 
 
The Fourier components of the current produced by the moving charge are derived.  The electric 
field is found from the vector equation in Fourier space (k, w-space).  The inverse Fourier 
transform is carried over the magnitude of k .  The resulting expression demonstrates that the 

radiation field is proportional to ( , )
c
ω ω⊥J n  where ( , )ω⊥J k  is the spacetime Fourier transform 

of the current perpendicular to k  and 
| |k

≡
kn .  Specifically, 
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The field ( ),
2
dωω
π⊥E r  is proportional to ,

c
ω ω⊥
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J n , namely, the Fourier component for 

which 
c
ω

=k .  Factors of ω  that multiply the Fourier component of the current are due to the 

density of modes per unit volume and unit solid angle.  An unaccelerated charge does not radiate 
in free space, not because it experiences no acceleration, but because it has no Fourier 

component ,
c
ω ω⊥
⎛ ⎞
⎜ ⎟
⎝ ⎠

J n . 

 
DERIVATION OF THE BOUNDARY CONDITION 
In general, radial solutions of the Helmholtz wave equation are spherical Bessel functions, 
Neumann functions, Hankel functions, and associated Laguerre functions.  It was found that any 
radial solution with radial motion results in radiation.  Thus, a solution of the two-dimensional 
wave equation plus time is the proper stable, nonradiative equation of motion of the bound 
electron.  The corresponding radial function is the radial Dirac delta function.  The Dirac delta 
function defines the elimination of the radial dependence which reduces the number of 
dimensions of the Helmholtz wave equation from four to three.  Then, the solution for the radial 
electron function which satisfies the boundary condition is a delta function in spherical 
coordinates—a spherical shell [2] 

 2

1( ) ( )nf r r r
r
δ= −  (1.3) 

where nr  is an allowed radius.  This function defines the charge density on a spherical shell of a 
fixed radius, not yet determined, and Eq. (1.1) becomes the two-dimensional wave equation plus 
time with separable time and angular functions.  Given time harmonic motion with angular 
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velocity, ω , and a radial delta function, the relationship between an allowed radius and the 
electron wavelength is given by 
 2 n nrπ λ=  (1.4) 
where the integer subscript n  here and in Eq. (1.3) is determined during photon absorption as 
given in the Excited States of the One-Electron Atom (Quantization) section.  It is shown in this 
section that the force balance between the electric fields of the electron and proton plus any 
resonantly absorbed photons gives the result that 1nr nr=  wherein n  is an integer in an excited 
state. 

The Fourier transform of the radial Dirac delta function is a sinc function.  Consider the 
radial wave vector of the sinc function when the radial projection of the velocity is c  where Eq. 
(1.4) applies.  In this case, the relativistically corrected wavelength is 
 rλ =  (1.5) 
Substitution of Eq. (1.5) into the sinc function results in the vanishing of the entire Fourier 
transform of the current-density function. 
 
SPACETIME FOURIER TRANSFORM OF THE ELECTRON FUNCTION 
The electron charge-density (mass-density) function is the product of a radial delta function 

2

1( ( ) ( ))nf r r r
r
δ= − , two angular functions (spherical harmonic functions), and a time-harmonic 

function.  The spacetime Fourier transform in three dimensions in spherical coordinates plus time 
is given [3, 4] as follows: 

2
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With circular symmetry [3] 
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 (1.7) 
With spherical symmetry [3], 

 2( , ) 4 ( , )sinc(2 ) exp( )M s r t sr r i t drdtω π ρ ω
∞ ∞

0 0

= −∫ ∫  (1.8) 

The solutions of the classical wave equation are separable. 
 ( , , , ) ( ) ( ) ( ) ( )r t f r g h k tρ θ φ θ φ=   (1.9) 
The orbitsphere function is separable into a product of functions of independent variables, 

, , ,r θ φ  and t .  The radial function which satisfies the boundary condition is a delta function.  
The time functions are of the form i te ω , the angular functions are spherical harmonics, sine or 
cosine trigonometric functions or sums of these functions, each raised to various powers.  The 
spacetime Fourier transform is derived of the separable variables for the angular space function 
of sinφ  and sinθ . It follows from the spacetime Fourier transform given below that other 
possible spherical harmonics angular functions give the same form of result as the transform of 
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sinθ  and sinφ .  Using Eq. (1.8), ( )F s , the space Fourier transform of ( ) ( )nf r r rδ= −  is given 
as follows: 

 2
2

1( ) 4 ( )sinc(2 )nF s r r sr r dr
r

π δ
∞

0

= −∫  (1.10) 

 ( ) 4 sinc(2 )nF s srπ=  (1.11) 
The subscript n is used hereafter; however, the quantization condition appears 
in the Excited States of the One-Electron Atom (Quantization) section.  
Quantization arises as "allowed" solutions of the wave equation corresponding 
to a resonance between the electron and a photon. 

Using Eq. (1.7), ( , )G s Θ , the space Fourier transform of ( ) sing θ θ=  is given as follows where 
there is no dependence on φ : 
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From Luke [5] and [6]: 
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Let  
 2 sin sinZ srπ θ= Θ  (1.15) 
With substitution of Eqs. (1.15) and (1.14) into Eq. (1.13),  
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From Luke [7], with Re(u) > 1
2

− : 
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Let  
 2 cosz srπ θ= and n υ=  (1.20) 
Applying the relationship, the integral of a sum is equal to the sum of the integrals to Eq. (1.18), 
and transforming Eq. (1.18) into the form of Eq. (1.19) by multiplication by  
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and by moving the constant outside of the integral gives: 
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Applying Eq. (1.19), 
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Using the Hankel transform formula from Bateman [8]: 
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and the Hankel transform relationship from Bateman [9], the general Eq. (1.31) is derived as 
follows: 
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Collecting the r  raised to a power terms, Eq. (1.24) becomes, 
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By applying Eq. (1.31), Eq. (1.33) becomes, 
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By collecting power terms of s , Eq. (1.34) becomes, 
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( , )H s Φ , the space Fourier transform of ( ) sinh φ φ=  is given as follows where there is no 
dependence on θ : 

The spectrum of sinφ  and sinθ are equivalent.  Applying a change of variable to the 
Fourier transform of ( ) sing θ θ= . 

θ φ======>  implies Θ =======> Φ  
Therefore, ŷ  replaces Θ  in Eq. (1.35), 
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The time Fourier transform of ( ) Re{exp( )}nK t i tω=  where nω  is the angular frequency 
is given [4] as follows: 

 1 1cos exp( ) [ ( ) ( )]
2 2n n nt i t dtω ω δ ω ω δ ω ω
π

∞

0

− = − + +∫  (1.37) 

A very important theorem of Fourier analysis states that the Fourier transform of a 
product is the convolution of the individual Fourier transforms [10].  By applying this theorem, 
the spacetime Fourier transform of an orbitsphere, ( , , )M s ωΘ,Φ  is of the following form: 
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 ( , , ) ( ) ( , ) ( , ) ( )M s F s G s H s Kω ωΘ,Φ = ⊗ Θ ⊗ Φ  (1.38) 
Therefore, the spacetime Fourier transform, ( , , )M s ωΘ,Φ , is the convolution of Eqs. (1.11), 
(1.35), (1.36), and (1.37). 
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The condition for nonradiation of a moving charge-density function is that the spacetime Fourier 
transform of the current-density function must not have waves synchronous with waves traveling 

at the speed of light, that is synchronous with n

c
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oc
ω ε

ε
 where r  is the 

dielectric constant of the medium.  The Fourier transform of the charge-density function of the 
orbitsphere (bubble of radius r ) is given by Eq. (1.39).  In the case of time-harmonic motion, the 
current-density function is given by the time derivative of the charge-density function.  Thus, the 
current-density function is given by the product of the constant angular velocity and the charge-
density function.  The Fourier transform of the current-density function of the orbitsphere is 
given by the product of the constant angular velocity and Eq. (1.39).  Consider the radial and 
time parts of, K⊥ , the Fourier transform of the current-density function where the angular 
transforms are not zero: 
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 (1.40) 
For the case that the current-density function is constant, the delta function of Eq. (1.40) is 
replaced by a constant.  For time harmonic motion, with angular velocity, nω , Eq. (1.40) is 
nonzero only for nω ω= ; thus, s−∞ < < ∞  becomes finite only for the corresponding 
wavenumber, ns .  The relationship between the radius and the wavelength is 
 n n nv fλ=  (1.41) 
 2n n n n nv r f fπ λ= =  (1.42) 
 2 n nrπ λ=  (1.43) 
The motion on the orbitsphere is angular; however, a radial component exists due to Special 
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Relativistic effects.  Consider the radial wave vector of the sinc function.  When the radial 
projection of the velocity is c   
 n n n nω• = • =s v s c  (1.44) 
the relativistically corrected wavelength given by Eq. (1.259) is3 
 n nrλ =  (1.45) 
(i.e. the lab frame motion in the angular direction goes to zero as the velocity approaches the 
speed of light as given by Eq. (24.15)).  The charge-density functions in spherical coordinates 
plus time are given by Eqs. (1.64-1.65).  In the case of Eq. (1.64), the wavelength of Eq. (1.44) is 
independent of θ ; whereas, in the case of Eq. (1.65), the wavelength in Eq. (1.44) is a function 
of sinθ .  Thus, in the latter case, Eq. (1.45) holds wherein the relationship of wavelength and the 
radius as a function of θ  are given by sin sinn nr θ λ θ= .  

                                                 
3 The special relativistic length contraction relationship observed for a laboratory frame relative to an inertial frame 
moving at constant rectilinear velocity v  in the direction of velocity v  is 

 
2

21o
vl l
c

= −  (1) 

Consider the distance on a great circle given by 
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In a gedanken experiment at a fixed position, the distance undergoes length contraction only in the θ  direction as 
v c→ .  Thus, as v c→  the distance on a great circle approaches its radius which is the relativistically contracted 
electron wavelength.  In the case of the charge motion, the components must be checked relative to waves traveling 
at the speed of light.  In this case a contracted wavelength arises. 

The charge motion may be visualized.  From the visualization, the nonradiation condition becomes 
apparent.  At light speed, there can be no motion transverse to the radius.  The radial projection of the time harmonic 
motion of a point charge of a great circle becomes equivalent to a time harmonic oscillator moving along an axis of 
distance 2 nr  in the direction of r .  In spherical coordinates, the lab frame is at rest at the origin.  Relativistic 
invariance of charge requires that all of the charge of a current loop be projected onto a line in the radial direction.  
For n=1, A =0, the charge is uniformly distributed.  Consider, the radial projection of a point charge on a great circle 
at 0φ =  and a point charge at φ π= .  Both points move from opposite ends of a line of length 2 nr  

( n nr r r− ≤ ≤ + ) and are at the origin in a quarter of a period which is time 
2

nrt
c

= .  The points then cross.  (The 

crossing is equivalent to elastic scattering at the origin which results in a momentum reversal for both points.)  The 

points interchange roles and travel to the opposite starting points in a half of a period which is time 
2
2

nrt
c

= .  So, 

with respect to each position, a point left and a point reappeared in 
2
2

nrt
c

= .  Since 
2T

c
π λ
ω

= = , the wavelength 

is rn .  This situation applies for any φ .  In the lab frame, the current is uniform and constant.  In the frame 
synchronous with waves traveling at the speed of light, the motion is equivalent to no net current and no net charge 
motion.  Thus, no radiation is possible.   

When all positions of the orbitsphere are considered in the gedanken experiment, it is apparent that the lab-
frame electron motion is on a sphere with a radius contracted by the factor 2π .  The derivation is given in the 
Special Relativistic Correction to the Ionization Energies section.  With the wavelength in the speed of light frame 
given by Eq. (1.45), the relativistic invariance of the angular momentum of the electron of   =  (Eq. (1.57) gives the 
corresponding electron mass in the mass density as 2 emπ . 
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The equipotential, uniform or constant charge-density function (Eq. (1.64)) further 
comprises a current pattern given in the Orbitsphere Equation of Motion for A  = 0 section and 
corresponds to the spin function of the electron.  It also corresponds to the nonradiative 1n = , A  
= 0 state of atomic hydrogen.  There is acceleration without radiation.  In this case, centripetal 
acceleration.  A static charge distribution exists even though each point on the surface is 
accelerating along a great circle.  Haus' condition predicts no radiation for the entire ensemble.   

In cases of orbitals of heavier elements and excited states of one-electron atoms and 
atoms or ions of heavier elements which are not constant as given by Eq. (1.65), the constant 
spin function is modulated by a time and spherical harmonic function.  The modulation or 
traveling charge-density wave corresponds to an orbital angular momentum in addition to a spin 
angular momentum.  These states are typically referred to as p, d, f, etc. orbitals and correspond 
to an =  quantum number not equal to zero.  Haus' condition also predicts nonradiation for a 
constant spin function modulated by a time and spherically harmonic orbital function.  However, 
in the case that such a state arises as an excited state by photon absorption, it is radiative due to a 
radial dipole term in its current-density function since it possesses spacetime Fourier transform 
components synchronous with waves traveling at the speed of light as given in the Instability of 
Excited States section. 

Substitution of Eq. (1.45) into the sinc function results in the vanishing of the entire 

Fourier transform of the current-density function.  Thus, spacetime harmonics of n k
c
ω

=  or 

n

o

k
c
ω ε

ε
=  do not exist for which the Fourier transform of the current-density function is 

nonzero.  Radiation due to charge motion does not occur in any medium when this boundary 
condition is met.  Note that the boundary condition for the solution of the radial function of the 
hydrogen atom with the Schrödinger equation is 0Ψ→  as r →∞ .  Here, however, the 
boundary condition is  derived from Maxwell's equations:  For non-radiative states, the current-
density function must not possess spacetime Fourier components that are synchronous with 
waves traveling at the speed of light.  An alternative derivation which provides acceleration 
without radiation is given by Abbott [11]  Bound electrons are described by a charge-density 
(mass-density) function which is the product of a radial delta function, Eq. (1.3), two angular 
functions (spherical harmonic functions), and a time harmonic function.  This is a solution of the 
classical wave equation.  This radial function implies that allowed states are two-dimensional 
spherical shell (zero thickness 4) of charge density (and mass density) at specific radii nr . Thus, a 
bound electron is a constant two-dimensional spherical surface of charge (zero thickness, total 
charge = e− , and total mass= 0θ = ), called an electron orbitsphere shown in Figure 1.1, that 
can exist in a bound state at only specified distances from the nucleus determined by an energy 

                                                 
4 The orbitsphere has zero thickness, but in order that the speed of light is a constant maximum in any frame 
including that of the gravitational field that propagates out as a light-wave front at particle production, it gives rise to 
a spacetime dilation equal to 2π  times the Newtonian gravitational or Schwarzschild radius 

57
2

2 1.3525  10  e
g

Gmr X m
c

−= =  according to Eqs. (23.36) and (23.140b) and discussion at the footnote after 

Eq. (23.40).  This corresponds to a spacetime dilation of 578.4980  10  X m−  or 652.8346  10  X s− .  Although 
the orbitsphere does not occupy space in the third spatial dimension, its mass discontinuity effectively "displaces" 
spacetime wherein the spacetime dilation can be considered a "thickness" associated with its gravitational field. 
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minimum for the n=1 state and integer multiples of this radius due to the action of resonant 
photons as shown the Determination of Orbitsphere Radii section and the Equation of the 
Electric Field inside the Orbitsphere section, respectively. 
 
Figure 1.1.  A bound electron is a constant two-dimensional spherical surface of charge 
(zero thickness, total charge = e− , and total mass= em ), called an electron orbitsphere.  For the 
n=1 state of the hydrogen atom, the orbitsphere has the Bohr radius of the hydrogen atom, 

Hr a= .  It is nonradiative, a minimum-energy surface, and extremely stable in that the balanced 
forces correspond to a pressure of twenty million atmospheres. 
 

 
 

Given time-harmonic motion and a radial delta function, the relationship between an 
allowed radius and the electron wavelength is  given by Eq. (1.43).  Using the de Broglie 
relationship for the electron mass where the coordinates are spherical 

 n
n e n

h h
p m v

λ = =  (1.46) 

the magnitude of the velocity for every point on the orbitsphere is 
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 n
e n

v
m r

=
=  (1.47) 

 
THE ANGULAR FUNCTION 
By application of the nonradiation constraint, the electron equation of motion is a solution of the 
wave equation in two dimensions (plus time),wherein the radial function for the electron is a 
two-dimensional shell of zero thickness as given by Eq. (1.3).  Therefore, the angular 
mass(charge)-density function of the electron, ( , , )A tθ φ , must be a solution of 

 
2

2
2 2

1 ( , , ) 0A t
v t

∂ θ φ
∂

⎡ ⎤
∇ − =⎢ ⎥
⎣ ⎦

 (1.48) 

where 2

1( , , , ) ( ) ( , , ) ( ) ( , , )  ( , , ) ( , ) ( )nr t f r A t r r A t and A t Y k t
r

ρ θ φ θ φ δ θ φ θ φ θ φ= = − =  

 ( )
2 2

2 2 2 2 2 2
, ,

1 1 1sin , , 0
sin sinr r

A t
r r v tφ θ

∂ ∂ ∂ ∂θ θ φ
θ ∂θ ∂θ θ ∂φ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ + − =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (1.49) 

where v is the linear velocity of the electron. (It is shown in the Special Relativistic Correction to 
the Ionization Energies section that the motion is azimuthal to the radius which constitutes an 
inertial frame that is relativistically invariant.)  Conservation of momentum and energy allows 
the angular functions and time functions to be separated. 
 ( , , ) ( , ) ( )A t Y k tθ φ θ φ=  (1.50) 
Charge is conserved as well, and the charge of an electron is superimposable with its mass.  That 
is, the angular mass-density function, ( , , )A tθ φ , is also the angular charge-density function.  

The electron orbitsphere experiences a constant potential energy because it is fixed at 
nr r= .  In general, the kinetic energy for an inverse squared electric force is half the potential 

energy.  It is the rotation of the orbitsphere that causes spin angular momentum.  The rotational 
energy of a rotating body, rotE , is 

 21
2rotE Iω=  (1.51) 

where I is the moment of inertia and ω  is the angular velocity.  The angular velocity must be 
constant (at a given n ) because r  is constant and the energy and angular momentum are 
constant.  The allowed angular velocities are related to the allowed frequencies by 
 2n nω πν=  (1.52) 
The allowed frequencies are related to allowed velocities by 
 n n nv ν λ=  (1.53) 
The allowed velocities and angular frequencies are related to nr  by 
 n n nv rω=  (1.54) 

 2n
e nm r

ω =
=  (1.55) 

 n
e n

v
m r

=
=  (1.56) 

The scalar sum of the magnitude of the angular momentum of each infinitesimal point of the 
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orbitsphere iL  of mass im  must be constant.  The constant is = . 

 | |i i e n
e n

m m r
m r

= × = =∑ ∑L r v = =  (1.57) 

where the velocity is given by Eq. (1.47).  In the limit, the sum is replaced by a continuous 
integral over the surface wherein the point element masses and angular momenta are replaced by 
the corresponding densities.  The integral of the magnitude of the angular momentum of the 
electron is =  in any inertial frame and is relativistically invariant.  The vector projections of the 
orbitsphere spin angular momentum relative to the Cartesian coordinates are given in the Spin 
Angular Momentum of the Orbitsphere with A = 0 section. 

In the case of an excited state, the charge-density function of the electron orbitsphere can 
be modulated by the corresponding "trapped" photon to give rise to orbital angular momentum 
about the z-axis.  The "trapped photon" is a "standing electromagnetic wave" which actually is a 
circulating wave that propagates around the z-axis.  Its source current superimposes with each 
great circle current-density element ("current loop") of the orbitsphere.  In order to satisfy the 
boundary (phase) condition at the orbitsphere surface, the angular and time functions of the 
photon must match those of its source current which modulates the orbitsphere charge-density 
function as given in the Equation of the Electric Field Inside the Orbitsphere section.  The time-
function factor, k(t), for the photon "standing wave" is identical to the time-function factor of the 
orbitsphere.  Thus, the angular frequency of the "trapped photon" has to be identical to the 
angular frequency of the electron orbitsphere, nω  given by Eq. (1.55).  However, the linear 
velocity of the modulation component is not given by Eq. (1.54)—the orbital angular frequency 
is with respect to the z-axis; thus, the distance from the z-axis must be substituted for the 
orbitsphere radius of Eq. (1.54).  The vector projections of the orbital angular momentum and the 
spin angular momentum of the orbitsphere are given in the Rotational Parameters of the Electron 
(Angular Momentum, Rotational Energy, and Moment of Inertia) section.  Eq. (1.49) becomes 

 ( ) ( )
2 2

2 2
, ,

1 1sin , , , ,
2 sin sin rot

r r

A t E A t
I φ θ

∂ ∂ ∂θ θ φ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎛ ⎞⎛ ⎞− + =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=  (1.58) 

The spacetime angular function, ( , , )A tθ φ , is separated into an angular and a time function, 
( , ) ( )Y k tθ φ .  The solution of the time harmonic function is ( ) ni tk t e ω= .  When the time harmonic 

function is eliminated, 

 ( ) ( )
2 2

2 2
, ,

1 1sin , ,
2 sin sin rot

r r

Y E Y
I φ θ

∂ ∂ ∂θ θ φ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎛ ⎞⎛ ⎞− + =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=  (1.59) 

Eq. (1.59) is the equation for the rigid rotor.  The angular function can be separated into a 
function of θ and a function of φ  and the solutions are well known [12].  The energies are given 
by 

 
2 ( 1)     0,1, 2,3,...,

2rotE
I
+

= =
= A A A  (1.60) 

where the moment of inertia, I , is derived in the Rotational Parameters of the Electron (Angular 
Momentum, Rotational Energy, and Moment of Inertia) section.  The angular functions are the 
spherical harmonics, ( , ) (cos )m m imY P e φθ φ θ=A A .  The spherical harmonic 0

0 ( , ) 1Y θ φ =  is also a 
solution.  The real parts of the spherical harmonics vary between 1−  and 1.  But the mass of the 
electron cannot be negative; and the charge cannot be positive.  Thus, to insure that the function 
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is positive definite, the form of the angular solution must be a superposition: 
 0

0 ( , ) ( , )mY Yθ φ θ φ+ A  (1.61) 
(Note that ( , ) (cos )m m imY P e φθ φ θ=A A  are not normalized here as given by Eq. (3.53) of Jackson 
[13]; however, it is implicit that the magnitude is made to satisfy the boundary condition that the 
function is positive definite and Eq. (1.63) is satisfied.)  0

0 ( , )Y θ φ  is called the angular spin 

function corresponding to the quantum numbers s
1 1s ;  m
2 2

= = ±  as given in the Spin Angular 

Momentum of the Orbitsphere with A = 0 section.  ( , )mY θ φA  is called the angular orbital function 
corresponding to the quantum numbers 0, 1, 2, 3, 4,...;  m  - , -  + 1, ..., 0, ..., += =AA A A A .  2π  can 
be thought of as a modulation function.  The charge density of the entire orbitsphere is the total 

charge divided by the total area, 24 n

e
rπ

− .  The fraction of the charge of an electron in any area 

element is given by 
 0 2

0 ( , ) ( , ) sin ,m
nN Y Y r d dθ φ θ φ θ θ φ⎡ ⎤+⎣ ⎦A  (1.62) 

where N  is the normalization constant.  Therefore, the normalization constant is given by 

 
2

2 0
0

0 0

( , ) ( , ) sinm
ne Nr Y Y d d
π π

θ φ θ φ θ θ φ⎡ ⎤− = +⎣ ⎦∫ ∫ A  (1.63) 

For A  = 0, 28 n

eN
rπ

−
= .  For A  ≠ 0, 24 n

eN
rπ

−
= .  The charge-density functions including the time-

function factor are 
 

 A = 0 

 ( ) ( )0
02( , , , ) [ ( )] , ,

8
m

n
er t r r Y Y
r

ρ θ φ δ θ φ θ φ
π

⎡ ⎤= − +⎣ ⎦A  (1.64) 

 
 ≠A 0 

 ( ) ( ){ }0
02( , , , ) [ ( )] , Re , 1

4
ni tm

n
er t r r Y Y e
r

ωρ θ φ δ θ φ θ φ
π

⎡ ⎤⎡ ⎤= − + +⎣ ⎦⎣ ⎦A  (1.65a) 

 

 ( ) ( ){ }0
02( , , , ) [ ( )] , Re ,

4
ni tm

n
er t r r Y Y e
r

ωρ θ φ δ θ φ θ φ
π

⎡ ⎤= − +⎣ ⎦A  (1.65b) 

where 
( ){ } ( ) ( ) ( ) ( ) ( )'Re , 1 Re , , cos cos cos cosn ni t i tm m m m m

nY e Y Y e P m P m tω ωθ φ θ φ θ φ θ φ θ φ ω⎡ ⎤ ⎡ ⎤+ = + = + +⎣ ⎦ ⎣ ⎦A A A A A

 or ( ){ } ( ) ( )'Re , cos cosni tm m
nY e P m tωθ φ θ φ ω= +A A  and to keep the form of the spherical harmonic 

as a traveling wave about the z-axis, '
n nmω ω= 5.  In the cases that 0m ≠ , Eq. (1.65) represents a 

                                                 
5 In Eq. (1.65a), ( )0

0 ,Y θ φ , a constant function, is added to a spherical harmonic function times 1 ni te ω⎡ ⎤+⎣ ⎦ .  

Consider the term ( ){ }Re , 1 ni tmY e ωθ φ ⎡ ⎤+⎣ ⎦A .  The first term corresponds to ( ),mY θ φA  times one and has 
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traveling charge-density wave that moves on the surface of the orbitsphere about the z-axis with 
frequency nω  and modulates the orbitsphere corresponding to A = 0.  The latter gives rise to spin 
angular momentum as given in the Spin Angular Momentum of the Orbitsphere with A = 0 
section.  The spin and orbital angular momenta may couple as given in the Orbital and Spin 
Splitting section.  In the cases that 0

0 ( , )Y φ θ ≠ 0 and θ  the charge is moving or rotating about the 
z-axis with frequency nω , but the charge density is not time dependent.  The photon equations 
which correspond to the orbitsphere states, Eqs. (1.64) and (1.65), are given in the Excited States 
of the One-Electron Atom (Quantization) section.  In addition to Haus' condition given by Eqs. 
(1.44-1.45), the orbitsphere states given by Eqs. (1.64-1.65) are shown to be nonradiative with 
the same condition as that of Eq. (1.45) applied to the vector potential as shown in Appendix I: 
Nonradiation Based on the Electromagnetic Fields and the Poynting Power Vector. 

For n = 1, and A  = 0, m = 0, and s = 1/2, the charge (and mass) distribution is spherically 
symmetric and 2

1,0,0,1/ 2 4.552 M Cm−= −  everywhere on the orbitsphere.  Similarly, for 2n = , A  = 
0, 0m = , and 1/ 2s = , the charge distribution everywhere on the sphere is 

2
2,0,0,1/ 2 1.138 M Cm−= − .  For n = 2, A  = 1, m = 0, and s = 1/2, the charge distribution varies with 

4
= .  0

1 ( , )Y φ θ  is a maximum at 0θ = °  and the charge density is also a maximum at this point, 
2

2,1,0,1/ 2 ( 0 ) 2.276 M Cmθ −= ° = − .  The charge density decreases as S  increases; a minimum in the 

charge density is reached at 2
2,1,0,1/ 2180 ,  ( 180 ) 0 M Cmθ θ −= ° = ° = . 

For A  = 1 and 1m = ± , the spherical harmonics are complex, and the angular functions 
comprise linear combinations of 
 1, sin cosxY θ φ=  (1.66) 
 1, sin sinyY θ φ=  (1.67) 
Each of 1,xY  and 1, yY  is the component factor part of a phasor.  They are not components of a 
vector; however, the x  and y  designation corresponds, respectively, to the historical xp  and yp  
probability-density functions of quantum mechanics.  1,xY  is a maximum at 90θ = °  and 0φ = ° ; 

2
2,1,x,1/ 2 (90 ,0 ) 1.138 M Cm−° ° = − .  Figure 1.2 gives pictorial representation of how the modulation 

function changes the electron density on the orbitsphere for several A  values6.  Figure 1.3 gives a 
                                                                                                                                                             

0nω = ; so, 0m =  and 0=A  is selected.  This is equivalent to another constant function modulated by the 
spherical harmonic function (second term) which spins around the z-axis and comprises a traveling modulation 
wave.  One rotation of the spherical harmonic function occurs in one period.  Thus, Eq. (1.65a) can be rearranged to 
represent the electron as a superposition of a pure spin function plus a spin function that is modulated.  Or, directly, 
Eq. (1.65a) represents the sum of a spin function and a modulation function times a time dependent function, 
1 ni te ω⎡ ⎤+⎣ ⎦ .  The latter can be considered a phasor corresponding to the modulation function spinning about the z-

axis. 
6  When the electron charge appears throughout this text in a function involving a linear combination of the spin and 
orbital functions, it is implicit that the charge is normalized.  A constant times a solution to the wave equation such 
as a constant times a spherical harmonic function is a solution.  The integral of the constant mass-density function 
corresponding to spin over the orbitsphere is the mass of the electron.  The integral of any spherical harmonic 
modulation function corresponding to orbital angular momentum over the orbitsphere is zero.  The modulated mass-
density function has a lower limit of zero due to the trapped photon which is phase-locked to the modulation 
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pictorial representation of the charge-density wave of a p orbital that modulates the constant spin 
function and rotates around the z-axis.  A single time point is shown for A  = 1 and 1m = ±  in Eq. 
(1.65). 

                                                                                                                                                             
function.  And, the mass density can not be negative.  Thus, the maximum magnitude of the unnormalized spherical 
harmonic function over all angles must be one.  The summation of the constant function and the orbital function is 
normalized. 
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Figure 1.2 The orbital function modulates the constant (spin) function. 
(shown for t = 0; three-dimensional view) 
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Figure 1.3.  A pictorial representation of the charge-density wave of a p orbital that 
modulates the constant spin function and travels on the surface of the orbitsphere around the z-
axis.  A single time point is shown for A   = 1 and 1m = ±  in Eq. (1.65).  The charge density 
increases from red to violet.  The z-axis is the vertical axis. 
 

 
 
THE ORBITSPHERE EQUATION OF MOTION FOR A = 0 BASED ON 
THE CURRENT VECTOR FIELD (CVF) 
 
STERN-GERLACH-EXPERIMENT BOUNDARY CONDITIONS 
It is known from the Stern-Gerlach experiment that a beam of silver atoms is split into two 
components when passed through an inhomogeneous magnetic field.  This implies that the 
electron is a spin 1/2 particle with an intrinsic angular momentum in the direction of the applied 

field (spin axis) of 
2

±
= , and the magnitude of the angular momentum vector which precesses 

about the spin axis is 
4
3= .  Furthermore, the magnitude of the splitting implies a magnetic 

moment of Bμ , a full Bohr magneton, given by Eq. (1.110) corresponding to =  of total angular 
momentum on the axis of the applied field. 

The algorithm to generate the spin function designated as 0
0 ( , )Y θ φ  (part of Eqs. (1.64-

1.64)) and called the electron orbitsphere is developed in this section.  It was shown in the 
Angular Function section that the integral of the magnitude of the angular momentum over the 
orbitsphere must be constant.  The constant is =  as given by Eq. (1.57).  It is shown in this 
section that the projection of the intrinsic orbitsphere angular momentum onto the spin axis is 
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2
±

= , and the projection onto S, the axis which precesses about the spin axis, is =  with a 

precessing component in the perpendicular plane of 
4
3=  and a component on the spin axis of 

2
±

= .  Thus, the mystery of an intrinsic angular momentum of 
2

±
=  and a total angular momentum 

in a resonant RF experiment of =zL =  is resolved since the sum of the intrinsic and spin-axis 
projection of the precessing component is = .  The Stern-Gerlach experiment implies a magnetic 
moment of one Bohr magneton and an associated angular momentum quantum number of 1/2.  

Historically, this quantum number is called the spin quantum number, s ( 1 1;  
2 2ss m= = ± ), and 

that designation is maintained.  
The electron has a measured magnetic field and corresponding magnetic moment of a 

Bohr magneton and behaves as a spin 1/2 particle or fermion.  For any magnetic field, the 
solution for the corresponding current from Maxwell's equations is unique.  Thus, the electron 
field requires a unique current according to Maxwell's equations.  Several boundary conditions 
must be satisfied, and the orbitsphere equation of motion for  A  = 0 is solved as a boundary value 
problem.  The boundary conditions are: 
 

(1) each infinitesimal point (position) on the orbitsphere comprising a charge- (mass)-
density element must have the same angular and linear velocity given by Eqs. (1.55) and 
(1.56), respectively; 

 
(2) according to condition 1, every such infinitesimal point must move along a great 

circle and the current-density distribution must be uniform; 
 
(3) the electron magnetic moment must align completely parallel or antiparallel with 

an applied magnetic field in agreement with the Stern-Gerlach experiment; 
 
(4) according to condition 3, the projection of the intrinsic angular momentum of the 

orbitsphere onto the z-axis must be 
2

±
= , and the projection into the transverse plane must 

be 
4

±
=  to achieve the spin 1/2 aspect; 

 
(5) the Larmor excitation of the electron in the applied magnetic field must give rise 

to a component of electron spin angular momentum that precesses about the applied 

magnetic field such that the contribution along the z-axis is 
2

±
=  and the projection onto 

the orthogonal axis which precesses about the z-axis must be 3
4

± = ; 
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(6) due to conditions 4 and 5, the angular momentum components corresponding to 
the current of the orbitsphere and that due to the Larmor precession must rise to a total 
angular momentum on the applied-field axis of ±= ; 

 
(7) due to condition 6, the precessing electron has a magnetic moment of a Bohr 

magneton, and 
 
(8) the energy of the transition of the alignment of the magnetic moment with an 

applied magnetic field must be given by Eqs. (1.205-1.206) wherein the g factor and 
Bohr magneton factors are due to the extended-nature of the electron such that it links 
flux in units of the magnetic flux quantum and has a total angular momentum on the 
applied-field axis of ±= . 
 
Consider the derivation of Eqs. (1.58) and (1.59).  The moment of inertia of a point 

particle orbiting an axis is 2mr , and that of a globe spinning about some axis is 22
3

I mr= .  For 

A  = 0, the electron mass and charge are uniformly distributed over the orbitsphere, a two-
dimensional, spherical shell, but the orbitsphere is not analogous to a globe.  The velocity of a 
point mass on a spinning globe is a function of θ , but the magnitude of the velocity at each point 
of the orbitsphere is not a function of θ .  To picture the distinction, it is a useful concept to 
consider that the orbitsphere is comprised of an infinite number of point elements that move on 
the spherical surface.  Then, each point on the sphere with mass im  has the same angular 
velocity, nω , the same magnitude of linear velocity, nv , and the same moment of inertia, 2

i nm r .  
The motion of each point of the orbitsphere is along a great circle, and the motion along each 
great circle is correlated with the motion on all other great circles such that the sum of all the 
contributions of the corresponding angular momenta is different from that of an orbiting point or 
a globe spinning about an axis.  The orbitsphere angular momentum is uniquely directed 
disproportionately along two orthogonal axes. 

The current-density function of the orbitsphere is generated from a basis set current-
vector field defined as the orbitsphere current-vector field ("orbitsphere-cvf").  This in turn is 
generated from orthogonal great circle current-density elements (one dimensional "current 
loops") that serve as basis elements.  As given in Appendix III, the continuous uniform electron 
current density function 0

0 ( , )Y θ φ  (part of Eqs. (1.64-1.65)) is then exactly generated from this 
orbitsphere-cvf as a basis element by a convolution operator comprising an autocorrelation-type 
function.  The operator comprises the convolution of each great circle current loop of the 
orbitsphere-cvf designated as the primary orbitsphere-cvf with a second orbitsphere-cvf basis 
element designated as the secondary orbitsphere-cvf.  Each secondary element is weighted 
according to the angular momentum of each great circle of a primary orbitsphere-cvf that it 
replaces by the convolution.  The uniform, equipotential charge-density function of the 
orbitsphere having only a radial discontinuous field at the surface according to Eq. (3) of 
Appendix IV is constant in time due to the motion of the current along great circles.  The current 
flowing into any given point of the orbitsphere equals the current flowing out to satisfy the 
current continuity condition, 0J∇⋅ = . 

The current-vector field pattern of the orbitsphere-cvf is not spatially uniform.  There is 
no coincidence or nonuniqueness of elements of the current-vector field.  But, there are many 
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crossings among elements at single points on the two-dimensional surface of the electron, and 
the density of the crossings is nonuniform over the surface.  Thus, each element of the basis set 
to generate the current pattern, a great circle current loop, must be one-dimensional so that the 
crossings are zero-dimensional with no element interaction at their crossing.  (This is a logical 
and necessary geometric progression for the construction of a fundamental particle which is two-
dimensional.)  In the limit, the basis set generates a continuous two-dimensional current density 
with a constant charge (mass) density wherein the crossings have no effect on the vector fields.  
Each one-dimensional element is independent of the others, and its contribution to the angular 
momentum and magnetic field independently superimposes with that of the others. 

This unique aspect of a fundamental particle has the same properties of the superposition 
properties of the electric and magnetic fields of a photon.  As shown in the Excited States of the 
One-Electron Atom (Quantization), the Creation of Matter from Energy, Pair Production, and the 
Leptons sections, the angular momentum in the electric and magnetic fields is conserved in 
excited states and in the creation of an electron from a photon in agreement with Maxwell's 
equations.  It is useful to regard an electron as a photon frozen in time.  The particle-production 
conditions are given in the latter sections. 

Thus, the electron as an indivisible fundamental particle is related to the concepts of 
current and momentum elements, but the great-circle-current-loop basis elements used in the 
Generation of the Orbitsphere-cvf in Two Steps section should be considered more 
fundamentally in terms of sources of electric and magnetic field and sources of momentum that 
in aggregates give the corresponding properties of the electron as a whole.  In fact, as shown in 
the Gravity section, all physical observables including the laws of nature and the fundamental 
constants can ultimately only be related to others and have no independent meaning .  Then, the 
basis elements of an electron are understood in terms of what they do.  The nomenclature reflects 
the analogous macroscopic sources and is adopted for convenience. 
 
GENERATION OF THE ORBITSPHERE-CVF IN TWO STEPS 
The orbitsphere spin function comprises a constant charge (current) density function with 
moving charge confined to a two-dimensional spherical shell.  The uniform magnetostatic 
current-density function 0

0 ( , )Y θ φ  of the orbitsphere spin function comprises a continuum of 
correlated orthogonal great circle current loops wherein each point charge (current) density 
element moves time harmonically with constant angular velocity nω given by Eq. (1.55). 

0
0 ( , )Y θ φ  is generated from a basis set current-vector field defined as the orbitsphere current-

vector field ("orbitsphere-cvf").  The current-density of the orbitsphere-cvf is continuous, but it 
may be modeled as a current pattern comprising a superposition of an infinite series of correlated 
orthogonal great circle current loops.  The equation of motion for each charge-density element 
(and correspondingly for each mass-density element) which gives the current pattern of the 
orbitsphere-cvf is generated in two steps, STEP ONE and STEP TWO corresponding to two 
components which are superimposed.  The time-independent current pattern is obtained by 
defining a basis set for generating the current distribution over the surface of a spherical shell of 
zero thickness.  As such a basis set, consider that the electron current is evenly distributed within 
two orthogonally linked great-circle current loops for each STEP to generate each component.  
The current pattern comprising two components is generated over the surface by the two sets of 
rotations (STEP ONE and STEP TWO) of two orthogonal great circle current loops that serve as 
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basis elements about each of the ( ), ,0x y zi i i  and 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axes, respectively, by π  

radians.  Since the two sets of linked orthogonal basis-element current loops undergo 
independent rotations over the surface, the electron current is correspondingly divided by the 
number of basis loops, four, and then by the angular span of the rotations to form a normalized 
current density.  Then, the physical properties are derived in the Spin Angular Momentum of the 
Orbitsphere with A  = 0 section and are shown to match the boundary conditions.  The vector 
projection of the corresponding angular momentum at each point of each current element is 
integrated over the entire orbitsphere-cvf surface to give the electron angular momentum.  The 
correct current pattern is confirmed by achieving the condition that the magnitude of the velocity 
at any point on the surface is given by Eq. (1.56) and by obtaining the required angular 

momentum projections of 
2
=  and 

4
=  along and the z-axis and along an axis in the xy-plane, 

respectively.  In Appendix III, the continuous uniform electron current density function 0
0 ( , )Y θ φ  

having the same angular momentum components of 
4xy =L =  and 

2z =L =  as that of the 

orbitsphere-cvf is then exactly generated from this orbitsphere-cvf as a basis element by a 
convolution operator comprising an autocorrelation-type function. 

Next, consider two infinitesimal charge (mass)-density elements at two separate positions 
or points, one and two, of the first pair of orthogonal great circle current loops that serve as the 
basis set for STEP ONE as shown in Figure 1.4.  In the basis-set reference frame at time zero, 
element one is at ' 0x = , ' 0y = , and ' nz r=  and element two is at ' nx r= , ' 0y = , and ' 0z = .  
Let element one move on a great circle counter clockwise toward the -y'-axis, and let element 
two move clockwise on a great circle toward the z'-axis, as shown in Figure 1.4.  The equations 
of motion, in the sub-basis-set reference frame are given by 
 
point one:   

 1
' 0x =  1

' sin( )n ny r tω= −  1
' cos( )n nz r tω=  (1.68a) 

 
point two:   

 2
' cos( )n nx r tω=  2

' 0y =  2
' sin( )n nz r tω=  (1.68b) 
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Figure 1.4.  Step One.  The current on the great circle in the y'z'-plane moves counter clockwise and the 
current on the great circle in the x'z'-plane moves clockwise.  Each point or coordinate position on the continuous 
two-dimensional electron orbitsphere-cvf defines an infinitesimal charge (mass)-density element which moves along 
a geodesic orbit comprising a great circle.  Two such infinitesimal charges (masses) at points one (moving counter 
clockwise (arrow) on the great circle in the y'z'-plane) and two (moving clockwise (arrow) on the great circle in the 
x'z'-plane) of two orthogonal great circle current loops in the basis frame are considered as sub-basis elements to 
generate 0

0 ( , )Y θ φ .  The xyz-system is the laboratory frame, and the orthogonal-current-loop basis set is rigid with 

respect to the x'y'z'-system that rotates about the ( ), , 0x y zi i i -axis by π  radians to generate the elements of the first 

component of the orbitsphere-cvf.  The angular momentum vector of the orthogonal great circle current loops in the 

x'y'-plane that is evenly distributed over the surface is 
2 2

=
. 

 
 

The orthogonal great circle basis set for STEP ONE is shown in Figure 1.4.  One half of 
the orbitsphere-cvf, the orbitsphere-cvf component of STEP ONE, is generated by the rotation of 
two orthogonal great circles about the ( ), ,0x y zi i i -axis by π  wherein one basis-element great 
circle initially is initially in the yz-plane and the other is in the xz-plane: 
 
Step One 

 

1 cos 1 cos sin     
2 2 2 2 2 cos' 0
1 cos 1 cos sin'           cos 0
2 2 2 2 2' sinsin
sin sin                  cos

2 2

n

n

nn

rx
y r
z rr

θ θ θ

φ
θ θ θ φ

φφ
θ θ θ

⎡ ⎤+ − −⎢ ⎥
⎛ ⎞⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = − + • +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥−⎢ ⎥⎣ ⎦  (1.69)
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The first component of the orbitsphere-cvf given by Eq. (17) can also be generated by 
each of rotating a great circle basis element initially in the yz or the xz-planes about the 
( ), ,0x y zi i i -axis by 2π  radians as shown in Figures 1.5 and 1.6, respectively.  
 
Figure 1.5.  The current pattern of the orbitsphere-cvf component of STEP ONE shown 
with 6 degree increments of θ  from the perspective of looking along the z-axis.  The yz-plane 
great circle current loop that served as a basis element that was initially in the yz-plane is shown 
as red.   

 
 
Figure 1.6.  The current pattern of the orbitsphere-cvf component of STEP ONE shown 
with 6 degree increments of θ  from the perspective of looking along the z-axis.  The great circle 
current loop that served as a basis element that was initially in the xz-plane is shown as red. 

 
 

For Step Two, consider two charge (mass)-density elements, point one and two, in the 
basis-set reference frame at time zero.  Element one is at ' 0x = , ' ny r= , and ' 0z =  and element 
two is at ' nx r= , ' 0y = , and ' 0z = .  Let element one move clockwise on a great circle toward 
the -z'-axis, and let element two move counter clockwise on a great circle toward the y'-axis as 
shown in Figure 1.7.  The equations of motion, in the basis-set reference frame are given by 
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point one:   

1
' sin cos( )

4n nx r tπ ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 1
' cos cos( )

4n ny r tπ ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 1
' sin( )n nz r tω= −  (1.70a) 

 
point two:   

 2
' cos( )n nx r tω=  2

' sin( )n ny r tω=  2
' 0z =  (1.70b) 

 
Figure 1.7.  Step Two.  The current on the great circle in the plane that bisects the x'y'-quadrant and is 
parallel to the z'-axis moves clockwise, and the current on the great circle in the x'y'-plane moves counter clockwise.  

Rotation of the great circles about the 
1 1

, ,
2 2

−
⎛ ⎞
⎜ ⎟
⎝ ⎠x y zi i i -axis by π  radians generates the elements of the second 

component of the orbitsphere-cvf.  The angular momentum vector of the orthogonal great circle current loops along 

the 
1 1

, ,
2 2

−
⎛ ⎞
⎜ ⎟
⎝ ⎠x y zi i i -axis is 

2 2

=
 corresponding to each of the z and -xy-components of magnitude 

4

=
. 

 
 

The orthogonal great circle basis set for STEP TWO is shown in Figure 1.7.  The second 
half of the orbitsphere-cvf, the orbitsphere-cvf component of STEP TWO, is generated by the 

rotation of two orthogonal great circles about the 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis by π  wherein one 

basis-element great circle is initially in the plane that bisects the xy-quadrant and is parallel to 
the z-axis and the other is in the xy-plane: 
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Step Two 

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1
1 3cos                      1 cos 2 2 sin   2 2cos 2 sin
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' 1 cos 2 2 sin   1 3cos                     2 2cos 2 sin
4 4 4
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⎜ ⎟⎡ ⎤⎢ ⎥ ⎢ ⎥
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⎢ ⎥⎜ ⎟⎢ ⎥ ⎣ ⎦⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦⎣ ⎦ ⎝ ⎠

 (1.71) 
 

The second component of the orbitsphere-cvf given by Eq. (18) can also be generated by 
each of rotating a great circle basis element that is initially in the plane that bisects the xy-

quadrant and is parallel to the z-axis or is in the xy-plane about the 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis by 

2π  radians as shown in Figures 1.8 and 1.9, respectively.  
 
Figure 1.8.  The current pattern of the orbitsphere-cvf component of STEP TWO shown 
with 6 degree increments of θ  from the perspective of looking along the z-axis.  The great circle 
current loop that served as a basis element that was initially in the plane that bisects the xy-
quadrant and was parallel to the z-axis is shown as red.   
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Figure 1.9.  The current pattern of the orbitsphere-cvf component of STEP TWO shown 
with 6 degree increments of θ  from the perspective of looking along the z-axis.  The great circle 
current loop that served as a basis element that was initially in the xy-plane is shown as red.   

 
 

The orbitsphere-cvf is given by the superposition of the components from STEP ONE 
and from STEP TWO.  Each STEP involves a unique combination of the initial and final 
directions of the primed coordinates and orientations of the angular momentum vectors due to 
the rotation of the basis-element great circles as summarized in Table 1.1.  For example, the 
angular momentum vector of STEP ONE travels in the plane perpendicular to ( ), ,0x y zi i i -axis; 
whereas, the angular momentum vector of STEP TWO is stationary since it is along the 

rotational axis, the 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis.   
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Table 1.1.  Summary of the results of the matrix rotations of the two sets of two orthogonal 
current loops to generate the orbitsphere-cvf. 

 
Step 

Initial 
Direction of 

Angular 
Momentum 
Components 

( ˆr̂ K× )a 

Final 
Direction of 
Angular 
Momentum 
Components 

( ˆr̂ K× )a 

Initial to Final 
Axis 

Transformation

 
xyL  

 
zL  

 
1 

 
x̂ , ŷ−  

 
x̂− , ŷ  

 
'
'
'

x y
y x
z z

+ → +
+ → +
+ → −

 

 
0 

 

4
=  

 
2 

 
x̂− , ẑ  

 
x̂− , ẑ  

 
'
'
'

z x
x z
y y

+ → −
+ → −
+ → −

 

 

4
=  

 

4
=  

 
Total 

    

4
=  

 

2
=  

 
a K  is the current density, r  is the polar vector of the great circle, and "^" denotes the unit vectors û ≡

u
u

. 

 
The current pattern of the orbitsphere-cvf generated by the rotations of the orthogonal 

great circle current loops is a continuous and total coverage of the spherical surface, but it is 
shown as visual representations using 6 degree increments θ  of Eqs. (1.69) and (1.71) from 
seven perspectives in Figures 1.10A-G.  In each case, the complete orbitsphere-cvf current 
pattern corresponds to all the correlated points, points one and two, of the orthogonal great 
circles shown in Figures 1.4 and 1.7 which are rotated according to Eqs. (1.69) and (1.71) where 
θ  becomes continuous rather than discrete.  The pattern also represents the momentum-vector 
field which is not equivalent to the mass (charge) density which for 0

0 ( , )Y φ θ  is uniform.  Thus, 
the patterns represent the directions of the nonuniform flow of the uniform and constant mass 
and charge distribution of 0

0 ( , )Y θ φ .  The orbitsphere-cvf serves as a basis element to exactly 
generate 0

0 ( , )Y θ φ  as given in Appendix III. 
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Figure 1.10A-C.  The current pattern of the orbitsphere-cvf shown with 6 degree 
increments of θ  from the perspective of looking along the z-axis, x-axis, and y-axis, 
respectively. 

 
 
Figure 1.10D.  The current pattern of the orbitsphere-cvf shown with 6 degree increments 
of θ  from the perspective of looking along the direction of the spherical-coordinate angles 

0.838 radθ = , 0.660 radφ =  which shows the "box view". 
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Figure 1.10E.  The current pattern of the orbitsphere-cvf shown with 6 degree increments 
of θ  from the perspective of looking along the direction of the spherical-coordinate angles 

2
πθ = , 0.0524 radφ = −  which shows the "circle view". 

 
 

Figure 1.10F.  The current pattern of the orbitsphere-cvf shown with 6 degree increments 
of θ  from the perspective of looking along the direction of the spherical-coordinate angles 

0.620 radθ = , 0.175 radφ = −  which shows the "diamond view". 
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Figure 1.10G.  The current pattern of the orbitsphere-cvf shown with 6 degree increments 
of θ  from the perspective of looking along the z-axis onto which RL , the resultant angular 
momentum vector of the xyL  and zL  components, was aligned. 

 
 
SPIN ANGULAR MOMENTUM OF THE ORBITSPHERE WITH A = 0 
As demonstrated in Figures 1.4-1.10, the orbitsphere-cvf comprising two components is 
generated over the surface by the two sets (STEP ONE and STEP TWO) of rotations of two 
orthogonal great circle current loops that serve as basis elements about each of the ( ), ,0x y zi i i  

and 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axes, respectively, by π  radians.  Next, consider two infinitesimal 

charge (mass)-density elements at two separate positions or points, one and two, of the two 
orthogonal great circle current loops that serve as the sub-basis set as shown in each of Figures 
1.4 and 1.7.  The vector projection of the corresponding angular momentum at each point of each 
current element is integrated over the entire orbitsphere-cvf surface to give the corresponding 
electron angular momentum.  The correct current pattern is confirmed by achieving the condition 
that the magnitude of the velocity at any point on the surface is given by Eq. (1.56) and by 

obtaining the required angular momentum projections of 
2
=  and 

4
=  along and the z-axis and 

along an axis in the xy-plane, respectively, to satisfy the Stern-Gerlach-experimental boundary 
condition.  

The mass density, 2
14

em
rπ

, of the orbitsphere of radius 1r  is uniform; however, the 

projections of the angular momenta of the great circle current loops of the orbitsphere onto the z-
axis and onto the xy-plane are not.  The resultant vectors can be derived by considering the 
contributions of the momenta corresponding to the two pairs of two orthogonal great circle 
current loops of Figures 1.4 and 1.7 as each basis set generates the current pattern of the 
corresponding component orbitsphere-cvf in STEP ONE and STEP TWO.  The electron current, 
and thus, the momentum is evenly distributed within the two sets of orthogonally linked great-
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circle current loops each with a mass of 
4

em .  The total sum of the magnitude of the angular 

momentum from the contributions from all of the infinitesimal points on the orbitsphere is =  

(Eq. (1.57)).  Thus, the angular momentum of each great circle is 
4
= .  The planes of the great 

circles are oriented at an angle of 
2
π  with respect to each other, and the resultant angular 

momentum is 
2 2

=  along the ( ), ,0−x y zi i i -axis and the 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis for STEPS 

ONE and TWO, respectively.  In the former case, the resultant vector rotates relative to the xyz-
coordinate system about the ( ), ,0x y zi i i -axis.  Here, the angular momenta elements are then 
divided by the angular span of the rotation to form the normalized momentum density 
corresponding to the normalized current density.  In the latter case, there is no angular 
renormalization in the determination of the projections of the resultant vector since the resultant 
vector is stationary.  Half of the angular momentum is distributed over the orbitsphere-cvf in 
Step One and the other half is distributed in Step Two. 

Consider the vector current directions shown in Figure 1.4.  During Step One, the 

resultant angular momentum vector of magnitude 
2 2

=  moves along a half a great circle in the 

plane that is parallel to the z-axis and bisects the +x-y-quadrant and the -x+y-quadrant.  The 
trajectory of the resultant angular momentum vector from the xy-plane to the z-axis and back to 
the xy-plane is shown in Figure 1.11 where the angle θ  of the resultant angular momentum 
vector from the initial xy-plane position varies from 0θ =  to θ π= .  Here it can be appreciated 
that the vector projections onto the z-axis all add positively and the vector projections into the 
xy-plane sum to zero.  With the initial direction defined as positive, the projection in the xy-

plane varies from a maximum of 
2 2

=  to zero to 
2 2

= .  The projection onto the z-axisvaries 

from zero to a maximum of 
2 2

=  to zero again.  In each case, the projection of the angular 

momentum is periodic over the angular range of θ .  The total of each projection, xyL  and zL , is 
the integral as a function of θ  of the magnitude of the resultant vector of the two orthogonal 
angular momentum component vectors corresponding to the two orthogonal great circles.  
Alternatively, the projections may be obtained by using the root-mean square, or the projections 
may be obtained using the vector integral with the consideration that the incremental momentum 
density on the spherical surface follows the relationship sindz R dθ θ=  with respect to the z-
axis, for example, as shown in Haus [14].  For the projection onto the axis in the xy-plane, cosθ  
replaces sinθ .  For any of these approaches, the angular momentum projection of each of the 

four basis-element-great-circle current loops onto the xy-plane and onto the z-axis is cos
4

θ=  and 

sin
4

θ= , respectively. 
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For Step One, the vector projection of the angular momentum onto the xy-plane is given 
by sum of the vector contributions from each great circle: 
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 (1.72) 

where each angular integral is normalized by, 
2
π , the angular range of θ .  Similarly, the vector 

projection of the angular momentum onto the z-axis as shown in Figure 1.11 is  

 

2 2

0

0

   :

1 1sin sin  
4 4 42 2 2

  :

1 sin sin sin
4 4 4

z

z
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d
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d
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 (1.73) 

where each angular integral is normalized by, π , the angular range of θ .  Thus, from the initial 

4
=  of angular momentum along each of the x and y-axes, 

4
=  canceled in the xy-plane and 

4
=  was 

projected onto the z-axis as the angular momentum was spread over one half of the surface of the 
sphere with Step One.  This matches the condition of conservation of the scalar sum of the 
angular momentum which was merely distributed over the spherical surface in the generation of 
this component of the orbitsphere-cvf. 
 
Figure 1.11.  The trajectory of the resultant angular momentum vector of the orthogonal 

great circle current loops of magnitude 
2 2

=  during Step One (gray vectors) gives 
4z =L = .  The 

resultant angular momentum vector of the orthogonal great circle current loops of magnitude 

2 2
=  of Step Two (black vector) is stationary with the projections of 

4xy =L =  and 
4z =L = . 

(c) 2005 by BlackLight Power, Inc.  All rights reserved.  



The One-Electron Atom 81

  
Consider the vector current directions shown in Figure 1.7.  During Step Two, the 

orthogonal great-circle basis set are rotated about the 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis.  The resultant 

angular momentum vector is along this axis.  Thus, the resultant angular momentum vector of 

magnitude 
2 2

=  is stationary throughout the rotations that transform the axes as given in Table 

1.1.  The resultant angular momentum component of Step Two that is transverse to the z-axis, 

xyL , is in the direction of ( ), ,0− x y zi i i  which is also the direction of the trajectory of the angular 
momentum component vectors of Step One as shown in Figure 1.11.  The resultant angular 
momentum projections are the same as the initial projections given in Figure 1.7: 

 
4xy =L =  (1.74) 

 
4z =L =  (1.75) 

The total vector projection of the angular momentum onto the xy-plane given by the sum 
of Eqs. (1.72) and (1.73) is 

 0
4 4xy = + =L = =  (1.76) 

The total vector projection of the angular momentum into the z-axis given by the sum of Eqs. 
(1.72) and (1.73) is 

 
4 4 2z = + =L = = =  (1.77) 

The trajectories of the angular momenta and the resultant projections, xyL  and zL , given 
in Table 1.1 are visually demonstrated by computer simulations [15].  These results meet the 
boundary condition for the unique current having an angular velocity magnitude at each point on 
the surface given by Eq. (1.56) and give rise to the Stern Gerlach experiment as shown infra., in 
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the Magnetic Parameters of the Electron (Bohr Magneton) section, and in the Electron g Factor 
section. 
 
EXACT GENERATION OF 0

0 ( , )Y φ θ  FROM THE ORBITSPHERE-CVF 
The further constraint that the current density is uniform such that the charge density is uniform, 
corresponding to an equipotential, minimum energy surface is satisfied by using the orbitsphere-
cvf as a basis element to generate 0

0 ( , )Y θ φ  using a convolution operator as given in Appendix 
III.  The orbitsphere-cvf comprises two components corresponding to each of STEP ONE and 
STEP TWO.  The convolution operator comprises an autocorrelation-type function that that 
treats each component defined as a primary component corresponding to STEPS ONE and TWO 
separately and results in the replacement of each great circle of the primary component 
orbitsphere-cvf with a secondary component orbitsphere-cvf of matching angular momentum, 
orientation, and phase.  The convolution is given by rotating a matched basis-element secondary 
about the same axis as that which generated the primary from the basis-element current loop to 
exactly give rise to a spherically-symmetric uniform current density.  The superposition of the 
two resulting uniform densities gives 0

0 ( , )Y θ φ .  The resulting exact uniform current distribution 

has the same angular momentum distribution, resultant, RL , and components of 
4xy =L =  and 

2z =L =  as those of the orbitsphere-cvf used as a primary basis element.  

 
CONVOLUTION OPERATOR 
As shown supra and in Appendix III, STEP TWO can also be generated by a 2π -rotation of a 

single basis-element current loop about the 1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis or a π -rotation of two 

orthogonal current loops such that the angular momentum vector is stationary on the 
1 1, ,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

x y zi i i -axis as the component orbitsphere-cvf is generated.  In the general case that 

the resultant angular momentum of each pair of orthogonal great circle current loops of the 
component orbitsphere-cvf is along the 2π -rotational axis (defined as the rotational axis which 
generates the component orbitsphere-cvf from a basis-element great circle), a secondary nth 
component orbitsphere-cvf can serve as a basis element to match the angular momentum of any 
given nth great circle of a primary component orbitsphere-cvf.  The replacement of each great 
circle of the primary orbitsphere-cvf with a secondary orbitsphere-cvf of matching angular 
momentum, orientation, and phase comprises an autocorrelation-type function that exactly gives 
rise to the spherically-symmetric current density, 0

0 ( , )Y θ φ . 
The orbitsphere-cvf comprises the superposition or sum of the components corresponding 

to STEPS ONE and STEP TWO. Thus, the convolution is performed on each component 
designated a primary component.  The convolution of a secondary component orbitsphere-cvf 
element with the each great circle current loop of each primary orbitsphere-cvf is designated as 
the convolution operator, ( ),A θ φ , given by 
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 (1.78) 

wherein (1) the secondary component orbitsphere-cvf that is matched to the basis element of the 
primary is defined by the symbol ( )2 ,O θ φ° , (2) the primary component orbitsphere-cvf of 

STEP M is defined by the symbol ( )1 ,M O θ φ° , (3) each rotated great circle of the primary 
component orbitsphere-cvf of STEP M is selected by the Dirac delta function 
( ), ',Mmδ θ θ φ φ− Δ − ; the product ( ) ( )1 , , 'M MO mθ φ δ θ θ φ φ° − Δ −  is zero except for the great 

circle at the angle Mmθ θ= Δ  about the 2π -rotational axis; each selected great circle having 

0 ' 2φ π≤ ≤  is defined by ( ), 'STEPM MGC m θ φΔ , and (4) 2

1
2 nr

 is the normalization constant  In Eq. 

(1.78), the angular momentum of each secondary component orbitsphere-cvf is equal in 
magnitude and direction as that of the current loop with which it is convolved.  Furthermore, the 
orientations and phases of the convolved elements are matched by rotating the secondary 
component orbitsphere-cvf about the appropriate principle axis (axes) and about the C∞ -axis 
along its angular momentum vector, respectively.  With the magnitude of the angular momentum 
of the secondary component orbitsphere-cvf matching that of the current loop which it replaces 
during the convolution and the loop then serving as a unit vector, the angular momentum 
resulting from the convolution operation is inherently normalized to that of the primary 
component orbitsphere-cvf. 

The convolution of a sum is the sum of the convolutions.  Thus, the convolution 
operation may be performed on each of STEP ONE and STEP TWO separately, and the result 
may be superposed in terms of the current densities and angular momenta. 
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 (1.79) 

Factoring out the secondary component orbitsphere-cvf which is a constant at each position of 
( ), 'STEPM MGC m θ φΔ  gives 
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 (1.80) 

The summation is the operator that generates the primary component orbitsphere-cvf of STEP M, 
( )1 ,M O θ φ° .  Thus, the current-density function is given by the dot product of each primary 

orbitsphere-cvf with itself.  The result is the scalar sum of the square of each of the STEP ONE 
and STEP TWO primary component orbitsphere-cvfs: 

 ( ) ( )( ) ( )( )( )2 2
1 22

1, 1 , 1 ,
2 n

A O O
r

θ φ θ φ θ φ= ° + °  (1.81) 

where the dot-product scalar is valid over the entire spherical surface.  The orbitsphere-cvf 
squared given in Eq. (1.81) is the equation of a uniform sphere.  The superposition of the 
uniform distributions from STEP ONE and STEP TWO is the exact uniform current density 
function 0

0 ( , )Y θ φ  that is an equipotential, minimum energy surface shown in Figure 1.12.  The 
angular momentum is identically that of the superposition of the component orbitsphere-cvfs of 

the primary orbitsphere-cvf, 
4xy =L =  and 

2z =L =  given by Eqs. (1.76-1.77). 

 
Figure 1.12.  The orbitsphere is a two dimensional spherical shell of zero thickness with 
the Bohr radius of the hydrogen atom, Hr a= , having angular momentum components of 

4xy =L =  and 
2z =L = . 

 
 
STEP-ONE MATRICES TO VISUALIZE THE CURRENTS OF 0

0 ( , )Y φ θ  
Consider the case that the STEP-ONE primary component orbitsphere-cvf is given by Eq. (17).  
The yz-plane great circle current loop that served as a basis element that was initially in the yz-
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plane is shown as red.  The current is counterclockwise; thus, the angular momentum is along the 
x-axis.  The secondary component orbitsphere-cvf shown in Figure 1.13 that is matched for 
angular momentum, orientation, and phase is given the matrix: 
 

 

cos              sin              0
4 4

' 0
'  sin cos          cos cos    sin  cos

4 4
' sin

sin sin     cos sin     cos
4 4

n

n

x
y r
z r

π π

π πθ θ θ φ
φ

π πθ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎡ ⎤⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 (1.82) 

 
Figure 1.13.  The current pattern of the secondary component orbitsphere-cvf given by Eq. 
(26) and shown with 6 degree increments of θ  from the perspective of looking along the z-axis.  
The great circle current loop that served as a basis element that was initially in the yz-plane is 
shown as red. 

 
 

The secondary component orbitsphere-cvf is aligned on the yz-plane and the resultant angular 
momentum vector, RL , is also along the x-axis. 

Then, the uniform current distribution is given from Eq. (23) as a infinite sum of the 
convolved elements comprising the secondary component orbitsphere-cvf given by Eq. (26) 
rotated according to Eq. (17), the matrix which generated the primary component orbitsphere-
cvf.  The resulting constant function is exact as given by Eq. (25).  A representation (Figure 
1.14) that shows the current elements can be generated by showing the basis-element secondary 
component orbitsphere-cvf as a sum of N  great circles using Eq. (26) and by showing the 
continuous convolution as a sum of M  discrete incremental rotations of the position of the 
secondary component orbitsphere-cvf about the ( ), ,0x y zi i i -axis using Eq. (23): 
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Figure 1.14.  A representation of the uniform current pattern of the 0
0 ( , )Y φ θ  orbitsphere 

shown with 30 degree increments ( 12N M= =  in Eq. (27)) of the angle to generate the 
orbitsphere current-vector field corresponding to Eq. (26) and 30 degree increments of the 
rotation of this basis element about the ( ), ,0x y zi i i -axis corresponding to Eq. (25).  The great 
circle current loop that served as a basis element that was initially in the plane along the 
( ), ,0−x y zi i i - and z-axes of each secondary component orbitsphere-cvf is shown as red.  The 
perspective is transverse to the z-axis.   

 
The similar result for STEP TWO is superimposed on that of STEP ONE wherein the uniform 
distribution is normalized as given in Appendix III. 
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RESONANT PRECESSION OF THE SPIN-1/2-CURRENT-DENSITY 
FUNCTION GIVES RISE TO THE BOHR MAGNETON 
The Stern Gerlach experiment described below demonstrates that the magnetic moment of the 
electron can only be parallel or antiparallel to an applied magnetic field.  In spherical 
coordinates, this implies a spin quantum number of 1/2 corresponding to an angular momentum 

on the z-axis of 
2
= .  However, the Zeeman splitting energy corresponds to a magnetic moment of 

Bμ  and implies an electron angular momentum on the z-axis of = —twice that given by Eq. 
(1.68-1.73).  Consider the case of a magnetic field applied to the orbitsphere.  The magnetic 
moment corresponding to the angular momentum along the z-axis results in the alignment of the 

z-axis of the orbitsphere with the magnetic field while the 
4
=  resultant vector in the xy-plane 

causes precession about the applied field.  The precession frequency is the Larmor frequency 

given by the product of the gyromagnetic ratio of the electron, 
2
e
m

, and the magnetic flux B  

[16].  The precessing electron can interact with a resonant photon that gives rise to Zeeman 
splitting—energy levels corresponding to parallel or antiparallel alignment of the electron 
magnetic moment with the magnetic field.  The energy of the transition between these states is 
that of the resonant photon.  The angular momentum of the precessing orbitsphere comprises the 

initial 
2
=  projection on the z-axis and the initial 

4
=  vector component in the xy-plane that then 

precesses about the z-axis.  As shown in the Excited States of the One-Electron Atom 
(Quantization) section, conservation of the angular momentum of the photon of =  gives rise to 
=  of electron angular momentum.  The parameters of the photon standing wave for the Zeeman 
effect are given in the Magnetic Parameters of the Electron (Bohr Magneton) section and Box 
1.2. 

The angular momentum of the orbitsphere in a magnetic field comprises the static 
2
=  

projection on the z-axis (Eq. (1.77)) and the 
4
=  vector component in the xy-plane (Eq. (1.76)) 

that precesses about the z-axis at the Larmor frequency.  A resonant excitation of the Larmor 
precession frequency gives rise to a trapped photon with =  of angular momentum along a 
precessing S -axis.  In the coordinate system rotating at the Larmor frequency (denoted by the 

axes labeled RX , RY , and RZ  in Figure 1.15), the  RX -component of magnitude 
4
=  and S  of 

magnitude =  are stationary.  The 
4
=  angular momentum along RX  with a corresponding 

magnetic moment of 
4

Bμ  (Eq. (28) of Box 1.2) causes S  to rotate in the RY RZ -plane to an angle 

of 
3
πθ =  such that the torques due to the RZ -component of 

2
=  and the orthogonal RX -

component of 
4
=  are balanced.  Then the RZ -component due to S  is cos

3 2
π

± = ±
== .  The 
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reduction of the magnitude of S  along RZ  from =  to 
2
=  corresponds to the ratio of the RX -

component and the static RZ -component of 14
2

2

=

=

=
7 .  Since the RX -component is 

4
= , the RZ -

component of S  is 
2
=  which adds to the initial 

2
=  component to give a total RZ -component of 

= . 
 

                                                 
7 The torque balance can be appreciated by considering that S is aligned with RZ  if the RX -component is zero, 

and the three vectors are mutually orthogonal if the RX -component is 
2
=

.  The balance can be shown by 

considering the magnetic energies resulting from the corresponding torques when they are balanced.  Using Eqs. 
(23) and (25) of Box 1.2, the potential energy VE  due to the projection of S's angular momentum of =  along RZ  

having 
2
=

 of angular momentum is 

 
1 1cos cos cos
2 2B BV B BE B Bμ μμ θ μ θ ω θ= = = =  (1) 

where 
B

Bμ  is the flux due to a magnetic moment of a Bohr magneton and 
Bμ

ω  is the corresponding gyromagnetic 

frequency.  The application of a magnetic moment along the RX -axis causes S  to precess about the RZ  and RX -

axes.  In the RX RY RZ -frame rotating at 
Bμ

ω , S  precesses about the RX -axis.  The corresponding precession 

energy 
RXE  of S  about the RX -component of 

4
=

 is the corresponding Larmor energy 

 
1
4R BXE μω= − =  (2) 

The energy 
RZE  of the magnetic moment corresponding to S  rotating about RZ  having 

2
=

 of angular momentum 

is the corresponding Larmor energy:  

 
1
2R BZE μω= =  (3) 

At torque balance, the potential energy is equal to the sum of the Larmor energies:  

 

1
1 1 141 cos12 4 2 2

2
R R B B BZ XE E μ μ μω ω ω θ

⎛ ⎞
⎜ ⎟⎛ ⎞+ = − = − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟
⎝ ⎠

== =  (4) 

Balance occurs when 
3
πθ = .  Thus, the intrinsic torques are balanced.  Furthermore, energy is conserved relative 

to the external field as well as the intrinsic, RZ  and RX -components of the orbitsphere, and the Larmor 
relationships for both the gyromagnetic ratio and the potential energy of the resultant magnetic moment are satisfied 
as shown in Box 1.2.  
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Figure 1.15.  The angular momentum components of the orbitsphere and S  in the rotating 
coordinate system RX , RY , and RZ  that precesses at the Larmor frequency about RZ  such that 
the vectors are stationary. 
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In summary, since the vector S  that precesses about the z-axis at an angle of 
3
πθ =  and 

an angle of 
2
πφ =  with respect to xyL  given by Eq. (1.76) and has a magnitude of = , the S  

projections in the RX RY -plane and along the RZ -axis are 

 3sin  
3 4 RY
π

⊥ = = ±S i= =  (1.84) 

 || cos  
3 2 RZ
π

= ± = ±S i==  (1.85) 

The plus or minus sign of Eqs. (1.84) and (1.85) corresponds to the two possible vector 
orientations which are observed with the Stern-Gerlach experiment described below.  The sum of 
the torques in the external magnetic field is balanced unless an RF field is applied to cause a 
Stern-Gerlach transition as discussed in Box 1.2.   
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Figure 1.16A.  The angular momentum components of the orbitsphere and S  in the 
stationary coordinate system.  S  and the components in the xy-plane precess at the Larmor 
frequency about the z-axis.   
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y
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π
3

 

 
Figure 1.16B.  The orientation of the orbitsphere and S  that has the angular momentum 
components shown in Figure 1.16A.  The applied magnetic field is in the z-axis direction.  The 
dipole-current spins about the S -axis at angular velocity nω  given by Eq. (1.55) and the 
orbitsphere and S  precess at the Larmor frequency about the z-axis. 
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As shown in Figure 1.16, S  forms a cone in time in the nonrotating laboratory frame with 
an angular momentum of =  that is the source of the known magnetic moment of a Bohr 
magneton (Eq. (28) of Box 1.2) as shown in the Magnetic Parameters of the Electron (Bohr 

Magneton) section.  The projection of this angular momentum onto the z-axis of 
2
=  adds to the z-

axis component before the magnetic field was applied to give a total of = .  Thus, in the absence 

of a resonant precession, the z-component of the angular momentum is 
2
= , but the excitation of 

the precessing S  component gives = —twice the angular momentum on the z-axis.  In addition, 
rather than a continuum of orientations with corresponding energies, the orientation of the 
magnetic moment must be only parallel or antiparallel to the magnetic field.  This arises from 
conservation of angular momentum between the "static" and "dynamic" z-axis projections of the 
angular momentum with the additional constraint that the angular momentum has a "kinetic" as 
well as a "potential" or vector potential component.  To conserve angular momentum, flux 

linkage by the electron is quantized in units of the magnetic flux quantum, 
2
h
e0Φ = , as shown in 

Box 1.2 and in the Electron g Factor section.  Thus, the spin quantum number is 
1 1;  
2 2ss m= = ± , but the observed Zeeman splitting corresponds to a full Bohr magneton due to 

=  of angular momentum.  This aspect was historically felt to be inexplicable in terms of classical 
physics and merely postulated in the past. 

The demonstration that the boundary conditions of the electron in a magnetic field are 
met appears in Box 1.2.  The observed electron parameters are explained physically.  Classical 

laws give 1.) a gyromagnetic ratio of 
2
e
m

, 2.) a Larmor precession frequency of 
2
e
m
B , 3.) the 

Stern-Gerlach experimental result of quantization of the angular momentum that implies a spin 

quantum number of 1/2 corresponding to an angular momentum of 
2
=  on the z-axis, and 4.) the 

observed Zeeman splitting due to a magnetic moment of a Bohr magneton 
2B

e

e
m

μ =
=  

corresponding to an angular momentum of =  on the z-axis.  Furthermore, the solution is 
relativistically invariant as shown in the Special Relativistic Correction to the Ionization 
Energies section.  Dirac originally attempted to solve the bound electron physically with stability 
with respect to radiation according to Maxwell's equations with the further constraints that it was 
relativistically invariant and gave rise to electron spin [17].  He was unsuccessful and resorted to 
the current mathematical probability-wave model that has many problems as discussed in 
Appendix II: Quantum Electrodynamics (QED) is Purely Mathematical and Has No Basis in 
Reality.  
 
ROTATIONAL PARAMETERS OF THE ELECTRON (ANGULAR 
MOMENTUM, ROTATIONAL ENERGY, AND MOMENT OF INERTIA) 
One result of the correlated motion along great circles is that some of the kinetic energy is not 
counted in the rotational energy.  That is, for any spin axis there will be an infinite number of 
great circles with planes passing through that axis with θ  angles other than 90° .  All points on 
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any one of these great circles will be moving, but not all of that motion will be part of the 
rotational energy; only that motion perpendicular to the spin axis will be part of the rotational 
energy.  Thus, the rotational kinetic energy will always be less than the total kinetic energy.  
Furthermore, the following relationships must hold. 

 2 21 1
2 2rotational eE I m vω= ≤  (1.86) 

 Iω ≤ =  (1.87) 
 2

eI m r≤  (1.88) 
Furthermore, it is known from the Stern-Gerlach experiment that a beam of silver atoms splits 
into two components when passed through an inhomogeneous magnetic field.  This experiment 
implies a magnetic moment of one Bohr magneton and an associated angular momentum 
quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, 
and that designation will be retained.  The angular momentum can be thought of arising from a 
spin component or equivalently an orbital component of the spin.  The z-axis projection of the 
spin angular momentum was derived in the Spin Angular Momentum of the Orbitsphere with  A  
= 0 section. 

 
2z zL Iω= = ±i =  (1.89) 

where ω is given by Eq. (1.55); so, for A  = 0 

 2 2z
e

L I
m r

= =
= =  (1.90) 

Thus, 

 
2

2
e n

z spin
m rI I= =  (1.91) 

From Eq. (1.51), 

 2
   

1
2rotational spin spinE I ω⎡ ⎤= ⎣ ⎦  (1.92) 

From Eqs. (1.55) and (1.91), 

 
2 22 2

   2 2

1 1 1
2 2 2 4 2

e n
rotational rotational spin spin

e n e n spin

m rE E I
m r m r I

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = = ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= = =  (1.93) 

When A  ≠ 0, the spherical harmonic is not a constant and the charge-density function is not 
uniform over the orbitsphere.  Thus, the angular momentum can be thought of arising from a spin 
component and an orbital component.  
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DERIVATION OF THE ROTATIONAL PARAMETERS OF THE ELECTRON 
In the derivation of Eq. (1.59) and its solution for rotationalE  (Eq. (1.60)), the moment of inertia, 
I , was assumed by McQuarrie [12] to be the moment of inertia of a point particle, 2

nmr .  
However, the correct equation of the electron is a two dimensional shell with a constant or a 
constant plus a spherical harmonic angular dependence.  In that case, the relationships given by 
Eqs. (1.86) to (1.88) must hold. 

The substitution of 1C I  for I  in the rigid rotor problem [12] where 1C  is a positive 
constant does not change the form of the previous solution given by Eq. (1.60).  However, the 
result that  

 
1
2

1 2

( 1) 1
2 1

C +⎡ ⎤= <⎢ ⎥+ +⎣ ⎦
A A

A A
 (1.94) 

derived below gives  

 ( )
( )

2

2

1
2 2 1rotationalE

I
+

=
+ +

= A A
A A

 (1.95) 

and gives the moment of inertia of the orbitsphere, orbitalI , where A  ≠ 0 as 

 ( )
( )

1
2

2
1 2

1
2 1orbital e nC I I m r

⎡ ⎤+
⎢ ⎥= =

+ +⎢ ⎥⎣ ⎦

A A
A A

 (1.96) 

The solution of Eq. (1.59) for | |L  , the magnitude of the orbital angular momentum, is [12] 
 | | ( 1)= +L = A A  (1.97) 
where I  of Eq. (1.59) is the moment of inertia of a point charge.  It is demonstrated by Eq. 
(1.57) that the total sum of the magnitudes of the angular momenta of the infinitesimal points of 
the electron orbitsphere is = ; therefore, the magnitude of the angular momentum of an electron 
orbitsphere about the z-axis must be less than = , and the corresponding moment of inertia must 
be less than that given by 2

e nm r .  For example, the moment of inertia of the uniform spherical 
shell, RSI , is [18] 

 22
3RS nI mr=  (1.98) 

Thus, Eq. (1.97) must be multiplied by a constant, 20 1C< < , to give the correct angular 
momentum.  Given that generally L  is  
 zIω=L i  (1.99) 
then 
  2 ( 1)orbital zI Cω = +i = A A , (1.100) 
where ω  is given by Eq. (1.55).  The orbital moment of inertia, orbitalI , is 

 2
2 ( 1)orbital e nI m r C= +A A  (1.101) 

The total kinetic energy, T , of the orbitsphere is 

 21
2 e nT m v=  (1.102) 

Substitution of Eq. (1.56) gives 
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2

22 e n

T
m r

=
=  (1.103) 

  rotationalE  of the rigid shell is given by Eq. (1.51) with I  given by Eq. (1.98).   orbitalrotationalE  of 
the orbitsphere is given by Eq. (1.60) multiplied by 2

2C  so that Eqs. (1.86) to (1.88) hold with 
2

e nI m r= . 

 ( )
2

2
  orbital 2 1

2rotationalE C
I

= +
= A A  (1.104) 

Eq. (1.59) can be expressed in terms of the variable x  which is substituted for cosθ .  The 
resulting function ( )P x  is called Legendre's equation and is a well-known equation in classical 
physics.  It occurs in a variety of problems that are formulated in spherical coordinates.  When 
the power series method of solution is applied to ( )P x , the series must be truncated in order that 
the solutions be finite at 1x = ± .  The solution to Legendre's equation given by Eq. (1.60) is the 
maximum term of a series of solutions corresponding to the m  and A  values [12, 19].  The 
rotational energy must be normalized by the total number of states—each corresponding to a set 
of quantum numbers of the power series solution.  As demonstrated in the Excited States of the 
One-Electron Atom (Quantization) section, the quantum numbers of the excited states are 
 2,3, 4,...n =  
 A 1,2,..., 1n= −  
 m = - A ,  – A 1,...,0,...,+ + A  
In the case of an orbitsphere excited state, each rotational state solution of Eq. (1.59) (Legendre's 
equation) corresponds to a multipole moment of the charge-density function (Eq. (1.65)).  

   orbitalrotationalE  is normalized by ,sNA , the total number of multipole moments.  ,sNA , the total 
number of multipole moments where each corresponds to an A  and mA  quantum number of an 
energy level corresponding to a principal quantum number of n  is  

 ( )
1 1

22 2
,

0 0

1 2 1 1 2 1
n n

s
m

N n
− + −

= =− =

= = + = = + = + +∑ ∑ ∑
A

A

A
A A A

A A A A  (1.105) 

Thus, 2
2C  is equal to 1

,sN −
A  given by Eq. (1.105).  Substitution of Eq. (1.105) into Eqs. (1.101) and 

(1.104) gives 

 ( )2 2 2

  orbital 2 2

1
2 2 1 2 1 2 1rotational

e n

E
I I m r

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦⎣ ⎦

A A= = A = A
A A A A

 (1.106) 

Substitution of Eq. (1.105) into Eq. (1.101) with Eqs. (1.55) and (1.101) gives the orbital 
moment of inertia and angular momentum: 

 
1
22 2

2

( 1)
2 1 1orbital e n e nI m r m r=
+⎡ ⎤= ⎢ ⎥+ + +⎣ ⎦

A A A
A A A

 (1.107a) 

 
1
22 2

2 2

( 1)
2 1 1 1z orbital z e n z e n

e n

I I m r m r
m r

ω ω ω =
+⎡ ⎤= = = =⎢ ⎥+ + + +⎣ ⎦

L i i iA A = A A=
A A A A

 (1.107b) 

In the case of the excited states, the orbitsphere charge-density function for 0≠A , Eq. (1.65), is 
the sum of two functions of equal magnitude. zL , total is given by the sum of the spin and 
orbital angular momenta.  The principal energy levels of the excited states are split when a 
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magnetic field is applied.  The energy shifts due to spin and orbital angular momenta are given in 
the Spin and Orbital Splitting section. 
 A  ≠ 0 
    z total z spin z orbitalL L L= +  (1.108) 
Similarly, the orbital rotational energy arises from a spin function (spin angular momentum) 
modulated by a spherical harmonic angular function (orbital angular momentum).  The time-
averaged mechanical angular momentum and rotational energy associated with the traveling 
charge-density wave on the orbitsphere is zero: 
  0z orbitalL =  (1.109a) 

   orbital 0rotationalE =  (1.109b) 
And, in the case of an excited state, the angular momentum of =  is carried by the fields of the 
trapped photon.  The energy and angular momentum amplitudes that couple to external magnetic 
and electromagnetic fields are given by Eq. (1.107b) and (1.106), respectively.  The rotational 
energy due to spin is given by Eq. (1.93), and the total kinetic energy is given by Eq. (1.103).  
The demonstration that the modulated orbitsphere solutions are solutions of the wave equation 
appears in Box 1.1. 
 
BOX 1.1  DERIVATION OF THE ROTATIONAL PARAMETERS OF THE 
ELECTRON FROM A SPECIAL CASE OF THE WAVE EQUATION—THE 
RIGID ROTOR EQUATION 
For a time harmonic charge-density function, Eq. (1.49) becomes 

 ( )
2 2

2 2 2 2 2
, ,

1 1sin , 0
sin sinr r

A
r r vφ θ

∂ ∂ ∂ ωθ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎛ ⎞⎛ ⎞ + + =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (1) 

Substitution of the velocity about a Cartesian coordinate axis, v ρω= , into Eq. (1) gives 

 
( )

( )
2 2

22 2 2 2
, ,

1 1sin , 0
sin sinr r

A
r rφ θ

∂ ∂ ∂ ωθ θ φ
θ ∂θ ∂θ θ ∂φ ρω

⎡ ⎤⎛ ⎞⎛ ⎞ + + =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (2) 

Substitution of Eq. (1.55) into Eq. (1.2) gives 

 ( )
22

22 2 2 2
, ,

2

1 1sin , 0
sin sin

n

r r

e n

A
r r

m r
φ θ

ωδ δ δθ θ φ
θ δθ δθ θ δφ

ρ

⎡ ⎤
⎢ ⎥

⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎛ ⎞⎝ ⎠⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=
 (3) 

Multiplication by the denominator of the second term in Eq. (3) gives 

 ( )
2 2

2
2 2 2 2 2

, ,

1 1sin , 0
sin sin n

re n r

A
m r r rφ θ

∂ ∂ ∂ρ θ ω θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

=  (4) 

Substitution of Eq. (1.51) gives 

 ( )
2 2

2 2 2 2 2
, ,

21 1sin , 0
sin sin

rot

re n r

E A
m r r r Iφ θ

∂ ∂ ∂ρ θ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

=  (5) 
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The total rotational energy is given by the superposition of A  quantum states corresponding to a 
multipole expansion of total rotational energy of the orbitsphere.  The total number, N , of 
multipole moments where each corresponds to an A  and mA  quantum number of an energy level 
corresponding to a principal quantum number of n  is  

 ( )
1 1

22 2

0 0

1 2 1 2 1 1
n n

m

N n
− + −

= =− =

= = + = + + = + =∑ ∑ ∑
A

A

A A A
A A A A  (6) 

Summing over all quantum states gives 

( )
2 21 1

2 2 2 2 2
0 0, ,

21 1sin , 0
sin sin

n n
rot

m mre n r

E A
m r r r Iφ θ

∂ ∂ ∂ρ θ θ φ
θ ∂θ ∂θ θ ∂φ

− + − +

= =− = =−

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

∑ ∑ ∑ ∑
A A

A A

A A A A

=

  (7) 
Each of the orbital energy, orbital moment of inertia, and orbital angular momentum is a 
modulation of the orbitsphere function.  Thus, the sum of 2ρ  over all A  quantum numbers is 2

nr .  
Substitution of cos ;  sin cos ;  sin sinz n x n y nr r rρ θ ρ θ φ ρ θ φ= = =  into Eq. (7) gives 

( ) ( )
2 2

2
2 2 2 2 2

, ,

21 1sin 2 1 , 0
sin sin

rot
n

re n n n r

Er A
m r r r Iφ θ

∂ ∂ ∂θ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥+ + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

= A A  

  (8) 

where 2 rotE
I

 is the constant, nω  given by Eq. (1.55), and nr r= .  Eq. (8) can be expressed in 

terms of the rotational energy of any given mode by dividing the denominator of the first term 
by, 2K , the factor corresponding to the vector projection of the rotational energy onto the z-axis. 

( ) ( )
2 2

2 22 4 2
, ,

1 1sin , 0
sin sin2 2 1 rot

re n r

I E A
m r φ θ

∂ ∂ ∂θ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎢ ⎥⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

=
A A

 (9) 

In the case that rotE  is the total rotational energy which is equal to the kinetic energy of the 
orbitsphere given by Eq. (1.103) and that the moment of inertia is given by 
 2

e nI m r=  (10) 
Eq. (9) becomes equivalent to Eq. (1.59). 

 ( )
2 2

  2 2
, ,

1 1 1sin , 0
2 sin sin rot total

r r

E A
N I φ θ

∂ ∂ ∂θ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

=  (11) 

where N  is one.  Eq. (11) applies to all of the multipole modes of the rotational energy with the 
appropriate moment of inertia, I , and factor N ; thus, the rotational energy of each mode is 
given by Eq. (1.58) with these conditions.  Eq. (9) can be expressed in terms of the rotational 
energy of any given mode by dividing the first term by, 2K , the factor corresponding to the 
vector projection of the rotational energy and the moment of inertia onto the z-axis. 

( ) ( )
2 2

2 22 4 2 2
, ,

1 1sin , 0
sin sin2 2 1 rot

re n r

I E A
m r K φ θ

∂ ∂ ∂θ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎛ ⎞⎛ ⎞ + + =⎢ ⎥⎜ ⎟⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=
A A

 (12) 

where in the case of the spherical harmonics, 2 2 1N = + +A A .  From Eq. (1.51) and Eq. (1.99), 
Eq. (12) can be expressed as 
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( ) ( )
2 2 2

2 2 22 4 2 2
, ,

1 1sin , 0
sin sin2 1 re n r

L A
Im r K φ θ

∂ ∂ ∂θ θ φ
θ ∂θ ∂θ θ ∂φ

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ + =⎢ ⎥⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

=
A A

 (13) 

In the case of the spherical harmonic functions with Eq. (1.99) and Eq. (1.55), Eq. (12) gives 

 
( )( )
( )

2

22 4 2 2

1
2 1 e ne n

L
I m rm r K

+
= =

+ +

= A A =
A A

 (14) 

Thus,  

 
( )( )

( )2

1
2 1

K
+

=
+ +

A A
A A

 (15) 

Eq. (12) becomes Eq. (11) where the rotational energy is given by Eq. (1.106). 

 ( )2

  orbital 2

1
2 2 1rotationalE

I
+⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦

A A=
A A

 (16) 

and the orbital moment of inertia is given by Eq. (1.107). 

 
1
22

2

( 1)
2 1orbital e nI m r +⎡ ⎤= ⎢ ⎥+ +⎣ ⎦

A A
A A

 (17) 

The substitution of Eqs. (1.65), (6), and (16) into Eq. (11) gives 

 ( ) ( )2 2

2 2 2

1 1
0

2 2 1 2 2 1e nI m r
+ +⎡ ⎤

− + =⎢ ⎥+ + + +⎣ ⎦

A A A A= =
A A A A

 (18) 

Substitution of Eq. (17) into Eq. (18) gives 

 
( )

( ) ( )2 2

2 2 2
2

2

1 1
0

2 1 2 2 11
2

2 1
e n

e n

m r
m r

+ +⎡ ⎤
− + =⎢ ⎥+ + + ++ ⎣ ⎦

+ +

A A A A= =
A A A AA A

A A

 (19) 

 0 0=  (20) 
Thus, the modulated orbitsphere solutions are shown to be solutions of the wave equation 

by their substitution into the wave equation (Eqs. (18-20).  The present derivation of the rigid 
rotor equation given by the substitution of  

 

2

2

1
2rot n

n
e n

n

E I

m r

v

ω

ω

ρω

=

=

=

=  (21) 

is consistent with the wave equation relationship: 

 
2

v ωλ
π

=  (22) 

Whereas, Schrödinger derivation from the Helmholtz equation [1] with the substitution of 
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e

h
m v

λ =  (23) 

gives the rigid rotor equation with the paradox that 

 2

2e

hv
m

ω
π

=  (24) 

which is not the wave relationship,  

 
2

v ωλ
π

=  (25) 
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MAGNETIC PARAMETERS OF THE ELECTRON (BOHR MAGNETON) 
 
THE MAGNETIC FIELD OF AN ORBITSPHERE FROM SPIN 
The orbitsphere with A = 0 is a shell of negative charge current comprising correlated charge 
motion along great circles.  The superposition of the vector projection of the orbitsphere angular 

momentum on the z-axis is 
2
=  with an orthogonal component of 

4
= .  As shown in the 

Orbitsphere Equation of Motion for A = 0 section, the application of a magnetic field to the 
orbitsphere gives rise to a precessing angular momentum vector S  directed from the origin of the 

orbitsphere at an angle of 
3
πθ =  relative to the applied magnetic field.  The precession of S  with 

an angular momentum of =  forms a cone in the nonrotating laboratory frame to give a 

perpendicular projection of 3
4⊥ = ±S =  (Eq. (1.84)) and a projection onto the axis of the applied 

magnetic field of 
2

= ±||S =  (Eq. (1.85)).  The superposition of the 
2
=  z-axis component of the 

orbitsphere angular momentum and the 
2
=  z-axis component of S  gives =  corresponding to the 

observed magnetostatic electron magnetic moment of a Bohr magneton.  The =  of angular 
momentum along S  has a corresponding precessing magnetic moment of 1 Bohr magneton [20]: 

 24 1
 9.274  10

2B
e

e X JT
m

μ − −= =
=  (1.110) 

The rotating magnetic field of S  is discussed in Box 1.2.  The magnetostatic magnetic field 
corresponding to Bμ  derived below is given by 

 3 ( cos sin )r
e n

e
m r θθ θ= −H i i=  for nr r<  (1.111) 
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 3 ( 2cos sin )
2 r

e

e
m r θθ θ= +H i i=  for nr r>  (1.112) 

It follows from Eq. (1.110), the relationship for the Bohr magneton, and relationship between the 
magnetic dipole field and the magnetic moment m  [21] that Eqs. (1.111) and (1.112) are the 
equations for the magnetic field due to a magnetic moment of a Bohr magneton, Bμ= zm i  where 

cos sinθθ θ= −z ri i i .  Note that the magnetic field is a constant for nr r< .  See Figure 1.17.  It is 
shown in the Magnetic Parameters of the Electron (Bohr Magneton) section that the energy 
stored in the magnetic field of the electron orbitsphere is 

 
2 2

, 2 3
1

o
mag total

e

eE
m r

πμ
=

=  (1.113) 

Figure 1.17A.  The two-dimensional cut-away representation of the magnetic field of an 
electron orbitsphere.  The field is a dipole outside the orbitsphere and uniform inside the 
orbitsphere. 
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Figure 1.17B.  The three-dimensional cut-away representation of the magnetic field of an 
electron orbitsphere.  The field is a dipole outside the orbitsphere and uniform inside the 
orbitsphere. 

 
 
DERIVATION OF THE MAGNETIC FIELD 
For convenience the angular moment vector with a magnitude in the stationary frame of =  will 
be defined as the z-axis as shown in Figure 1.178 .  The magnetic field must satisfy the following 
relationships: 

 
 H 0   in free space∇⋅ =  (1.114) 
 
   ( )a bX − =n H H K  (1.115) 
 
 ( ) 0a b⋅ − =n H H  (1.116) 
 
 ψ= −∇H  (1.117) 
 
Since the field is magnetostatic, the current is equivalent to current loops along the z-axis.  Then, 
the z-component of the current, i , for a current loop of total charge, e , oriented at an angle θ  
with respect to the z-axis is given by the product of the charge, the angular velocity given by Eq. 
(1.55), and sinθ  where the projection of the current of the orbitsphere perpendicular to the z-
axis which carries the incremental current, iφi , is a function of sinθ . 

                                                 
8 As shown in Box 1.2, the angular momentum of =  on the S -axis is due to a photon standing wave that is phase-
matched to a spherical harmonic source current, a spherical harmonic dipole ( ), sinmY θ φ θ=A  with respect to the 

S -axis.  The dipole spins about the S -axis at the angular velocity given by Eq.(1.55).  Since the field is 
magnetostatic in the RF rotating frame, the current is equivalent to current loops along the S -axis.  Thus, the 
derivation of the corresponding magnetic field is the same as that of the stationary field given in this section. 
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 2 sin
e n

ei
m r

θ=
=  (1.118) 

The angular function of the current density of the orbitsphere is normalized by the geometrical 
factor N  [18] given by 

 

( )

3

2 2

4 3
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r

n
r

rN
r z dz

π

π
−

= =

−∫
 (1.119) 

corresponding to the angular momentum of = .  (Eq. (1.119) can also be expressed in spherical 
coordinates for the density of a uniform shell divided by the integral in θ  and φ  of that of a 

spherical dipole squared [12].  The integration gives 8
3
π  which normalized by the uniform mass-

density factor of 4π  gives the geometrical factor of 
12

3

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

)  The current density iφK  along the 

z-axis having a vector orientation perpendicular to the angular momentum vector is given by 
dividing the magnitude of iφi  (Eq. (1.118)) by the length nr .  The current density of the 
orbitsphere in the incremental length dz  is 

 3 3

3( , , )
2e n e n

e ez N
m r m rφ φρ φ = =K i i= =  (1.120) 

Because 
 cosz r θ=  (1.121) 
the differential length is given by 
 sin ndz r dθ θ= −  (1.122) 
and so the current density in the differential length nr dθ  as measured along the periphery of the 
orbitsphere is a function of sinθ  as given in Eq. (1.118).  From Eq. (1.120), the surface current-
density function of the orbitsphere about the z-axis (S -axis) is given by 

 3

3( , , ) sin
2 e n

er
m rφθ ϕ θ=K i =  (1.123) 

Substitution of Eq. (1.123) into Eq. (1.115) gives  

 3

3 sin
2

a b

e n

eH H
m rθ θ θ− =

=  (1.124) 

To obtain Hθ , the derivative of Y with respect to θ  must be taken, and this suggests that the θ  
dependence of Y be taken as cosθ .  The field is finite at the origin and is zero at infinity; so, 
solutions of Laplace’s equation in spherical coordinates are selected because they are consistent 
with these conditions [22]. 

 cos
n

rC
r

θ
⎡ ⎤

Ψ = ⎢ ⎥
⎣ ⎦

 ; nr r<  (1.125) 

 
2

cosnrA
r

θ⎡ ⎤Ψ = ⎢ ⎥⎣ ⎦
 ; nr r>  (1.126) 

The negative gradients of these potentials are  
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 ( cos sin )r
n

C
r θθ θ−

= −H i i  for nr r<  (1.127) 

 
3

( 2cos sin )n
r

n

rA
r r θθ θ⎡ ⎤= +⎢ ⎥⎣ ⎦

H i i  for nr r>  (1.128) 

The continuity conditions of Eqs. (1.115), (1.116), (1.123), and (1.124) are applied to obtain the 
following relationships among the variables 

 2

n n

C A
r r
−

=  (1.129) 

 3

3
2n n e n

A C e
r r m r
− =

=  (1.130) 

Solving the variables algebraically gives the magnetic fields of an electron: 

 3 ( cos sin )r
e n

e
m r θθ θ= −H i i=       for nr r<  (1.131) 

 3 ( 2cos sin )
2 r

e

e
m r θθ θ= +H i i=     for nr r>  (1.132) 

The field is that of a Bohr magneton which matches the observed boundary conditions given in 
the Orbitsphere Equation of Motion for A = 0 section including the required spherical symmetry.  
The demonstration that the boundary conditions of the electron in a magnetic field are met 
appears in Box 1.2. 
 
DERIVATION OF THE ENERGY 
The energy stored in the magnetic field of the electron is 
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BOX 1.2.  BOUNDARY CONDITIONS OF THE ELECTRON IN A 
MAGNETIC FIELD ARE MET 
As shown in the Electron g Factor section, when a magnetic field with flux B  is applied to an 
electron in a central field which comprises current loops, the orbital radius of each does not 
change due to the Lorentzian force provided by B , but the velocity changes as follows [1]: 

 
2 e

erBv
m

Δ =  (1) 

corresponding to precession frequency of 

 
2 e

e

v eB B
r m

ω γΔ
= = =  (2) 

where eγ  is the electron gyromagnetic ratio and ω  is the Larmor frequency.  Eq. (1) applies to 
the current perpendicular to the magnetic flux.  In this case, the moment of inertia I  of the 
orbitsphere which is a uniformly charged sphere [2] is  

 2
1

2
3 eI m r=  (3) 

From Eqs. (2) and (3), the corresponding angular momentum L  and rotational energy rotE  are 

 2
1

2
3 e eL I m r Bω γ= =  (4) 

and 

 ( )22 2
1

1 1
2 3rot e eE I m r Bω γ= =  (5) 

respectively.  The change in the magnetic moment corresponding to Eq. (1) is [1]: 

 
2 2

1

4 e

e r
m

Δ = −m B  (6) 

Using Eqs. (2-6), in the case of a very strong magnetic flux of 10 T applied to atomic hydrogen: 
 11 18.794  10  secX radω −= ⋅  (7) 
 51 21.701  10  I X kg m−= ⋅  (8) 
 391.496  10  L X J s−= ⋅  (9) 
 28 96.576  10 4.104  10  rotE X J X eV− −= =  (10) 
and 
 28 11.315  10m X J T− −Δ = ⋅  (11) 
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where the radius is given by Eq. (1.239) and 2 / 3 , the geometrical factor of a uniformly charged 
sphere [2], was used in the case of Eq. (11).  Thus, these effects of the magnetic field are very 
small when they are compared to the intrinsic angular momentum of the electron of  
 341.055  10  L X J s−= = ⋅=  (12) 
The electronic angular frequency of hydrogen given by Eqs. (1.55) and (1.239) 

 16 1
1 2

1

4.134  10  sec
e

X rad
m r

ω −= = ⋅
=  (13) 

the total kinetic energy given by Eq. (1.241) 
  13.606 T eV=  (14) 
and the magnetic moment of a Bohr magneton given by Eq. (1.110) 

 24 1
 9.274  10

2B
e

e X JT
m

μ − −= =
=  (15) 

rotE  is the energy that arises due to the application of the external flux B .  Thus, the external 
work required to apply the field is also given by Eq. (10).  Since the orbitsphere is uniformly 
charged and is superconducting, this energy is conserved when the field is removed.  It is also 
independent of the direction of the magnetic moment due to the intrinsic angular momentum of 
the orbitsphere of = .  The corresponding magnetic moment given by Eq. (6) does not change 
when the intrinsic magnetic moment of the electron changes orientation.  Thus, it does not 
contribute to the energy of a spin-flip transition observed by the Stern Gerlach experiment.  It 
always opposes the applied field and gives rise to the phenomenon of the diamagnetic 
susceptibility of materials which Eq. (6) predicts with very good agreement with observations 
[1].  Eq. (6) also predicts the absolute chemical shifts of hydride ions that match experimental 
observations as shown in the Hydrino Hydride Ion Nuclear Magnetic Resonance Shift section.  

As shown in the Spin Angular Momentum of the Orbitsphere with A  = 0 section, the 

angular momentum of the orbitsphere in a magnetic field comprises the initial 
2
=  projection on 

the z-axis and the initial 
4
=  vector component in the xy-plane that precesses about the z-axis.  A 

resonant excitation of the Larmor precession frequency gives rise to an additional component of 
angular momentum which is consistent with Maxwell's equations.  As shown in the Excited 
States of the One-Electron Atom (Quantization) section, conservation of the =  of angular 
momentum of a trapped photon can give rise to =  of electron angular momentum along the S -
axis.  The photon standing waves of excited states are spherical harmonic functions which satisfy 
Laplace’s equation in spherical coordinates and provide the force balance for the corresponding 
charge (mass)-density waves.  Consider the photon in the case of the precessing electron with a 
Bohr magneton of magnetic moment along the S -axis.  The radius of the orbitsphere is 
unchanged, and the photon gives rise to current on the surface that satisfies the condition 
 0J∇⋅ =  (16) 
corresponding to a rotating spherical harmonic dipole [3] that phase-matches the current (mass) 
density of Eq. (1.123).  Thus, the electrostatic energy is constant, and only the magnetic energy 
need be considered as given by Eqs. (23-25).  The corresponding central field at the orbitsphere 
surface given by the superposition of the central field of the proton and that of the photon 
follows from Eqs. (2.10-2.17): 
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e Y Y e r r
r

ωθ φ θ φ δ
πε

⎡ ⎤= + −⎣ ⎦r yE i iA  (17) 

where the spherical harmonic dipole ( ), sinmY θ φ θ=A  is with respect to the S -axis.  Force 
balance according to Eq. (1.232) is maintained by the equivalence of the harmonic modulation of 
the charge and the mass where / ee m  is invariant as given in the Special Relativistic Correction 
to the Ionization Energies section.  The dipole spins about the S -axis at the angular velocity 
given by Eq. (1.55).  In the frame rotating about the S  axis, the electric field of the dipole is 

 ( )12 sin sin
4 o

e r r
r

θ ϕδ
πε

= − yE i  (18) 

 ( ) ( )12 sin sin cos sin sin cos
4 o

e r r
r θ φθ φ θ φ θ φ δ

πε
= + + −rE i i i  (19) 

The resulting current is nonradiative as shown by Eq. (1.39) and in Appendix I: Nonradiation 
Based on the Electromagnetic Fields and the Poynting Power Vector.  Thus, the field in the RF 
rotating frame is magnetostatic as shown in Figure 1.17 but directed along the S -axis.  The time-
averaged angular momentum and rotational energy due to the charge density wave are zero as 
given by Eqs. (1.109a) and (1.109b).  However, the corresponding time-dependent surface 
charge density σ  that gives rise to the dipole current of Eq. (1.123) as shown by Haus [4] is 
equivalent to the current due to a uniformly charged sphere rotating about the S -axis at the 
constant angular velocity given by Eq. (1.55).  The charge density is given by Gauss' law at the 
two-dimensional surface: 
 

10 0| |
nr r r rσ ε ε= == − ⋅∇Φ = − ⋅n n E  (20) 

From Eq. (19), σ  is 

 2
1

3 sin
4 2

e
r

σ θ
π

=  (21) 

and the current (Eq. (1.123) is given by the product of Eq. (21) and the constant angular 
frequency (Eq. (1.55)).  The precession of the magnetostatic dipole results in magnetic dipole 
radiation or absorption during a Stern-Gerlach transition.  The application of a magnetic field 
causes alignment of the intrinsic electron magnetic moment of atoms of a material such that the 
population of electrons parallel versus antiparallel is a Boltzmann distribution which depends on 
the temperature of the material.  Following the removal of the field, the original random-
orientation distribution is restored as is the original temperature.  The distribution may be altered 
by the application of an RF pulse at the Larmor frequency. 

The application of a magnetic field with a resonant Larmor excitation gives rise to a 
precessing angular momentum vector S  of magnitude =  directed from the origin of the 

orbitsphere at an angle of 
3
πθ =  relative to the applied magnetic field.  S  rotates about the axis 

of the applied field at the Larmor frequency.  The magnitude of the components of S  that are 

parallel and orthogonal to the applied field (Eqs (1.84-1.85)) are 
2
=  and 3

4
= , respectively.  

Since both the RF field and the orthogonal components shown in Figure 1.15 rotate at the 
Larmor frequency, the RF field that causes a Stern Gerlach transition produces a stationary 
magnetic field with respect to these components as described by Patz [5]. 
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The component of Eq. (1.85) adds to the initial 
2
=  parallel component to give a total of =  

in the stationary frame corresponding to a Bohr magneton, Bμ , of magnetic moment.  Eqs. (2) 
and (6) also hold in the case of the Stern Gerlach experiment.  Superposition holds for Maxwell's 
equations, and only the angular momentum given by Eqs. (1.68-1.73) and the source current 
corresponding to Eq. (17) need be considered.  Since it does not change, the diamagnetic 
component given from Eq. (1) does not contribute to the spin-flip transition as discussed supra.  
The potential energy of a magnetic moment m  in the presence of flux B  [6] is 
 E = ⋅m B  (22) 
The angular momentum of the electron gives rise to a magnetic moment of Bμ .  Thus, the energy 

spin
magEΔ  to switch from parallel to antiparallel to the field is given by Eq. (1.147) 

  2 2 cos 2spin
mag B BE B Bμ μ θ μ⋅Δ = = =B zi B  (23) 

In the case of an applied flux of 10 T, Eq. (23) gives 
 22 31.855  10 1.158  10spin

magE X J X eV− −Δ = =  (24) 
spin
magEΔ  is also given by Planck's equation.  It can be shown from conservation of angular 

momentum considerations (Eqs. (26-32)) that the Zeeman splitting is given by Planck's equation 
and the Larmor frequency based on the gyromagnetic ratio (Eq. (2)).  The electron's magnetic 
moment may only be parallel or antiparallel to the magnetic field rather than at a continuum of 
angles including perpendicular according to Eq. (22).  No continuum of energies predicted by 
Eq. (22) for a pure magnetic dipole are possible.  The energy difference for the magnetic moment 
to flip from parallel to antiparallel to the applied field is 
 22 32 1.855  10 1.158  10spin

magE X J X eVω − −Δ = = ==  (25) 
corresponding to magnetic dipole radiation.   

As demonstrated in the Orbitsphere Equation of Motion for A = 0 section, 
2
=  of the 

orbitsphere angular momentum designated the static component is initially parallel to the field.  

An additional 
2
=  parallel component designated the dynamic component comes from the =  of 

angular momentum along S .  The angular momentum in the presence of an applied magnetic 
field is [7] 
 ( )em e= × +L r v A  (26) 
where A  is the vector potential evaluated at the location of the orbitsphere.  The circular integral 
of A  is the flux linked by the electron.  During a Stern-Gerlach transition a resonant RF photon 
is absorbed or emitted, and the =  component along S  reverses direction.  It is shown by Eqs. 
(29-32) that the dynamic parallel component of angular momentum corresponding to the vector 
potential due to the lightlike transition is equal to the "kinetic angular momentum" ( )m×r v  of 

2
= .  Conservation of angular momentum of the orbitsphere requires that the static angular 

momentum component concomitantly flips.  The static component of angular momentum 
undergoes a spin flip, and concomitantly the "potential angular momentum" ( )e×r A  of the 
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dynamic component must change by -
2
=  due to the linkage of flux by the electron such that the 

total angular momentum is conserved.   
In spherical coordinates, the relationship between the vector potential A  and the flux B  

is 
 22 rA r Bπ π=  (27) 
Eq. (27) can be substituted into Eq. (26) since the magnetic moment m  is given [6] as 

 charge  angular momentum
2  mass

m ⋅
=

⋅
 (28) 

and the corresponding energy is consistent with Eqs. (23) and (25) in this case as follows: 

 ( ) 2
2 2 2

B

e e

ee e
m m

μ×
Δ = − = =

r Am

=

 (29) 

The boundary condition that the angular momentum is conserved is shown by Eqs. 
(1.144-1.146).  It can be shown that Eq. (29) is also consistent with the vector potential along the 
axis of the applied field [8] given by  

 0 02 2

1cos sin sin
3 2 2 2e e

e e
m r m rφ φ

π μ θ μ θ= =A i i= =  (30) 

Substitution of Eq. (30) into Eq. (29) gives 

 
0 2 2
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1( sin )
2 2 1

2 2 2 2
e

e e e

ee e
m r e e
m m r m

φμ θ
μ

×
⎡ ⎤

Δ = − = − ⎢ ⎥
⎣ ⎦

r i
m

=
=  (31) 

with the geometrical factor of 2 / 3  [2] and the current given by Eq. (1.123).  Since k  is the 
lightlike 0k , then /nk cω=  corresponding to the RF photon field.  The relativistic corrections of 
Eq. (31) are given by Eqs. (1.229) and (1.230) and the relativistic radius cr = �  given by Eq. 
(1.228).  The relativistically corrected Eq. (31) is 

 ( )
2

1 0

0

1 2
2 2 2 2

B

e e

e e
m a m
μ μπα
α

− ⎡ ⎤
Δ = − =⎢ ⎥

⎣ ⎦
m =  (32) 

The magnetic flux of the electron is given by 
 ∇× =A B  (33) 
Substitution of Eq. (30) into Eq. (33) gives 1/2 the flux of Eq. (1.132). 

From Eq. (28), the 
2
=  of angular momentum before and after the field is applied 

corresponds to an initial magnetic moment on the applied-field-axis of 
2

Bμ .  After the field is 

applied, the contribution of 
2

Bμ  from Eq. (29) with Eq. (27) gives a total magnetic moment along 

the applied-field-axis of Bμ , a Bohr magneton, wherein the additional contribution (Eq. (28)) 
arises from the angular momentum of =  on the S -axis.  Thus, even though the magnitude of the 
vector projection of the angular momentum of the electron in the direction of the magnetic field 
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is 
2
= , the magnetic moment corresponds to =  due to the 

2
=  contribution from the dynamic 

component, and the quantized transition is due to the requirement of angular momentum 
conservation as given by Eq. (28). 

Eq. (22) implies a continuum of energies; whereas, Eq. (29) shows that the static-kinetic 

and dynamic vector potential components of the angular momentum are quantized at 
2
= .  

Consequently, as shown in the Electron g Factor section, the flux linked during a spin transition 
is quantized as the magnetic flux quantum:  

 
2
h
e0Φ =  (34) 

Only the states corresponding to  

 1
2sm = ±  (35) 

are possible due to conservation of angular momentum.  It is further shown using the Poynting 
power vector with the requirement that flux is linked in units of the magnetic flux quantum, that 
the factor 2 of Eqs. (23) and (25) is replaced by the electron g factor.   
 Thus, in terms of flux linkage, the electron behaves as a superconductor with a weak link 
[9] as described in the Josephson Junction, Weak Link section and the Superconducting 
Quantum Interference Device (SQUID) section.  Consider the case of a current loop with a weak 
link comprising a large number of superconducting electrons (e.g. 1010 ).  As the applied field 
increases, the Meissner current increases.  In equilibrium, a dissipationless supercurrent can flow 
around the loop driven by the difference between the flux Φ  that threads the loop and the 
external flux xΦ  applied to the loop.  Based on the physics of the electrons carrying the 
supercurrent, when the current reaches the critical current, the kinetic angular momentum change 

of 
2
=  equals the magnitude of the potential angular momentum change corresponding to the 

vector potential according to Eqs. (26) and (31).  As a consequence, the flux is linked in units of 
the magnetic flux quantum as shown in the Electron g Factor section. 
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ELECTRON G FACTOR 
As demonstrated by Purcell [16], when a magnetic field is applied to an electron in a central field 
which comprises a current loop, the orbital radius does not change, but the velocity changes as 
follows: 

 
2 e

erBv
m

Δ =  (1.142) 

This corresponds to diamagnetism and gives rise to precession with a corresponding resonance 
as shown in Box 1.2.  The angular momentum in the presence of an applied magnetic field is 
[16] 
 ( )em e= × +L r v A  (1.143) 
where A  is the vector potential evaluated at the location of the orbitsphere.  Conservation of 
angular momentum of the orbitsphere permits a discrete change of its "kinetic angular 

momentum" ( )m×r v  with respect to the field of 
2
= , and concomitantly the "potential angular 

momentum" ( )e×r A  must change by 
2

−
= .  The flux change, φ , of the orbitsphere for nr r<  is 

determined as follows [16]: 

 
2

eΔ = − ×L r A=  (1.144) 

 2 ˆ
2 2

e rA zπ
π

⎡ ⎤= −⎢ ⎥⎣ ⎦
=  (1.145) 

 ˆ
2 2

e zφ
π

⎡ ⎤= −⎢ ⎥⎣ ⎦
=  (1.146) 

In order that the change in angular momentum, ΔL , equals zero, φ  must be 
2
h
e0Φ = , the 

magnetic flux quantum.  Thus, to conserve angular momentum in the presence of an applied 
magnetic field, the orbitsphere magnetic moment can be parallel or antiparallel to an applied 
field as observed with the Stern-Gerlach experiment, and the flip between orientations is 
accompanied by the "capture" of the magnetic flux quantum by the orbitsphere "coils" 
comprising infinitesimal loops of charge moving along geodesics (great circles).  A 
superconducting loop with a weak link also demonstrates this effect [23]. 

The energy to flip the orientation of the orbitsphere due to its magnetic moment of a Bohr 
magneton, Bμ , is  
 2spin

mag BE BμΔ =  (1.147) 
where  

 
2B

e

e
m

μ =
=  (1.148) 

During the spin-flip transition, power must be conserved.  Power flow is governed by the 
Poynting power theorem, 

 1 1( )
2 2o ot t

∂ ∂μ ε
∂ ∂

⎡ ⎤ ⎡ ⎤∇• × = − • − • − •⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
E H H H E E J E  (1.149) 
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STORED MAGNETIC ENERGY 
Energy superimposes; thus, the calculation of the spin-flip energy is determined as a sum of 
contributions.  The energy change corresponding to the "capture" of the magnetic flux quantum 
is derived below.  From Eq. (1.140) for one electron, 

 
2 2

0
2 3

1
2 ( )

fluxon
o mag

e n

eE
m r
πμμ • = =H H =  (1.150) 

is the energy stored in the magnetic field of the electron.  The orbitsphere is equivalent to a 
Josephson junction which can trap integer numbers of fluxons where the quantum of magnetic 

flux is 
2
h
e0Φ = .  Consider Eq. (1.150).  During the flip transition a fluxon treads the orbitsphere 

at the speed of light; therefore, the radius of the orbitsphere in the lab frame is 2π  times the 
relativistic radius in the fluxon frame as shown in the Special Relativistic Correction to the 
Ionization Energies section.  Thus, the energy of the transition corresponding to the "capture" of 
a fluxon by the orbitsphere, fluxon

magE , is 
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e n

e
m r A
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π

0Φ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1.153) 

where A  is the area and 0Φ  is the magnetic flux quantum. 

 
2

22
2 4

fluxon o
mag B

e n

eE B
m r
μ μ

π
⎡ ⎤ 1

= ⎢ ⎥
⎣ ⎦

 (1.154) 

where the nth fluxon treading through the area of the orbitsphere is equivalent to the applied 
magnetic flux.  Furthermore, the term in brackets can be expressed in terms of the fine structure 
constant, α , as follows: 

 
2 2

2 2
o o

e n e n

e e cv
m r m vr c
μ μ

=  (1.155) 

Substitution of Eq. (1.47) gives 

 
2 2

2 2
o o

e n

e e cv
m r c
μ μ

=
=

 (1.156) 

Substitution of  

 1

o o

c
ε μ

=  (1.157) 

and 

 
2

2
oe c
h

μα =  (1.158) 

gives  
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2

2
2

oe cv v
c c

μ πα=
=

 (1.159) 

The fluxon treads the orbitsphere at v c=  ( k  is the lightlike 0k , then /nk cω= ).  Thus, 

 2
2

fluxon
mag BE Bα μ

π
=  (1.160) 

 
STORED ELECTRIC ENERGY 
The superposition of the vector projection of the orbitsphere angular momentum on the z-axis is 

2
=  with an orthogonal component of 

4
= .  Excitation of a resonant Larmor precession gives rise to 

=  on an axis S  that precesses about the spin axis at an angle of 
3
πθ = .  S  rotates about the z-

axis at the Larmor frequency.  ⊥S , the transverse projection, is 3
4

± =  (Eq. (1.84)), and ||S , the 

projection onto the axis of the applied magnetic field, is 
2

±
=  (Eq. (1.85)).  As shown in the Spin 

Angular Momentum of the Orbitsphere with A  = 0 section, the superposition of the 
2
=  z-axis 

component of the orbitsphere angular momentum and the 
2
=  z-axis component of S  gives =  

corresponding to the observed electron magnetic moment of a Bohr magneton, Bμ .  The 
reorientation of S  and the orbitsphere angular momentum from parallel to antiparallel to the 
magnetic field applied along the z-axis gives rise to a current.  The current is acted on by the flux 
corresponding to 0Φ , the magnetic flux quantum, linked by the electron during the transition 
which gives rise to a Hall voltage.  The electric field corresponding to the Hall voltage 

corresponds to the electric power term, 1
2 ot

δ ε
δ

⎡ ⎤•⎢ ⎥⎣ ⎦
E E , of the Poynting power theorem (Eq. 

(1.149)).  
Consider a conductor in a uniform magnetic field and assume that it carries a current 

driven by an electric field perpendicular to the magnetic field.  The current in this case is not 
parallel to the electric field, but is deflected at an angle to it by the magnetic field.  This is the 
Hall Effect, and it occurs in most conductors. 

A spin-flip transition is analogous to Quantum Hall Effect given in the corresponding 
section wherein the applied magnetic field quantizes the Hall conductance.  The current is then 
precisely perpendicular to the magnetic field, so that no dissipation (that is no ohmic loss) 
occurs.  This is seen in two-dimensional systems, at cryogenic temperatures, in quite high 
magnetic fields.  Furthermore, the ratio of the total electric potential drop to the total current, the 
Hall resistance, HR , is precisely equal to 

 2H
hR

ne
=

 
(1.161) 

The factor n  is an integer in the case of the Integral Quantum Hall Effect, and n  is a small 
rational fraction in the case of the Fractional Quantum Hall Effect.  In an experimental plot [24] 
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as the function of the magnetic field, the Hall resistance exhibits flat steps precisely at these 
quantized resistance values; whereas, the regular resistance vanishes (or is very small) at these 
Hall steps.  Thus, the quantized Hall resistance steps occur for a transverse superconducting 
state. 

Consider the case that an external magnetic field is applied along the x-axis to a two 
dimensional superconductor in the yz-plane which exhibits the Integral Quantum Hall Effect.  
(See Figure 1.18.)  Conduction electrons align with the applied field in the x direction as the field 
permeates the material.  The normal current carrying electrons experience a Lorentzian force, 

LF , due to the magnetic flux.  The y-directed Lorentzian force on an electron having a velocity 
v  in the z direction by an x-directed applied flux, B , is 
 L e= ×F v B  (1.162) 
The electron motion is a cycloid where the center of mass experiences an ×E B  drift [25].  
Consequently, the normal Hall Effect occurs.  Conduction electron energy states are altered by 
the applied field and by the electric field corresponding to the Hall Effect.  The electric force, 

HF , due to the Hall electric field, yE , is 
 H ye=F E  (1.163) 
When these two forces are equal and opposite, conduction electrons propagate in the z direction 
alone.  For this special case, it is demonstrated in Jackson [25] that the ratio of the corresponding 
Hall electric field HE  and the applied magnetic flux is  

 HE B v=
 

(1.164) 
where v  is the electron velocity.  And, it is demonstrated in the Integral Quantum Hall Effect 
section that the Hall resistance, HR , in the superconducting state is given by 

 2H
hR

ne
=

 
(1.165) 

where n  is an integer. 
 
Figure 1.18.  Coordinate system of crossed electric field, yE , corresponding to the Hall 
voltage, magnetic flux, xB , due to applied field, and superconducting current zi . 

y

x

i 

B  

E
z

 
 

Consider the case of the spin-flip transition of the electron.  In the case of an exact 
balance between the Lorentzian force (Eq. (1.162)) and the electric force corresponding to the 
Hall voltage (Eq. (1.163)), each superconducting point mass of the electron propagates along a 
great circle where  

 
E B v=

 
(1.166) 

where v  is given by Eq. (1.47).  Substitution of Eq. (1.47) into Eq. (1.166) gives 
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 e

E B
m r

=
=

 
(1.167) 

Eq. (1.157) is the condition for superconductivity in the presence of crossed electric and 
magnetic fields.  The electric field corresponding to the Hall voltage corresponds to the electric 
energy term, eleE , of the Poynting power theorem (Eq. (1.149)). 

 
12

2

0 0 0

1 sin
2

r

ele oE r drd d
π π

ε θ θ φ= •∫ ∫ ∫ E E  (1.168) 

The electric term for this superconducting state is derived as follows using the coordinate system 
shown in Figure 1.19. 
 
Figure 1.19.  Coordinate system of crossed electric field, rE , corresponding to the Hall 
voltage, magnetic flux, θB , due to applied field, and superconducting current φi . 

 
The current is perpendicular to rE , thus there is no dissipation.  This occurs when 

 e e= ×E v B   (1.169) 
or 
 E B v=  (1.170) 
The electric field corresponding to the Hall voltage is 
 = ×E v B   (1.171) 
Substitution of Eq. (1.171) into Eq. (1.168) gives 

 ( )
12

2 2

0 0 0

1 sin
2

r

ele oE vB r drd d
π π

ε θ θ φ= ∫ ∫ ∫  (1.172) 

The spin flip transition may be induced by the absorption of a resonant photon.  The velocity is 
determined from the distance traversed by each point and the time of the transition due to capture 
of a photon resonant with the spin-flip transition energy.  The current φi  corresponding to the 
Hall voltage and rE  is given by the product of the electron charge and the frequency f  of the 
photon where the correspondence principle holds as given in the Photon Absorption section. 
 i ef=  (1.173) 
The resistance of free space for the propagation of a photon is the radiation resistance of free 
space, η . 

 0

0

μη
ε

=  (1.174) 

The power rP  of the electron current induced by the photon as it transitions from free space to 
being captured by the electron is given by the product of the corresponding current and the 
resistance R  which is given by Eq. (1.174). 
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 2
rP i R=  (1.175) 

Substitution of Eq. (1.173) and Eq. (1.174) gives 

 2 2 0

0
rP e f μ

ε
=  (1.176) 

It follows from the Poynting power theorem (Eq. (1.149)) with spherical radiation that the 
transition time τ  is given by the ratio of the energy and the power of the transition [26].   

 energy
power

τ =  (1.177) 

The energy of the transition which is equal to the energy of the resonant photon is given by 
Planck's equation. 
 E hfω= ==  (1.178) 
Substitution of Eq. (1.176) and Eq. (1.178) into Eq. (1.177) gives 

 
2 2 0

0

hf

e f
τ

μ
ε

=  (1.179) 

The distance A  traversed by the electron with an kinetic angular momentum change of 
2
=  is  

 2
2 2

rπ λ
= =A  (1.180) 

where the wavelength is given by Eq. (1.43).  The velocity is given by the distance traversed 
divided by the transition time.  Eq. (1.179) and Eq. (1.180) give 

 

20

0

2 2 0

0

/ 2 / 2
2

e
v fhf h

e f

μ
ελ λ λ

τ
μ
ε

= = =  (1.181) 

The relationship for a photon in free space is 
 c fλ=  (1.182) 
As shown in the Unification of Spacetime, the Forces, Matter, and Energy section, the fine 
structure constant given by Eq. (1.158) is the dimensionless factor that corresponds to the 
relativistic invariance of charge. 

 

0
22

00 0

0
2

1 1
4 2 2

e ce
h h
e

μ
εμ μα

π ε
= = =

=
 (1.183) 

It is equivalent to one half the ratio of the radiation resistance of free space, 0

0

μ
ε

, and the hall 

resistance, 2

h
e

.  The radiation resistance of free space is equal to the ratio of the electric field and 
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the magnetic field of the photon (Eq. (4.10)).  Substitution of Eq. (1.182) and Eq. (1.183) into 
Eq. (1.181) gives 
 v cα=  (1.184) 
Substitution of Eq. (1.184) into Eq. (1.172) gives 

 ( )
12

2 2
0

0 0 0

1 sin
2

r

ele oE c H r drd d
π π

ε α μ θ θ φ= ∫ ∫ ∫  (1.185) 

where 
 0B Hμ=  (1.186) 
The relationship between the speed of light, c , and the permittivity of free space, 0ε , and the 
permeability of free space, 0μ , is 

 
0 0

1c
μ ε

=  (1.187) 

Thus, Eq. (1.185) may be written as 

 
12

2 2 2
0

0 0 0

1 sin
2

r

eleE H r drd d
π π

α μ θ θ φ= ∫ ∫ ∫  (1.188) 

Substitution of Eq. (1.136) gives 

 
2 2

2 0
2 3

1

2
3ele

e

eE
m r

πμα= =  (1.189) 

The magnetic flux, B , is quantized in terms of the Bohr magneton because the electron links 
flux in units of the magnetic flux quantum, 

 0 2
h
e

Φ =  (1.190) 

Substitution of Eqs. (1.150-1.160) gives 

 222
3 2ele BE Bαα μ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1.191) 

 
DISSIPATED ENERGY 
The •J E  energy over time is derived from the electron current corresponding to the Larmor 
excitation and the electric field given by Faraday's law due to the linkage of the magnetic flux of 
the fluxon during the spin-flip.  Consider the electron current due the external field.  The 
application of a magnetic field with a resonant Larmor excitation gives rise to a precessing 
angular momentum vector S  of magnitude =  directed from the origin of the orbitsphere at an 

angle of 
3
πθ =  relative to the applied magnetic field.  As given in the Spin Angular Momentum 

of the Orbitsphere with A = 0 section, S  rotates about the axis of the applied field at the Larmor 
frequency.  The magnitude of the components of S  that are parallel and orthogonal to the 

applied field (Eqs (1.84-1.85)) are 
2
=  and 3

4
= , respectively.  Since both the RF field and the 

orthogonal components shown in Figure 1.15 rotate at the Larmor frequency, the RF field that 
causes a Stern Gerlach transition produces a stationary magnetic field with respect to these 
components as described in Box 1.2.  The corresponding central field at the orbitsphere surface 

(c) 2005 by BlackLight Power, Inc.  All rights reserved.  



The One-Electron Atom 117

given by the superposition of the central field of the proton and that of the photon follows from 
Eqs. (2.10-2.17) and Eq. (17) of Box 1.2: 

 ( ) ( ){ } ( )0
0 12 , Re ,

4
ni tm

o

e Y Y e r r
r

ωθ φ θ φ δ
πε

⎡ ⎤= + −⎣ ⎦r yE i iA  (1.192) 

where the spherical harmonic dipole ( ), sinmY θ φ θ=A  is with respect to the S -axis.  The dipole 
spins about the S -axis at the angular velocity given by Eq. (1.55).  The resulting current is 
nonradiative as shown by Eq. (1.39) and in Appendix I: Nonradiation Based on the 
Electromagnetic Fields and the Poynting Power Vector.  Thus, the field in the RF rotating frame 
is magnetostatic as shown in Figure 1.17 but directed along the S -axis.  Thus, the corresponding 
current given by Eq. (1.123) is 

 3

3( , , ) sin
2 e n

ez
m r φρ φ θ=K i=  (1.193) 

Next consider the Faraday's equation for the electric field  

 0
C S

dd d
dt

μ• = − •∫ ∫E s H av  (1.194) 

As demonstrated by Purcell [16], the velocity of the electron changes according to Lenz's law, 
but the change in centrifugal force is balanced by the change in the central field due to the 
applied field.  The magnetic flux of the electron given by Eq. (1.131) is 

 0
0 3

1

( cos sin )r
e

e
m r θ
μμ θ θ= = −B H i i=       for nr r<  (1.195) 

From Eq. (1.160), the magnetic flux B •J E  of the fluxon is 

 0 0
3 3

1 1

( cos sin )
2 2r z

e e

e e
m r m rθ
μ μα αθ θ

π π• = − =J EB i i i= =  (1.196) 

The electric field E  is constant about the line integral of the orbitsphere.  Using Eq. (1.194) with 
the change in flux in units of fluxons along the z-axis given by Eq. (1.196) gives 

 
1 1
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2
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 (1.198) 

Substitution of Eq. (1.196) into Eq. (1.198) gives 

 2 0
1 1 3

1

2 
3 2 e

er r
m r t φ
μαπ π

π
= −

Δ
E i=  (1.199) 

 0
1

1

2 
3 2 e

er
m r t φ
μαπ π

π
= −

Δ
E i=  (1.200) 

Thus, 
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 0
2

1

2
3 2 e

e
m r t φ
μα

π
= −

Δ
E i=  (1.201) 

The dissipative power density •E J  can be expressed in terms of the surface current density K  
as 
 ( ) ( )

V S

tdv tda• Δ = • Δ∫ ∫E J E K  (1.202) 

Using the electric field from Eq. (1.201) and the current density from Eq. (1.193) gives 
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=
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=
 (1.203) 

Substitution of Eqs. (1.150-1.160) into Eq. (1.203) gives 

 ( )
242

3 2 B
V

tdv Bα μ
π

⎛ ⎞⎛ ⎞• Δ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫ E J  (1.204) 

 
TOTAL ENERGY OF SPIN-FLIP TRANSITION 
The principal energy of the transition corresponding to a reorientation of the orbitsphere is given 
by Eq. (1.147).  And, the total energy of the flip transition is the sum of Eq. (1.147), and Eqs. 
(1.160), (1.191), and (1.204) corresponding to the electric energy, the magnetic energy, and the 
dissipated energy of a fluxon treading the orbitsphere, respectively.  

 
2

22 42 1
2 3 2 3 2

spin
mag BE Bα α αα μ

π π π
⎛ ⎞⎛ ⎞ ⎛ ⎞Δ = + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (1.205) 

 spin
mag BE g BμΔ =  (1.206) 

where the stored magnetic energy corresponding to the 1
2 ot

∂ μ
∂

⎡ ⎤•⎢ ⎥⎣ ⎦
H H  term increases, the 

stored electric energy corresponding to the 1
2 ot

∂ ε
∂

⎡ ⎤•⎢ ⎥⎣ ⎦
E E  term increases, and the •J E  term is 

dissipative.  The magnetic moment of Eq. (1.147) is twice that from the gyromagnetic ratio as 
given by Eq. (28) of Box 1.2.  The magnetic moment of the electron is the sum of the component 

corresponding to the kinetic angular momentum, 
2
= , and the component corresponding to the 

vector potential angular momentum, 
2
= , (Eq. (1.143).  The spin-flip transition can be considered 

as involving a magnetic moment of g  times that of a Bohr magneton.  The g  factor is 
redesignated the fluxon g  factor as opposed to the anomalous g  factor, and it is given by Eq. 
(1.205). 
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22 41
2 2 3 2 3 2
g α α αα

π π π
⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟
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 (1.207) 
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For 1 137.03604(11)α − =  [27]  

 1.001  159  652  120
2
g
=  (1.208) 

The experimental value [28] is  

 1.001  159  652  188(4)
2
g
=  (1.209) 

The calculated and experimental values are within the propagated error of the fine structure 
constant.  Different values of the fine structure constant have been recorded from different 
experimental techniques, and 1α−  depends on a circular argument between theory and 
experiment [29].  One measurement of the fine structure constant based on the electron g  factor 
is 1 137.036006(20)

egα − =  [30].  This value can be contrasted with equally precise measurements 
employing solid state techniques such as those based on the Josephson effect [31] 
( 1 137.035963(15)Jα − = ) or the quantized Hall effect [32] ( 1 137.035300(400)Hα

− = ).  A method of 
the determination of 1α−  that depends on the circular methodology between theory and 
experiment to a lesser extent is the substitution of the independently measured fundamental 
constants 0μ , e , c , and h  into Eq. (1.183).  The following values of the fundamental constants 
are given by Weast [27]  
 7 14   10o X Hmμ π − −=  (1.210) 
 191.6021892(46)  10e X C−=  (1.211) 
 8 12.99792458(12)  10c X ms−=  (1.212) 
 34 16.626176(36)  10h X JHz− −=  (1.213) 
For these constants,  
 1 137.03603(82)α − =  (1.214) 
Substitution of the 1α−  from Eq. (1.214) into Eq. (1.207) gives 

 1.001  159  652  137
2
g
=  (1.215) 

The experimental value [28] is  

 1.001  159  652  188(4)
2
g
=  (1.216) 

Conversely, the fine structure calculated for the experimental 
2
g  and Eq. (1.207) is 

1 137.036 032 081α − = . 

The postulated QED theory of 
2
g  is based on the determination of the terms of a 

postulated power series in /α π  where each postulated virtual particle is a source of postulated 
vacuum polarization that gives rise to a postulated term.  The algorithm involves scores of 
postulated Feynman diagrams corresponding to thousands of matrices with thousands of 
integrations per matrix requiring decades to reach a consensus on the "appropriate" postulated 
algorithm to remove the intrinsic infinities.  The solution so obtained using the perturbation 
series further requires a postulated truncation since the series diverges.  The remarkable 
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agreement between Eqs. (1.215) and (1.216) demonstrates that 
2
g  may be derived in closed form 

from Maxwell's equations in a simple straightforward manner that yields a result with eleven 
figure agreement with experiment—the limit of the experimental capability of the measurement 
of the fundamental constants that determine α .  In Appendix II: Quantum Electrodynamics is 
Purely Mathematical and Has No Basis in Reality, the Maxwellian result is contrasted with the 
QED algorithm of invoking virtual particles, zero point fluctuations of the vacuum, and negative 
energy states of the vacuum.  Rather than an infinity of radically different QED models, an 
essential feature is that Maxwellian solutions are unique.   

The muon, like the electron, is a lepton with =  of angular momentum.  The magnetic 
moment of the muon is given by Eq. (1.147) with the electron mass replaced by the muon mass.  
It is twice that from the gyromagnetic ratio as given by Eq. (2.65) of the Orbital and Spin 
Splitting section corresponding to the muon mass.  As is the case with the electron, the magnetic 
moment of the muon is the sum of the component corresponding to the kinetic angular 

momentum, 
2
= , and the component corresponding to the vector potential angular momentum, 

2
= , 

(Eq. (1.143).  The spin-flip transition can be considered as involving a magnetic moment of g  
times that of a Bohr magneton of the muon.  The g  factor is equivalent to that of the electron 
given by Eq. (1.207). 

The muon anomalous magnetic moment has been measured in a new experiment at 
Brookhaven National Laboratory (BNL) [33].  Polarized muons were stored in a superferric ring, 
and the angular frequency difference aω  between the spin precession and orbital frequencies was 
determined by measuring the time distribution of high-energy decay positrons.  The dependence 
of aω  on the magnetic and electric fields is given by BMT equation which is the relativistic 
equation of motion for spin in uniform or slowly varying external fields [34].  The dependence 
on the electric field is eliminated by storing muons with the “magic” 29.3γ = , which 
corresponds to a muon momentum 3.09 /p GeV c= .  Hence measurement of aω  and of B  
determines the anomalous magnetic moment. 

The “magic” γ  wherein the contribution to the change of the longitudinal polarization by 
the electric quadrupole focusing fields are eliminated occurs when  

 1 0
2

gμ β
β

− =  (1.217) 

where gμ  is the muon g  factor which is required to be different from the electron g  factor in 
the standard model due to the dependence of the mass dependent interaction of each lepton with 
vacuum polarizations due to virtual particles.  For example, the muon is much heavier than the 
electron, and so high energy (short distance) effects due to strong and weak interactions are more 
important here [30].  The BNL Muon (g-2) Collaboration [33] used a “magic” 29.3γ =  which 

satisfied Eq. (1.217) identically for 
2

gμ ; however, their assumption that this condition eliminated 

the affect of the electrostatic field on aω  is flawed as shown in Appendix IV: Muon g Factor.  

Internal consistency was achieved during the determination of 
2

gμ  using the BMT equation with 
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the flawed assumption that 
2 2

eg gμ ≠ .  The parameter measured by Carey et al. [33] 

corresponding to 
2

gμ  was the sum of a finite electric term as well as a magnetic term.  The 

calculated result based on the equivalence of the muon and electron g  factors 

 1.001 165 923
2

gμ =  (1.218) 

is in agreement with the result of Carey et al. [33]: 

 ( )1.001 165 925 15
2

gμ =  (1.219) 

Rather than indicating an expanded plethora of postulated super-symmetry virtual 
particles which make contributions such as smuon-neutralino and sneutrino-chargino loops as 

suggested by Brown et al. [35], the deviation of the experimental value of 
2

gμ  from that of the 

standard model prediction simply indicates that the muon g  factor is equivalent to the electron 
g  factor. 
 
DETERMINATION OF ORBITSPHERE RADII 
The one-electron  orbitsphere is a spherical shell of negative charge (total charge = e− ) of zero 
thickness at a distance nr  from the nucleus of charge Ze+ .  It is well known that the field of a 
spherical shell of charge is zero inside the shell and that of a point charge at the origin outside 
the shell [36].  See Figure 1.20. 
 
Figure 1.20.  The electric fields of a proton, a bound electron, and a hydrogen atom 
corresponding to a minimum energy and no electron self interaction where the bubble-like 
geometry of the orbitsphere requires the central field of the proton.  

 
 
Thus, for a nucleus of charge Z , the force balance equation for the electron orbitsphere is 
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obtained by equating the forces on the mass and charge densities.  For the ground state, 1n = , 
the centrifugal force of the electron is given by   

 
2

1
2

1 14
e

centrifugal
m

r rπ
=

vF  (1.220) 

where 2
14

em
rπ

 is the mass density of the orbitsphere.  The centripetal force is the electric force, 

eleF , between the electron and the nucleus. 

 2 2
1 14 4ele

o

e Ze
r rπ πε

=F  (1.221) 

where oε  is the permittivity of free-space.   
The second centripetal force is an electrodynamic force or radiation reaction force, a 

force dependent on the second derivative of charge position which respect to time, which arises 
between the electron and the nucleus.  This force given in Sections 6.6, 12.10, and 17.3 of 
Jackson [37] achieves the condition that the sum of the mechanical momentum and 
electromagnetic momentum is conserved.  The motion of each point in the magnetic field of the 
nucleus will cause a relativistic central force, magF , which acts on each point mass.  The 
magnetic central force is derived as follows from the Lorentzian force which is relativistically 
corrected.  Each infinitesimal point of the orbitsphere moves on a great circle, and each point 

charge has the charge density 24 n

e
rπ

.  As given in the Proton and Neutron section, the proton is 

comprised of a linear combination of three constant functions and three orthogonal spherical 
harmonic quark/gluon functions.  The magnetic field front due to the motion of the electron 
propagates at the speed of light.  From the photon inertial reference frame at the radius of each 
infinitesimal point of the electron orbitsphere, the proton charge distribution is given as the 
product of the quark and gluon functions which gives rise to a uniform distribution.  The 
magnetic flux of the proton in the v c=  inertial frame at the electron radius follows from 
McQuarrie [20]:  

 32
o

p n

e
m r
μ

=B =  (1.222) 

And, the magnetic flux due to a nucleus of charge Z  and mass m  is 

 32
o

n

Ze
mr

μ
=B =

 (1.223) 

The motion of each point will cause a relativistic central force,  i magF , which acts on each point 
mass.  The magnetic central force is derived as follows from the Lorentzian force which is 
relativistically corrected. The Lorentzian force density on each point moving at velocity v  is   

 24mag
n

e
rπ

= ×F v B  (1.224) 

For the hydrogen atom with 1Z =  and pm m= , substitution of Eq. (1.47) for v  and Eq. (1.223) 
for B  gives  
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2 2

2 3
1

1 ˆ
4 2

o
mag

e n n

e r
r m r mr

μ
π

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
F =  (1.225) 

The term in brackets can be expressed in terms the fine structure constant α  wherein the radius 
of the electron relative to the v c=  frame ( k  is the lightlike 0k , then /nk cω= ), *rα , is the 
corresponding relativistic radius.  From Eq. (1.43), the relationship between the radius and the 
electron wavelength is 
 2 rπ λ=  (1.226) 
Using the de Broglie Eq. (1.46) with v c=  

 h h
mv mc

λ = =  (1.227) 

With substitution of Eq. (1.227) into Eq. (1.226) 

 *
c or a

mcα α= = =
= �  (1.228) 

The radius of the electron orbitsphere in the v c=  frame is C� , where v c=  corresponds to the 
magnetic field front propagation velocity which is the same in all inertial frames, independent of 
the electron velocity as shown by the velocity addition formula of special relativity [38].  From 
Eqs. (1.158) and (1.228), 

 
2

2
2

o

e n

e
m r
μ πα=  (1.229) 

where C�  is the Compton wavelength bar substituted for nr , and oa  is the Bohr radius.   
From Lorentz transformations with the electron's invariant angular momentum of =  (Eq. 

(1.57), it can be shown that the relativistic correction to Eq. (1.225) is the reciprocal of Eq. 
(1.229).  Consider an inertial frame following a great circle of radius nr  with v c= .  The motion 
is tangential to the radius; thus, nr  is Lorentzian invariant.  But, as shown in the Spacetime 
Fourier Transform of the Electron Function section and the Special Relativistic Correction to the 
Ionization Energies section, the tangential distance along a great circle is 2 nrπ  in the laboratory 
frame and nr  in the v c=  frame ( k  is the lightlike 0k , then /nk cω= ).  In addition, the 
corresponding radius is reduced by α  for the light speed radial field.  Thus, the term in brackets 
in Eq. (1.225) is the inverse of the relativistic correction 'γ  for the electrodynamic central force. 

The electron's magnetic moment of a Bohr magneton Bμ  given by Eq. (1.110) is also 
invariant as well as its angular momentum of = .  The electron is nonradiative due to its angular 
motion as shown in Spacetime Fourier Transform of the Electron Function, Appendix I, and the 
Stability of Atoms and Hydrinos section.  Furthermore, the angular momentum of the photon 

given in the Equation of the Photon section is [ ] 41 Re ( )
8

dx
cπ

= × × =∫m r E B* = .  It is conserved 

for the solutions for the resonant photons and excited state electron functions given in the 
Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon 
section.  Thus, the electrodynamic angular momentum and the inertial angular momentum are 
matched such that the correspondence principle holds.  It follows from the principle of 

conservation of angular momentum that 
e

e
m

 of Eq. (1.110) is invariant.  The same applies for the 
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intrinsic magnetic moment Bμ  and angular momentum =  of the free electron since it is given by 
the projection of the bound electron into a plane as shown in the Electron in Free Space section.  
However, special relativity must be applied to physics relative to the electron's center of mass 
due to the invariance of charge and the invariant four momentum as given by Purcell [38]. 

The correction to the term in brackets of Eq. (1.225) also follows from the Lorentz 
transformation of the electron's invariant magnetic moment as well as its invariant angular 
momentum of = .  Consider a great circle of the electron orbitsphere.  As shown in the Spacetime 
Fourier Transform of the Electron Function section, the tangential distance along a great circle is 
2 nrπ  in the laboratory frame and nr  in the v c=  frame; thus, electron mass density along each 
great circle can be considered to contract to a point with an increase of the relativistic mass 
density by a factor of 2π .  Furthermore, due to invariance of charge under Gauss' Integral Law, 
with the radius given by (1.228), the charge corresponding to the source current of the magnetic 
field must be corrected by 1α− .  Thus, from the perspective of the invariance of Bμ , the term in 
brackets in Eq. (1.225) is inverse of the relativistic correction for the electrodynamic central 
force. 

 
( ) ( ) ( )

1 2 1 2 1 22 1
2 2 2 2 2 2

o o o

e n e
e

e

e e e
hm r m m

m c

α μ α μ πα μ
π π π

− − −

= = =
�

 (1.230) 

Therefore, the force is given by 

 
2

2 3
1 1

1 ˆ
4mag r

r mrπ
= −F =  (1.231) 

The force balance equation is given by equating the centrifugal and centripetal force densities: 

 
2 2 2

1
2 2 3 2 2 2 3

1 1 1 1 1 1 1 1

1 1
4 4 4 4 4

e

e o

m v e Ze
r r r m r r r r mrπ π π πε π

= = −
= =  (1.232) 

where 1Z =  and pm m=  for the hydrogen atom and the velocity is given by Eq. (1.47).  (Since 
the surface-area factor cancels in all cases, this factor will be left out in subsequent force 
calculations throughout this book).  From the force balance equation: 

 
2

1 2

4 o

e

r
Ze
πε

μ
=

=  (1.233) 

where the reduced electron mass, eμ , is 

 e
e

e

m m
m m

μ =
+

 (1.234) 

The Bohr radius is 

 
2

2

4 o
o

e

a
e m
πε

=
=  (1.235) 

And, the radius given by force balance between the centrifugal force and central electrostatic 
force alone is  

 
2

0
1 2

4 o

e

ar
Ze m Z
πε

= =
=  (1.236) 

And, for hydrogen, m  of Eq. (1.234) is 
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 pm m=  (1.237) 
Substitution of the reduced electron mass for the electron mass gives, Ha , the Bohr radius of the 
hydrogen atom. 

 
2

2

4 o
H

e

a
e
πε
μ

=
=  (1.238) 

Thus, Eq. (1.233) becomes 

 1
Har

Z
=  (1.239) 

where 1Z =  for the hydrogen atom.  The results can also be arrived at by the familiar 
minimization of the energy. 
 
ENERGY CALCULATIONS 
The potential energy V  between the electron and the nucleus separated by the radial distance 
radius 1r  considering the force balance between the centrifugal force and central electrostatic 
force alone is 

 
2 2 2

2 18 2
   

1 0

4.3598  10  27.212 
4 4o o

Ze Z eV Z X X J Z X eV
r aπε πε

−− −
= = = − = −  (1.240) 

Because this is a central force problem, the kinetic energy, T , is 1
2

V− . 

 
2 2

2
 

0

 13.606 
8 o

Z eT Z X eV
aπε

= =  (1.241) 

The same result can be obtained from 2
1

1
2 eT m v=  and Eq. (1.47).  Alternatively, the kinetic 

energy T  and the binding energy BE , which are each equal to the change in stored electric 
energy, eleEΔ , can be calculated from  

 21
2

r

ele oT E Z dvε
1

∞

= Δ = − ∫E where 24 o

e
rπε

= − rE i  (1.242) 

Thus, as the orbitsphere shrinks from 1 to r∞ , 

 
2 2 2

2 18 2
  

1 0

2.1799  10   13.606 
8 8B

o o

Ze Z eE Z X X J Z X eV
r aπε πε

−= − = − = − = −  

 (1.243) 
The calculated Rydberg constant R  using Eq. (1.238) in Eqs. (1.240-1.243) which includes the 
relativistic correction corresponding to the magnetic force given by Eq. (1.231) is 

110,967,758 m− .  The experimental Rydberg constant is 110,967,758 m− .  Furthermore, a host of 
parameters can be calculated for the hydrogen atom, as shown in Table 1.2. 

(c) 2005 by BlackLight Power, Inc.  All rights reserved.  



Chapter 1 126

Table 1.2. Some calculated parameters for the hydrogen atom ( 1n = ). 
radius 1 Hr a=  11

 5.2947  10X m−  
 

potential energy 
2

4 o H

eV
aπε

−
=  27.196 eV−  

 

kinetic energy 
2

8 o H

eT
aπε

=  13.598 eV  

 

angular velocity (spin) 1 2
1em r

ω =
=  16 1

 4.1296  10X rads−  

 
linear velocity 1 1 1v rω=  6 1

 2.1865  10X ms−  
 
 
wavelength 1 12 rλ π=  10

 3.325  10X m−  
 

spin quantum number 1
2

s =  1
2

 

 

moment of Inertia 
2

1

2
em rI =  51 21.277  10  X kgm−  

 

angular kinetic energy 2
1

1
2angularE Iω=  6.795 eV  

magnitude of the   
angular momentum =  34

 1.0545  10X Js−  
 

projection of the 
4
=  35

 2.636  10X Js−   

angular momentum 
onto the transverse-axis 
  

projection of the 
2zS =
=  35

 5.273  10X Js−  

angular momentum  
onto the z-axis 

mass density 2
14

em
rπ

 11 2
 2.589  10X kgm− −  

charge density 2
14

e
rπ

 24.553 Cm−  
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Table 1.3 gives the radii and energies for some one-electron atoms.  In addition to the 

energies, the wavelength, angular frequency, and the linear velocity can be calculated for any 
one-electron atom from Eqs. (1.46), (1.55), and (1.56).  Values are given in Table 1.4. 
 
Table 1.3. Calculated energies (non-relativistic) and calculated ionization energies 
for some one-electron atoms. 
  Calculated Calculated Calculated Calculated Experimental 
 Atom 1r a Kinetic Potential Ionization Ionization 
  ( 0a ) Energyb Energyc Energyd Energye 

   (eV) (eV) (eV) (eV) 
 
 H  1.000 13.61 –27.21 13.61 13.59 
 
 He+  0.500 54.42 –108.85 54.42 54.42 
 
 2Li +  0.333 122.45 –244.90 122.45 122.45 
 
 3Be +  0.250 217.69 –435.39 217.69 217.71 
 
 4B +  0.200 340.15 –680.29 340.15 340.22 
 
 5C +  0.167 489.81 –979.62 489.81 489.98 
 
 6N +  0.143 666.68 –1333.37 666.68 667.03 
 
 7O +  0.125 870.77 –1741.54 870.77 871.39 
 
a from Equation (1.236) 
b from Equation (1.241) 
c from Equation (1.240) 
d from Equation (1.243)  
e experimental 
 
It is noteworthy that the potential energy is a constant (at a given n ) because the electron is at a 
fixed distance, nr , from the nucleus.  And, the kinetic energy and velocity squared are constant 
because the atom does not radiate at nr  and the potential energy is constant. 
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Table 1.4. Calculated radii, angular frequencies, linear velocities, and wavelengths 
for the 1n =  state of some one-electron atoms (non-relativistic). 
 Atom 1r a angularb linearc wavelengthd 
  ( 0a ) velocity velocity ( 10

 10 m− )  
   ( 17 110  rad s− ) ( 6 1

 10 ms− )   
  
 H  1.000 0.413 2.19 3.325 
 
 He+  0.500 1.65 4.38 1.663 
 
 2Li +  0.333 3.72 6.56 1.108 
 
 3Be +  0.250 6.61 8.75 0.831 
 
 4B +  0.200 10.3 10.9 0.665 
 
 5C +  0.167 14.9 13.1 0.554 
 
 6N +  0.143 20.3 15.3 0.475 
 
 7O +  0.125 26.5 17.5 0.416 
 
a from Equation (1.236) 
b from Equation (1.55) 
c from Equation (1.56) 
d from Equation (1.46) 
 
It should be noted that the linear velocity is an appreciable percentage of the velocity of light for 
some of the atoms in Table 1.3—5.9% for 7O +  for example.  Relativistic corrections must be 
applied before a comparison between the total energy and ionization energy (Table 1.3) is made. 
 
SPECIAL RELATIVISTIC CORRECTION TO THE IONIZATION 
ENERGIES 
The electron moves in an orbit relative to the laboratory frame.  Muons and electrons are both 
leptons.  Time dilation of muonic decay due to relativistic motion in a cyclotron orbit relative to 
a stationary laboratory frame provides strong confirmation of special relativity and confirms that 
the electron's frame is an inertial frame.  eB/m bunching of electrons in a gyrotron [39] occurs 
because the cyclotron frequency is inversely proportional to the relativistic electron mass.  This 
further demonstrates that the electron frame is an inertial frame and that electron mass and time 
dilation occur.  The special relativistic relationship in polar coordinates is derived.  The result of 
the treatment of the electron motion relative to the laboratory frame is in excellent agreement 
with numerous experimental observables such as the electron g factor, the invariance of the 
electron magnetic moment of Bμ  and angular momentum of = , the fine structure of the 
hydrogen atom, and the relativistically corrected ionization energies of one and two electron 
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atoms found infra. and in the Excited States of the One-Electron Atom (Quantization) and The 
Two-Electron Atoms sections. 

The relativistic correction to the ionization energies is determined by determining the 
corrected radius in Eq. (1.243) corresponding to a decrease in the electron wavelength and period 
due to relativistic length contraction and time dilation of the electron motion in the laboratory 
inertial frame9.  Each infinitesimal point of the orbitsphere moves on a great circle as shown in 
the Orbitsphere Equation of Motion for A  = 0 section.  The electron motion is tangential to the 
radius; thus, nr  is Lorentzian invariant.  A further consequence of the electron's motion always 
being perpendicular to its radius is that the electron's angular momentum of =  is invariant as 
shown by Eq. (1.57).  The electron's magnetic moment of a Bohr magneton Bμ  given by Eq. 
(1.110) is also invariant as well as its angular momentum of = .  Furthermore, the electron is 
nonradiative due to its angular motion as shown in the Spacetime Fourier Transform of the 
Electron Function section, Appendix I, and the Stability of Atoms and Hydrinos section.  The 
radiative instability of excited states is due to a radial dipole term in the function representative 
of the excited state due to the interaction of the photon and the excited state electron as shown in 
the Instability of Excited States section.  The angular momentum of the photon given in the 

Equation of the Photon section is [ ] 41 Re ( )
8

dx
cπ

= × × =∫m r E B* = .  It is conserved for the 

solutions for the resonant photons and excited state electron functions given in the Excited States 
of the One-Electron Atom (Quantization) section and the Equation of the Photon section.  The 
photons emitted during the formation of each one-electron atom are its excited state photons.  
Thus, the electrodynamic angular momentum and the inertial angular momentum are matched 
such that the correspondence principle holds.  It follows from the principle of conservation of 

angular momentum of =  that 
e

e
m

 of Eq. (1.110) is invariant (See the Determination of 

Orbitsphere Radii section).  Since charge is invariant according to special relativity, the electron 
mass of the orbitsphere must also be invariant.  But, as shown in the Spacetime Fourier 
Transform of the Electron Function section, the tangential distance along a great circle is 2 nrπ  in 
the v c=  frame is nr  in the laboratory frame.  Thus, the effect of special relativity is to increase 

the mass and charge densities identically such that 
e

e
m

 is a constant invariant.  In the present 

case, the electron mass density along each great circle can be considered to contract to a point 
with an increase of the relativistic mass density by a factor of 2π .  The remarkable agreement 
                                                 
9 Many problems arise in the case of applying special relativity to standard quantum mechanical solutions for one-
electron atoms as discussed in the Quantum Theory Past and Future section, the Shortcomings of Quantum Theory 
section, and Appendix II: Quantum Electrodynamics is Purely Mathematical and Has No Basis in Reality.  Spin was 
missed entirely by the Schrödinger equation, and it was forced by spin matrices in the Dirac equation.  It does not 
arise from first principles, and it results in nonsensical consequences such as infinities and "a sea of virtual 
particles".  These are not consistent with observation and paradoxically the virtual particles constitute an ether, the 
elimination of which was the basis of special relativity and is the supposed basis of the Dirac equation.  In addition, 
the electron motion in the Schrödinger and Dirac equations is in all directions; consequently, the relativistic increase 
in electron mass results in an instability since the electron radius is inversely proportional to the electron mass.  
Since the electron mass in special relativity is not invariant, but the charge is, the electron magnetic moment of a 
Bohr magneton μB  as well as its angular momentum of   =  cannot be invariant in contradiction with experimental 
observations known to 14 figure accuracy [28]. 
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between the calculated and observed value of the fine structure of the hydrogen atom which 

depends on the conditions of the invariance of the electron's charge and charge-to-mass ratio 
e

e
m

 

as given in the Spin-Orbital Coupling section further confirms the validity of this result.  
Each infinitesimal point of the orbitsphere moves on a great circle, and each point charge 

has the charge density 24 n

e
rπ

 and mass density 24
e

n

m
rπ

 as shown in the Orbitsphere Equation of 

Motion for A  = 0 section.  Consider a charge-density element (and correspondingly a mass-
density element) of a great circle current loop of the electron orbitsphere in the y'z'-plane as 
shown in Figure 1.4.  The distance on a great circle is given by 

 
22

0 0

2n n nr d r r
ππ

θ θ π= =∫  (1.244) 

Due to relative motion, the distance along the great circle must contract and the time must dilate 
due to special relativity.  The special relativistic length contraction relationship observed for a 
laboratory frame relative to an inertial frame moving at constant velocity v  in the direction of 
velocity v  is 

 
2

1o
vl l
c

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (1.245) 

For Figure 1.4, the relationship between polar and Cartesian coordinates of special relativity (the 
Cartesian coordinate system as compared to general coordinates is special with regard to special 
relativity as discussed in the Relativity section) is given by Eq. (1.68) 

 1
' 0x =  1

' sin( )n ny r tω= −  1
' cos( )n nz r tω=  (1.246) 

where nω  is given by Eq. (1.55), nr  is from Eq. (1.236) and 
 ntφ ω=  (1.247) 
Due to relativity, a contracted wavelength arises.  The distance on the great circle undergoes 
length contraction only in the φ̂  direction as v c→ .  Thus, as v c→  the distance on a great 
circle approaches its radius which is the relativistically contracted electron wavelength since the 
relationship between the radius and the wavelength given by Eq. (1.43) is 
 2 n nrπ λ=  (1.248) 
With v c= ,  
 *r λ=  (1.249) 
where * indicates the relativistically corrected parameter.  Thus, 

  *
2

nrr
π

=  (1.250) 

The relativistically corrected mass *m  follows from Eq. (1.250) with maintenance of the 
invariance of the electron angular momentum of =  given by Eqs. (1.56) and (1.57). 

 e
e

m m r
m r

× =r v =
 (1.251) 

With Eq. (1.250), the relativistically corrected mass *m  corresponding to an increase in its 
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density only is10 
 * 2 em mπ=  (1.252) 

The charge (mass) motion may be visualized.  At light speed, there can be no motion 
transverse to the radius.  The radial projection of the time harmonic motion of a point charge of a 
great circle becomes equivalent to a time harmonic oscillator moving along an axis of distance 
2 nr  in the direction of r .  In spherical coordinates, the lab frame is at rest at the origin.  
Relativistic invariance of charge requires that all of the charge of a current loop be projected onto 
a line in the radial direction.  For 1n = , A =0, the charge is uniformly distributed.  Consider, the 
radial projection of a point charge on a great circle at 0φ =  and a point charge at φ π= .  Both 
points move from opposite ends of a line of length 2 nr  ( n nr r r− ≤ ≤ + ) and are at the origin in a 

quarter of a period which is time 
2

nrt
c

= .  The points then cross.  (The crossing is equivalent to 

elastic scattering at the origin which results in a momentum reversal for both points.)  The points 

                                                 
10 The scalar sum of the magnitude of the angular momentum of each infinitesimal point of the orbitsphere iL  of 

mass im  must be constant.  The constant is = . 

 | |i i e n
e n

m m r
m r

= × = =∑ ∑L r v = =  (1) 

where the velocity is given by Eq. (1.47).  In the limit, the sum is replaced by a continuous integral over the surface 
wherein the point element masses and angular momenta are replaced by the corresponding densities.  The integral of 
the magnitude of the angular momentum of the electron is =  in any inertial frame and is relativistically invariant. 

According to special relativity, the electron's relative motion with respect to the laboratory frame causes the 
distance along the great circle to contract and the time to dilate such that a contracted radius arises as given by Eq. 
(1.259).  As v c→  the relativistically corrected radius in the laboratory frame *r  is given by 

  *
2

nrr
π

=  (2) 

where nr  is the radius in the electron frame.  Eq. (1.240) applies for both the mass and charge densities which are 

interchangeable by the ratio 
e

e
m

.  Thus, the ratio is invariant. 

However, a relativistically corrected mass *m  can be defined from Eq. (1.250) with maintenance of the 
invariance of the electron angular momentum of =  given by Eqs. (1.56) and (1.57).  Due to spherical symmetry, the 
correction is the same along each great circle of the orbitsphere.  Thus, the motion of the mass density of the 
electron along a great circle may be considered.  Then, 

 e
e

m m r
m r

× =r v =
 (3) 

With Eq. (1.250), the relativistically corrected mass *m  corresponding to an increase in its density only is 
 * 2 em mπ=  (4) 
In other words, the correction of the radius gives an effective relativistic mass as follows: 

 * * *2
2 2 2

2

e e
e e

e

r r rm m m m m r vr m r m rm
π

π π π
π

× = = = = =r v = = = =  (5) 

where v  is the electron velocity in its frame given by Eq. (1.47).   
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interchange roles and travel to the opposite starting points in a half of a period which is time 
2
2

nrt
c

= .  So, with respect to each position, a point left and a point reappeared in 2
2

nrt
c

= .  Since 

2T
c

π λ
ω

= = , the wavelength is nr .  This situation applies for any φ .   

Thus, the effect of the relativistic contraction of the distance along a great circle loop is to 
change the angle of constant motion in Eq. (1.246) with a corresponding decrease in the electron 
wavelength.  The relativistically corrected wavelength that follows from Eqs. (1.244-1.248) is 
given by the sum of the relativistic electron motion along the great circle (y' direction for point 1 
of Figure 1.4) and that projected along the radial axis (z' direction for point 1 of Figure 1.4): 

 
*
, '2

* * *
, '

0 0
sin cos

n zr

n n yr d dr
π

λ φ φ φ= +∫ ∫  (1.253) 

where the * indices corresponds to the relativistically corrected parameters in the y' and z' 
directions.  The length contraction is only in the direction of motion which is orthogonal to the 
radius and constant as a function of angle.  Thus, Eq. (1.247) is given by 

 
2

' * ' *2 1 sin cosn n n
vr r
c

λ π φ φ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (1.254) 

The projection of the angular motion onto the radial axis is determined by determining the 
relativistic angle *φ  corresponding to a decrease in the electron wavelength and period due to 
relativistic length contraction and time dilation of the electron motion in the laboratory inertial 
frame.  Substitution of Eq. (1.55) into Eq. (1.247) gives 

 2n
e n

t t
m r

φ ω= =
=  (1.255) 

The correction for the time dilation and length contraction due to electron motion gives the 
relativistic angle *φ  as 
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= =  (1.256) 

The period for a wavelength due to electron motion is  

 2T
v

π λ
ω

= =  (1.257) 

Only the elements of the second y'z'-quadrant need be considered due to symmetry and 
continuity of the motion.  Thus, using Eqs. (1.255-1.256) for a quarter period of time, Eq. (1.254) 
becomes 

 
3/ 2 3/ 22 2 2

' '2 1 sin 1 cos 1
2 2n n n

v v vr r
c c c

π πλ π
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥= − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (1.258) 

(c) 2005 by BlackLight Power, Inc.  All rights reserved.  



The One-Electron Atom 133

The relativistic correction to the ionization energies is determined by using the corrected 
radius in Eq. (1.243).  Using a phase matching condition, the wavelengths of the electron (Eq. 
(1.248)) and laboratory (Eq. (1.258)) inertial frames are equated, and the corrected radius is 
given by 

 
3/ 2 3/ 22 2 2

' 11 sin 1 cos 1
2 2 2n n

v v vr r
c c c

π π
π

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥ ⎢ ⎥= − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦
 (1.259) 

From Eqs. (1.233) and (1.249) the ionization energies are corrected by a factor *γ  of  

 *
3/ 2 3/ 22 2 2

2

2 1 sin 1 cos 1
2 2

v v v
c c c

πγ
π ππ

=
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥− − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (1.260) 

where the velocity is given by Eq. (1.56) with the radius given by Eq. (1.233).  In Eq. (1.233), 
the reduced mass is that of the corresponding nucleus.  Plots of ratio of the radii from Eq. (1.259) 
and the correction to the ionization energy *γ  (Eq. (1.260)) as a function of the electron velocity 
v  relative to the speed of light c  are given in Figures 1.21 and 1.22, respectively. 

As the electron velocity goes to the speed of light ( v c→ ) the electron radius in the 

laboratory frame goes to a factor of 1
2π

 that in the electron frame ( '

1
2

n

n

r
r π
= ).  One model to 

interpret this result is to consider that with v c=  the electron motion looks like a line for all 

angles which corresponds to a orbitsphere of radius 1
2π

 that of the radius in the electron frame.  

Also, for all directions, the angle φ  in polar coordinates is corrected in going from the electron 
to the laboratory frame as given in Eq. (1.256) to make the transformation to an orbitsphere of 
reduced radius. 
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Figure 1.21.  The normalized radius as a function of /v c  due to relativistic contraction. 

 
Figure 1.22.  The relativistic correction to the one-atom-electron ionization energies as a 
function of /v c   due to relativistic contraction. 

 
 

The electron possesses an invariant angular momentum and magnetic moment of =  and a 
Bohr magneton, respectively.  This invariance feature provides for the stability of multielectron 
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atoms and the existence of excited states wherein electrons magnetically interact as shown in the 
Two-Electron Atoms section, the Three- Through Twenty-Electron Atoms section, and the 
Excited States of Helium section.  The electron's motion corresponds to a current which gives 
rise to a magnetic field with a field strength that is inversely proportional to its radius cubed 
wherein the magnetic field is a relativistic effect of the electric field as shown by Jackson [40].  
As there is no electrostatic self-energy as shown in the Determination of Orbitsphere Radii 
section and Appendix IV, there is also no magnetic self-energy for the bound electron since the 
magnetic moment is invariant for all states and the surface current is the source of the 
discontinuous field that does not exist inside of the electron as given by Eq. (1.115), 

  ( )a bX − =n H H K .  No energy term is associated with the magnetic field unless another source 
of magnetic field is present.  In general, the corresponding relativistic correction can be 
calculated from the effect of the electron's magnetic field on the force balance and energies of 
other electrons and the nucleus which also produce magnetic fields.  In the case of one-electron 
atoms, the nuclear-electron magnetic interaction is the only factor.  Thus, for example, the effect 
of the proton was included in the derivation of Eq. (1.239) for the hydrogen atom.  The 
relativistically corrected one electron ionization energies given by the product of Eqs. (1.243) 
and (1.260) is 

 
2 2

* * 2 18 * 2
  

0

2.1799  10   13.606 
8ele

o e e e

Z eE Z X X J Z X eV
a m m m

μ μ μγ γ γ
πε

−= − = − = −  (1.261) 

where the reduced mass term eμ  corresponds to the electron-nucleus relativistic correction and 
is only given by Eq. (1.234) for the hydrogen atom where 1Z = .  These energies are plotted in 
Figure 1.23 and are given in Table 1.5.  
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Figure 1.23.  The relativistically corrected one-electron-atom ionization energies as a 
function of the nuclear charge Z.   
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Table 1.5.  Relativistically corrected ionization energies for some one-electron atoms. 
 

One e 
Atom 

Z *γ   
(from Eq. 
(1.250)) 

 

Theoretical 
Ionization 
Energies 

(eV)  
(from Eq. 
(1.251)) 

 

Experimental 
Ionization 
Energies 

(eV) a 

Relative 
Difference 
between 

Experimental and 
Calculated b 

 

H  1 1.000007  13.59838          13.59844 0.00000 
He+  2 1.000027  54.40941          54.41778 0.00015 

2Li +  3 1.000061 122.43642         122.45429 0.00015 
3Be +  4 1.000109 217.68510          217.71865 0.00015 

4B +  5 1.000172 340.16367        340.2258 0.00018 
5C +  6 1.000251 489.88324          489.99334 0.00022 
6N +  7 1.000347 666.85813      667.046 0.00028 
7O +  8 1.000461 871.10635        871.4101 0.00035 
8F +  9 1.000595      1102.65013      1103.1176 0.00042 
9Ne +  10 1.000751      1361.51654      1362.1995 0.00050 
10Na +  11 1.000930      1647.73821     1648.702 0.00058 
11Mg +  12 1.001135      1961.35405     1962.665 0.00067 

12Al +  13 1.001368      2302.41017     2304.141 0.00075 
13Si +  14 1.001631      2670.96078     2673.182 0.00083 
14P +  15 1.001927      3067.06918     3069.842 0.00090 
15S +  16 1.002260      3490.80890      3494.1892 0.00097 
16Cl +  17 1.002631      3942.26481     3946.296 0.00102 
17Ar +  18 1.003045      4421.53438       4426.2296 0.00106 
18K +  19 1.003505      4928.72898     4934.046 0.00108 
19Ca +  20 1.004014      5463.97524     5469.864 0.00108 
20Sc +  21 1.004577      6027.41657     6033.712 0.00104 
21Ti +  22 1.005197      6619.21462   6625.82 0.00100 
22V +  23 1.005879      7239.55091   7246.12 0.00091 
23Cr +  24 1.006626      7888.62855   7894.81 0.00078 
24Mn +  25 1.007444      8566.67392   8571.94 0.00061 
25Fe +  26 1.008338      9273.93857   9277.69 0.00040 
26Co +  27 1.009311    10010.70111  10012.12 0.00014 
27Ni +  28 1.010370    10777.26918 10775.4        -0.00017 
28Cu +  29 1.011520    11573.98161    11567.617        -0.00055 

a From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and experimental data [41-42]. 
b (Experimental-theoretical)/experimental. 
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The agreement between the experimental and calculated values of Table 1.5 is well 
within the experimental capability of the spectroscopic determinations including the values at 
large Z which relies on X-ray spectroscopy.  In this case, the experimental capability is three to 
four significant figures which is consistent with the last column.  The hydrogen atom 
isoelectronic series is given in Table 1.5 [41-42] to much higher precision than the capability of 
X-ray spectroscopy, but these values are based on theoretical and interpolation techniques rather 
than data alone.  Ionization energies are difficult to determine since the cut-off of the Rydberg 
series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of H isoelectronic and Rydberg series, as 
well as direct  
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