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Girsanov’s Theorems (presented in three different versions in B.Ø.) are probability measure
transformations applied to Ito processes. These transformations do not change the solutions,
but since the underlying probability measures will be different, the defining equations will
have different drift coefficients and new versions of the Brownian motion. The objective of
the transformation will typically be to obtain more favorable probability measures, e.g. in
order to ease simulation studies.

Assume that we have an Ito model of the form

dXt (ω) = b (t, ω) dt + σ (t, ω) dBt. (1)

We want to find the probability that Xt reaches some critical domain D during a time
interval [0, T ], and we know that this probability is quite small. The only way for us is to
carry out numerical simulations, but if the probability is, say 10−6, we would have to carry
out more than 106 simulations in order to get a reasonable estimate for it. We could change
the drift b (t, ω) in Eqn. 1 to, say a (t, ω), so that for the modified process,

dYt (ω) = a (t, ω) dt + σ (t, ω) dBt, (2)

the event that Yt enters D during [0, T ] is quite likely. To estimate the corresponding
probability by simulations using Yt is therefore simple, requiring only a few realizations. So
far this is not surprising, but Girsanov’s Theorem tells us that it may, in lucky cases, be
possible to change the underlying probability measure so that the solutions of Eqn. 2 also
satisfy a model

dX̃t (ω) = b (t, ω) dt + σ (t, ω) dB̃t, (3)

similar to Eqn. 1. Here B̃t is a Brownian motion with respect to the new probability
measure. Assuming weak uniqueness for Eqn. 1, the probability laws for the solutions of
Eqns. 1 and 3 will thus be the same. In particular, the probability we are looking for would
be the same for 1 and 3.

Girsanov’s Theorem provides an explicit expression for the measure transformation, and we
may in fact carry out the simulations by means of 2 (where the event is quite likely) and
then compute the estimate of the probability we are seeking for model 1 (or 3) by means of
the outcome from the simulations and the expression for the measure transformation. This
will be described in more details below, and the idea is related to what is called importance
sampling in statistics.

1 The Radon-Nikodym Theorem

Let {Ω,F , P} be a probability space and M a non-negative F-measurable stochastic variable
such that

∫
Ω M (ω) dP (ω) = 1. We may then define a new probability measure Q on Ω by

dQ (ω) = M (ω) dP (ω) , (4)

that is, ∫
Ω

h (ω) dQ (ω) =
∫

Ω
h (ω) M (ω) dP (ω) (5)
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for all F-measurable functions h such that the integrals exist. In this case, {Ω,F , Q} is
also a probability space, but in general, Q (A) 6= P (A) and Lp (Ω,F , Q) 6= Lp (Ω,F , P ).
Moreover, if X : Ω → Rn is a stochastic variable, then the distributions of X with respect
to P and Q will be different.

Let P and Q be two measures on Ω. If P (A) = 0 =⇒ Q (A) = 0 for all A ∈ F with zero
P -measure, then we say that Q is absolutely continuous with respect to P and write this
as Q� P .

In the case above, if P (A) = 0, then

Q (A) =
∫

χA (ω) M (ω) dP (ω) = 0, (6)

since χA (ω) M (ω) = 0 a.s.(P ). Hence, Q � P in this case. The opposite will not be true
in general: If M (ω) = 0 on a set A where P (A) > 0, then Q (A) =

∫
A M (ω) dP (ω) = 0,

but this does not imply that P (A) = 0. However, if M (ω) is strictly positive for all ω, then
it works both ways, and Q� P and P � Q.

The Radon-Nikodym Theorem is a striking converse to the above situation:

If Q� P , there exists a unique a.e. (P ) F-measurable function M such that Eqn. 4 holds.

It is customary to write

M =
dQ

dP
, (7)

and call M the Radon-Nikodym derivative.

2 Importance sampling

Assume that X is a stochastic variable in Rn on the probability space (Ω,F , P ) with values
in Rn, and with a probability distribution µ

(P )
X . The expectation of h (X) with respect to

P is (when it exists)

m(P ) = E(P ) (h (X)) =
∫

Ω
h (X (ω)) dP (ω) =

∫
Rn

h (x) dµ
(P )
X (x) . (8)

In a practical situation, we may want to estimate this expectation from a series of observa-
tions or simulations of X, say {xi}S

i=1. The obvious estimate is

m̂(P ) =
1
S

S∑
i=1

h (xi) , (9)

where the observations are supposed to be drawn from the distribution of X under P .

We could also consider the same problem under a transformed measure Q, and let us assume
that Q is absolutely continuous with respect to P so that

dQ (ω) = M (ω) dP (ω) . (10)

We are going to assume that the observations that gives us xi also provide observations of
M at the same time, say mi. As an example, assume that that X under P and Q have
strictly positive probability densities,

dµ
(P )
X (x) = f (P ) (x) dx,

dµ
(Q)
X (x) = f (Q) (x) dx. (11)
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Then

M (ω) =
f (Q) (X (ω))
f (P ) (X (ω))

(12)

defines an acceptable transformation, since M (ω) > 0 and

E(P ) (M) =
∫

Rn

f (Q) (x)
f (P ) (x)

f (P ) (x) dx =
∫

Rn

f (Q) (x) dx = 1. (13)

Assume that we want an estimate of the Q-probability that X falls in a set D, that is, the
Q-measure of the set {ω ; X (ω) ∈ D}. This may be written

Q{ω ; X (ω) ∈ D} =
∫

X(ω)∈D
dQ (ω) =

∫
Ω

χD (X (ω)) dQ (ω) = E(Q) (χD (X)) . (14)

If the probability is very small, one would need a correspondingly large number of simula-
tions in order to find a reasonable estimate of the probability. However, assume that the
corresponding probability of X falling in D when X is drawn according to dµ

(P )
X is about

1/2. Then the event X (ω) ∈ D would occur for about half of the simulations, and we
could do with a relatively small number of observations for obtaining an accurate estimate
of P (ω ; X (ω) ∈ D). Assume, as discussed above, that we obtain M along with X (drawn
according to P ). We then observe that

E(Q) (χD (X)) =
∫

Ω
χD (X (ω)) dQ (ω)

=
∫

Ω
χD (X (ω))M (ω) dP (ω) (15)

= E(P ) (χD (X) M) .

It is therefore also possible to estimate E(Q) (χD (X)) from observations of X and M ac-
cording to P . This suggests the alternative estimate

m̂(Q) =
1
S

S∑
i=1

χD (xi) mi. (16)

Since χD (xi) now will be non-zero for a considerable fraction of the observations, and M
is in general a non-zero function, the estimate will quickly approach a reliable value when
S increases. In the example above, where M is given in Eqn. 12, the formula amounts to

m̂(Q) =
1
S

S∑
i=1

χD (xi)
f (Q) (xi)
f (P ) (xi)

, (17)

and this is denoted importance sampling is statistics.

3 Girsanov’s Theorems

The theorem is stated in various forms in B.Ø., but before we start it is recommended to
take a look at Exercise 4.4 about Exponential Martingales. The exercise discusses stochastic
process of the form

Zt = exp
{∫ t

0
θ (s, ω)′ · dBs −

1
2

∫ t

0
|θ (s, ω)|2 ds

}
, 0 ≤ t ≤ T, (18)
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where Bs and θ are in Rn, and θ ∈ Wn (0, T ), so that all integrals are defined. These
processes are Martingales with respect to the filtration of the Brownian motion and P
under some rather weak additional conditions on θ. One such condition is the Novikov
Condition:

E

(
exp

(∫ T

0

1
2
|θ (s, ω)|2 ds

))
<∞. (19)

(See Exercise 4.4 for references).

The first version of Girsanov’s Theorem in B.Ø. concerns the rather simple case where the
Ito process has the form

dYt (ω) = a (t, ω) dt + dBt (ω) (20)

and where a is adapted to the Brownian motion. Define

Mt = exp
{
−
∫ t

0
a (s, ω)′ · dBs −

1
2

∫ t

0
|a (s, ω)|2 ds

}
, 0 ≤ t ≤ T, (21)

and assume that Mt is a Martingale (E.g. a satisfies the Novikov Condition). Let

dQ = MT dP, (22)

defined on FT . Then Q is a probability measure since it is clearly non-negative and

Q (Ω) =
∫

Ω
MT dP =

∫
Ω

E (MT |M0) dP =
∫

Ω
M0dP = 1. (23)

Moreover, it is worth noting that for all Ft-measurable functions, t < T ,

dQ = MtdP, (24)

because of the Martingale property of Mt (Exercise for the reader, or see B.Ø.).

The Ginsarov’s theorem now states that the solution of the process in Eqn. 20 is a Brownian
motion with respect to the modified measure Q defined in 22.

The proof consists of verifying that Yt satisfies the Lévy conditions stated in B.Ø., Theorem
8.6.1 with respect to Q.

We see that even if Yt has a drift, Mt shifts the weight of the probability so that it ”follows”
Yt, and Yt becomes a (standard) Brownian motion with respect to the new measure Q.

3.1 A worked example

The idea of this example is taken from [2], pp. 337-340.

In order to see how Girsanov’s Theorem works, consider the following simple example:

dYt = dt + dBt, Y0 = x. (25)

The corresponding Martingale Mt is, according to Eqn. 21,

Mt = exp
(
−
∫ t

0
dBs −

1
2

∫ t

0
ds

)
= exp

(
−Bt −

t

2

)
, (26)

and

dQ (ω) = exp
(
−BT (ω)− T

2

)
dP (ω) . (27)
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Since the solution of 25 is
Yt = x + t + Bt, (28)

we have
E(P )Yt = x + t (29)

On the other hand, since Yt is a Brownian motion with respect to Q,

E(Q)Yt = x. (30)

Let us verify 30 by using the expression for Q in Eqn. 27:

E(Q)Yt =
∫

Ω
YtdQ

=
∫

Q
(x + t + Bt) exp

(
−Bt −

t

2

)
dP (ω)

=
∫

R
(x + t + η) exp

(
−η − T

2

)
1√
2πt

e−
η2

2t dη

=
∫

R
(x + t + η)

1√
2πt

exp

(
−(η + t)2

2t

)
dη (31)

= x + t +
1√
2πt

∫
R

η exp

(
−(η + t)2

2t

)
dη

= x + t +
1√
2πt

∫
R

(η + t− t) exp

(
−(η + t)2

2t

)
dη

= x + t− t = x.

(Check that we could as well have used dQ = MT dP instead of dQ = MtdP !).

This case result was trivial, so let us consider the more challenging problem of finding the
probability that a standard Brownian motion starting at 0 exceeds a level K in the interval
[0, 1].

Since the process Yt for Y0 = 0 is a standard Brownian with respect to Q, the probability
we are looking for is

p = Q

{
ω ; sup

0≤t≤1
Yt (ω) > K

}
.

In this special case, there exists an analytic solution, but it is obvious:

p =

√
2
π

∫ ∞

K
e−x2/2dx (32)

(see [1], Sec. 26). As pointed out during the lecture by Sergei, this results may be obtained
(or rather made plausible) by using a so-called reflection principle. The principle works
excellent for a discrete random walk, where the number of possible paths is finite. It is not
so obvious to apply for a case where the number of paths is not even countable. Nevertheless,
the same result is true, but the rigorous mathematical proof is not simple. If we do not
happen to know this result, the only way for us to find p is to use simulations. However,
if K � 1, the probability p is very small, and we would need a lot of simulations in order
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to determine its value. On the other hand, the process Yt under P has a drift, and we may
adjust this drift so that a reasonable fraction of the paths simulated from Eqn. 25 exceeds
K. Let us therefore consider the slightly modified process

dYt = Kdt + dBt, Yt = 0, 0 ≤ t ≤ 1, (33)

so that
Yt = Kt + Bt. (34)

Since E(P ) (Y1) = K, we expect that more than half of the paths have a maximum above
K (We would, however, like to avoid a situation where virtually all paths exceed K). The
Radon-Nikodym derivative is

dQ

dP
= M1 = exp

(
−KB1 −

K2

2

)
, (35)

and as soon as we have simulated the Brownian motion and found a sample of Yt from Eqn.
34, we also have M1 for the same sample.

Below we shall set K to different values and carry out computer experiments using a discrete
Brownian motion with ∆t = 10−5. Let N (ω) be the random function

N (ω) =
{

1, max0≤t≤1 Yt (ω) ≥ K,
0, max0≤t≤1 Yt (ω) < K.

(36)

We are looking for E(Q) (N), and there are two ways of proceeding. The first is to simulate
Yt under Q, that is, a standard Brownian motion. We carry out S simulations, note the
number of times the simulations exceed K, say s times, and set

p̂1 =
s

S
.

The second way is to use the same simulated Brownian motion as input for simulated
solutions yi (t) of Eqn. 34. Let

ni =
{

1, max0≤t≤1 yi (t) ≥ K,
0, otherwise,

(37)

bi = Bi (1) ,

i = 1, · · · , S. From the formula

E(Q) (N) =
∫

Ω
N (ω) dQ (ω)

=
∫

Ω
N (ω) M1 (ω) dP (ω) (38)

= E(P ) (NM1) ,

we obtain the alternative estimate based on Eqns. 34 and 35,

p̂2 =
1
S

S∑
i=1

ni exp
(
−Kbi −

K2

2

)
. (39)

In this case we expect that ni = 1 for more than half of the simulations. Table 1 shows
the outcome when we have used 500 simulations. For K = 1 and 2, both estimates are
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K pexact p̂1 p̂2 p̂(P )

1 0.32 0.31 0.33 0.67
2 0.046 0.034 0.042 0.62
3 2.7× 10−3 2× 10−3 2.9× 10−3 0.61
4 6.3× 10−5 0 5.8× 10−5 0.57
5 5. 7× 10−7 0 5.2× 10−7 0.54

Table 1: Results of 500 computer sumulations for various values of K. The exact values of the
probability is computed by Eqn. 32, whereas p̂1 and p̂2 are defined in the text. The rightmost

column shows the probability of exceedence under P .

reasonable. However, already for K = 3, the direct estimate shows that only one sample
out of 500 exceeded the limit. For K = 4 and 5, none of the direct simulations exceeded
the limit, whereas about 55% of the modified simulations using Eqn. 34 did that. The
alternative estimate p̂2 continues to work reasonably well, whereas p̂1 is useless. Note that
p-values are subject to random sampling errors, and, moreover, our way of simulating the
Brownian motion could introduce some bias in the estimates.

3.2 A more general version

Theorem 8.6.6 in B.Ø. presents a more general version of Girsanov’s Theorem (The theorem
reduces to the version above as a special case). The starting point is an Ito diffusion of the
form

dXt = b (Xt) dt + σ (Xt) dBt. (40)

It is possible to introduce an additive change in the drift b (Xt),

γt + b (Xt) , (41)

provided that the process γt is adapted (to Bt) and there is an adapted solution ut to the
equation

σ (Xt) ut = γt. (42)

The solution of the modified process

dXt = (γt + b (Xt)) dt + σ (Xt) dBt (43)

under P will also satisfy the equation

dX̃t = b
(
X̃t

)
dt + σ

(
X̃t

)
dB̃t, (44)

with respect to the modified probability measure

dQ = MT dP,

Mt = exp
{
−
∫ t

0
u′s · dBs −

1
2

∫ t

0
|us|2 ds

}
, (45)

and the Brownian motion

B̃t =
∫ t

0
usds + Bt, 0 ≤ t ≤ T. (46)

Again, assuming weak uniqueness, the solutions of the process in Eqn. 44 has the same
distributions as the process in Eqn. 40.
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