
Meeting the Computer Halfway: Language Processing in the Artificial
Language Lojban

Rob Speer RSPEER@MIT.EDU

Catherine Havasi HAVASI @MIT.EDU

77 Massachusetts Ave #32D-712, Cambridge, MA, 02139 USA

1. Introduction

There is one big problem that any natural language re-
searcher faces: all that pesky natural language. In con-
structing a computational representation of English, or any
other natural language, one soon gets bogged down in am-
biguity, polysemy, vague grammar rules, and so on.

Getting from English text to a semantic representation is
the subject of incredible amounts of NLP research, but cur-
rently, any project that wants to work at the semantic level
– such as computer reasoning, question answering, or story
understanding – has to take shortcuts to get there. Some
systems do this by working with a very limited subset of
the language – for example, using a small lexicon and sim-
ple grammar rules. Systems of this kind can perform well
in demos, but are often baffled by a naı̈ve user attempting
to communicate with them naturally. Other systems simply
start at the semantic level, requiring their input to be in the
system’s own semantic representation.

We propose a system that communicates with the user in
Lojban, an artificial language. Lojban is meant for use by
humans, has as much expressive power as a natural lan-
guage, and has an active community of speakers, but its
rules are well-defined enough that a computer can have full
command of the language. Using Lojban simplifies the
translation from the user input level to the semantic level.
This creates a platform that can connect semantics-based
tools, such as the Semantic Web (Berners-Lee et al., 2001)
or OpenCyc (Cycorp, 2002), to an interface that a user can
converse with.

Using our project, the user “meets the computer halfway”;
the computer has to translate Lojban into a semantic rep-
resentation, which is easier to do than with a natural lan-
guage, and the user has to learn a new human language,
which is easier to do than learning the system’s program-
ming language. In this way, we hope to make progress in
areas of conversational NLP in a way that is currently not
possible using English and pave the way for later work.

One major use of this system would be to understand how

users interact with a system which is fluent in a language
in which they speak and does not require any training. This
would aid system developers understanding of how people
naturally interact with computers and what behavior expec-
tations people would have with such a system. This would
aid in developing interfaces to better fit people’s natural
computer interaction patterns.

2. Background

Lojban is derived from Loglan, a logical language created
by James Cooke Brown in 1960. Like Loglan before it,
Lojban is based on predicate logic; a basic sentence con-
sists of a predicate (which acts as the verb) and a number
of arguments (noun phrases); many of these noun phrases
are themselves derived from predicates.

For example,blanu is a predicate meaning “x is blue”. As
a complete utterance,blanumeans “something is blue”.mi
blanumeans “I am blue”, andle blanuis an argument re-
ferring to “the thing that is blue”.viskais another predicate
meaning “x seesy”, so thatmi viska le blanumeans “I see
the blue thing”.

The grammar of Lojban is unambiguous; a parser can use
the formal grammar for Lojban to parse any grammatical
Lojban sentence into a unique parse tree (Cowan, 1997).
This is quite advantageous, as it means that the work in
parsing Lojban is already done for us.

One of the design goals of Lojban is to facilitate commu-
nication between humans and computers. This project is a
step towards accomplishing that goal.

3. System Overview

Our system, namedJIMPE (Lojban for “understand”), is a
Python program composed of a number of modules that run
concurrently and communicate using messages on a central
“whiteboard” object. The interface to a module consists of
event-based methods that specify what to do when a given
type of message is received. Using this modular structure,



User Interface

Semantics

Parser

Logic

Semantic

Web

Simple

Reasoner

Question

Answering
etc.

Output

D
at

ab
as

e

Objects

Figure 1.Interactions between some of the system’s modules.

we hope to make it easy to extend the system.

Figure 1 shows the interactions between some of the mod-
ules inJIMPE.

3.1 User Interface

The user interface module takes input from various mod-
ules and displays it to the user. When the user types a line
of input, it sends this input as a message to the parser.

3.2 Parser

The formal grammar for Lojban that is the easiest to use is
in the form of a Parsing Expression Grammar (PEG), a kind
of hierarchical grammar that is well-suited to unambiguous
languages. PEGs can be parsed in linear time by a packrat
parser (Ford, 2004). So for the parsing step,JIMPE passes
the text throughRats!, a packrat parser for Java, and builds
a parse tree from its output. If the user’s input does not
parse, it sends a message to the user interface saying so.

3.3 Semantics

The semanticsmodule turns a parse tree into an inter-
mediate semantic representation, in which Lojban struc-
tures such as predicates and arguments are represented by
Python objects.

Sentences that mean the same thing with different word or-
der are reduced to the same representation here – an ana-
logue in English would be to use the same representation
for “John kissed Mary” as for “Mary was kissed by John”.
This intermediate representation is used to keep track of the
discourse and to find antecedents of pronouns.

The system so far only has semantic rules for the basic

grammar of Lojban; its grasp of Lojban is roughly equiva-
lent to that of a novice user of the language. The semantic
rules that the system can handle cover roughly a quarter of
the Lojban Reference Grammar (Cowan, 1997).

3.4 Logic

The logic module breaks down semantic objects into logi-
cal expressions (such as predicates, conjunctions, disjunc-
tions, and negations) that describe the relations between a
network of objects.

These logical expressions can have probabilities attached
to them. Having probabilistic expressions in the system
accomplishes two main purposes. First, though the gram-
mar of Lojban is unambiguous, it is quite possible (and
expected) for speakers to say things that are semantically
vague, and expect the listener to fill in the meaning from
context. This way, the system can make probabilistic
“guesses” at the semantic value of expressions that are un-
clear. Secondly, the system can also make its own guesses
about the world and try them out, such as in theequality
module described below.

3.5 Objects

Theobjectsmodule takes the objects described bylogicand
stores them in a database, which representsJIMPE’s model
of the world. Starting at this point in the module chain,
modules can read and modify the database.

3.6 The database

The modules afterlogic in the module chain can interact
with the database. The database stores, for each object it
knows about, a list of logical expressions that the object is
part of; these logical expressions thus describe the object’s
relation to other objects.

It also stores acardinality, describing how many things
the object represents. A single description might refer to
a number of objects, like “two dogs” (re gerku); the cardi-
nality can also be a fuzzy quantity such as “many”.

Finally, it stores pointers tochildrenandparents, describ-
ing which objects are specific instances of other objects;
for example, “two dogs” (pa gerku) are an instance of “all
dogs” (ro gerku). These pointers form a directed acyclic
graph describing the hierarchy of objects.

We also store predicates as objects themselves, represent-
ing the event or state of that predicate being true. These
events store a reference to a lexical object representing the
“verb” of the predicate. So the sentencele gerku cu blanu
(“the dog is blue”) is stored as an event object, and as its
verb it stores a reference to the lexical object “blanu”.



These lexical objects store nothing in themselves. The only
way that our system knows about the meaning of “blanu” is
its relation to various objects. This means that the system
does not start out knowing, for example, that blue things
are not red, but as an advantage it means that the system
does not need a pre-programmed lexicon of predicates.

3.7 Basic inference engine

JIMPE currently uses a simple inference engine, which
draws conclusions from the logical expressions in the
database using basic rules of logic. Here is a simple ex-
ample of the system in action, using the inference engine:

coi mi’e jimpe Hello, I’m JIMPE.
> ganai la bab crino If Bob is green,
gi la erik blanu then Eric is blue.

je’e Okay.
> la erik na blanu Eric is not blue.
je’e Okay.
i ua la bab na crino Aha! Bob is not green.

Note that the system does not need to be told beforehand
thatblanuandcrino are predicates or thaterik andbabare
names – it can determine these from the rules of Lojban.
This is another reason that the system does not need a lexi-
con of predicates.

3.8 Question answering

JIMPE can also answer questions based on facts it has
learned or deduced previously. When given a question,
it looks in the database for objects matching the descrip-
tions given in the question, and finds whether the ques-
tion matches the facts it knows about those objects. This
“matching” can include discovering that the question is
asking about a special case of a more general statement that
it knows, as in this example:

> lo cukta na viska Books don’t see.
je’e Okay.
> xu lo cukta cu viska mi Does a book see me?
na go’i No.

3.9 Equality

It is often necessary to conclude that two objects that are
described independently are the same object. One very
common case is, for example, mentioning “a dog”, and
then soon after referring to ”the dog” (pa gerku . . . le
gerku). Since they are not necessarily the same object,
these phrases will refer to two different objects in the
database. The job of theequalitymodule is to conclude that
“le gerku” is likely to be the same object as “pa gerku”, and
to add a predicate to the database saying that they are equal
with a certain probability.

4. Future Work

The representation that our system uses for objects and
their relations can easily be converted to the representation
used for the Semantic Web. In the future, we plan to add a
module that uses Semantic Web inference engines to draw
conclusions. By supplying translation rules mapping Loj-
ban words to existing Semantic Web concepts, we could
take advantage of the information available on the Seman-
tic Web, including WordNet (Melnik & Decker, 2001).

We will keep programming grammatical and semantic rules
until the system can understand almost any grammatical
text in Lojban. We can then add some more sophisticated
modules for output, which would allow the system to use
more of the language to express its own thoughts in a way
that is clear to the user.

Finally, in the future, when there is a more developed sys-
tem for natural language understanding in English, we hope
that the progress made using our project will be available
to that system as well.

References

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The
semantic Web.Scientific American, 284, 34–43.

Cowan, J. W. (1997).The complete Lojban language. Fair-
fax, Virginia: The Logical Language Group.

Cycorp (2002). The OpenCyc project.http://www.
opencyc.org.

Ford, B. (2004). Parsing expression grammars: A
recognition-based syntactic foundation.Symposium on
Principles of Programming Languages.

Melnik, S., & Decker, S. (2001). Wordnet RDF rep-
resentation. http://www.semanticweb.org/
library/.


