
P-aclic Constraint. Solving 

Andreas Dolzmam~ Thomas S turm 

Depxtu~ent, of M;tthem;ttics and Coluputor Science 
University of Passit~l~ Ger~nany 

(dolzmann,sturm)@uni-passau.de 
http://www.fmi.uni-passau.de/“(dolzmann,sturm)/ 

Abstract 

We automatically cheek for t.lie feasibility of arbitrary 
hoolcan cou~hinatious of IiIICilr parametric p-adic coustraints 
using a quant.ifier elimination nwthotl. This call bc do11e 

uniforrrily for all 13. wi: focus on the necessary sinlplification 
methods. Our method is inlplenwnted within the conlputer 
algchra syst,ent Hll)lrCE. We illustrate the applical)ilit\: of 
this irripletricnt,a.tion to uon-t,rivial problems iucludiug the 
solution of systenis of linear congruences over the integers. 

1 Introduction 

It is wll-known that, linear paranwtric cwnst.raint. solving 
over the reds has nunwrous inlporta.ut. iLpplicitt.ions in sci- 
cnce and engineering. The sanle holds for corresponding 
iuteger id niixed real-intcgw problenis. 

111 this art.icle, w: consider analogue problenls over I)-adic 
nunil.)ers inst.ead of rt:al nun~lwrs. This also 1~1s important 
t.liougli less obvious applications. niainly in class field thcor?; 
and Diophant.ine analysis [S]. 

011~ can: for instance, waken the prol)lern of find- 
ing intcgw solutions to a Diopha.nt.ine pol~noniial equat,ion 
f(XI,. . , .E,~) = 0 to considering for a fixed yrinie p only 
u~IlgrUf!Ilccs f(x , i . . . :c,~) G 0 (mod y”) for all prinw pow- 
ors. This can in turn 1.x rcduccd to considering the initial 
trqua.tion over the p-adic integers: which is much easier than 
over Z. 

An important special ca.sc of our linear method is testing 
for t,he feasibility and finding sample solut,ions of a systenl 
of simultaneous ccmgruenccs in linear vnriablcs x1, . . . ! .rI, 
owr the I,-adic int.egcrs: 

rn,,,l.z’l +‘.‘+u,,,,,J-,l = b ,n (,mod /PI,, ). 

ThCse p-aclic solutions (‘il.11 then 1x1 easily lifted t,o Z. 
As a wry iniport.ant. fcat,ure, our approach can solve 

prohlcxns uniformly for all p-adic valuations. In such a set- 

t,ing, variable-free cousbraints Cilll: in general, Ilot, be (3X1- 

uawtl bo t.rut h \-alucs. X wriahlc-free constraint might 
e.g. stat,c t,hat both 1 ant1 2 have t.llc sanlc value. which is true 
only for 11 # 2. Hence: t.he quantifier olirnination procedure 
does wt inuount to a tlccision proceduw wheu eliminating 
all the \arial)lcs. It is crucial to have sophisticated sirnplifi- 
cation nwthods at hand to obtain comprchcrnsihlc rcslllts. 

Bot,li the cluantifirr elilnination and the siniplificat.ion 
niethods discussctl here arc efEcicnt.lp iniplcniented within 
the REDI.CE package REIILOG. Source cod<! and docunienta- 
tion arc freely iLVdZdJl(!. 

The phIi of the piper is as follow-s: Section 2 SUIllIIixi%eS 

ROIW basic fact,s 011 valued fields. and introduces t.he for- 
n1a.l Ianguagc we use for our constraints. Section 3 sket,chcs 
tlw ctli&u&on umt,hod, which is doscribcd in detail else- 
where [13]. In Scxtion -1 we tIcscribe in detail tlic: niat.hc- 
rnatics twhind our sinlplification n~cthorl and it.s algorithnlic 
realizat.ion. Section 5 provides a. hrief sununary of the rclc- 
vant. frat.ur.c:s of rwI)Lo(:. Sect iou 6 is a collection of ~sa~nples 
cOIllpUt~!d With 0111 ~IIl~J~1!Ulf~Il~~~~~~Il iI1 r{mLoC+. Sect;iOIl 7 fi- 

nally sunnniubes our resu1t.s. 

2 Some facts on valued fields 

Given ii field li and an ordered additiw Abelinn group l?, a 
~duution 1: : Ii + r U {LW} is a nlap with t!(u) = XJ if and 
Od~7 if 0 = 0; ilIlt 

f!(d) = 2.(u) + f!(b): v(u + 11) > Iniii(w((z), I). 

Tt follows thiit v(cl+h) = min(r:(u), II(/))) if V(U) # I. This 
fact is referred to as the ~ultumetlir: tdngle equality. 

Cousider e.g. the rat.ional uunhers. For any print 1) E IV: 
they A(>~ the p-adic valuat.ion t!!, : Q -+ Z U {CG} defined 
by /T,,(O) = CO and 

I;,(T/.s) = Illils{ ‘II E N : p” I 1‘ } - nlas{ 11 E N : 1)” 1 s } 

for r/s E Q’ Not,c tl1a.t for 2 E Z wr liaw 1;,,@‘) = z. i.e.! 
I:~, is onto. Due to a fiinlous thwrenl 1,~ Ostrowski [12] the 
p-aclic valuations arc essentially t.he only pOSSitJle ~2dIIiLt~iOIIS 

011 Q. 

The interest, in vihluatiolls origins in considering possi- 
blc iLbSOlIlW! values for fields. In fa.ct., for r 5 JR absolute 
values OlJCyiIlg thr: iiltranietric triangle iIl~~.~lli~llt~~ (a + h( <_ 

Inas( InI: lb/) cau be obtained as 1~1,. = 2-“‘“) and vice wrsa. 
For the I.)-adic valuations OIIC uslLal1; replaws 101~~ = y-“p”‘). 

GiveII such iU1 ;bSO\llt~f: VdUC ) I,.: thf? Vtilllfd field I< 
can bc cwnplcLod by adding liniits for all Cauchy sequeIIces 



TTT 
0 ’ --CC --------_ 

R, I,, I.! 

LL 
A ? 

0 

L---------A 

h- 

Figure 1: The structure of a valued field 

wrt. 1 IV in analogy to t.hc const,ruct,ion of the reals. For any 
1 IL, on Q this process yields the well-known p-adic numbers 
QP. 

One reason for swikhing from absolute values to maps u 
as discussed here is that, the lat.ter algebraically st.ructure thr 
field K: The elemcnt,s of non-negative value form a ring, the 
etnluatio~z ring R,.. In R,. the elements of positive value form 
a maximal ideal, the ~&ntl:on ideo,Z I,,, which is the only 
maximal ideal in R,. The elements li,. = R,: \ I,, form the 
multiplica.tire group of units of R,. From the maximality 
of 1,. it follows that. A-,. = R,,/I, is a field, the residw: class 
field wrt. w. All ideals in R,, are of the form 

I, = {(I E R,. : ,u(n) > y) for 0 5 y E lY. 

The various structures are visualized in Figure 1. 
The image 7:(1<‘) s l? of t,he multiplicatiw group of li 

is called t,hc rrcA,atl:on. g7~7y) of K and ‘I!. The ral77a.tion is 
CidlCd discrek if this vallia.ttion group is discrete, i.e. COllt,itillS 

AU element of minimal positive value. The p-adic valuations 
arc dkretc with value group Z. 

A valuation can be txwntially recovered from its vaIna- 

tion ring R,. possibly switching t.o au isomorphic valuation 
group. To avoid a two-sorted language, we may thus drop 
the information about, the act.ual value group bv using the 
language of rings together with nh,st7~uct dioisibilkles. These 
divisibilities express ordering relations in the value group by 
relating field elements: 

Note t,hat. -r(~ 1 y) ts y 11 I and vice versa. For convc- 
nicncc? we also introduce :): # y tf ~(1: N y) and writ.c 
3: # y for ~(3. = .I/). For any const,raint y we dcnot,e by -f 
the constraint equwalent to 17. For discretely valued fields, 
WV furthermore atld a constant, x of valuc~ 1 to our language. 
For Ixtdic valuations, 7~ could be interpreted e.g. as p. 

Note that our language does not include reciprocals. For 
ror~vc7~ience, w-e itllo\v ourselves to ident,ify terms with poly- 
nomials in Z[L ~1 where the set S stands for the c:ont.ained 
variables: and K is the constant ofour liLIl@I;tg~. 

3 An outline of the elimination method 

For solving our linear const,raints. wc USC a11 effect,ive linear 
quantifier elimination procedure based ml vi&d srdwtitw 

tion of test points. Raw:1 on itlc* of Ferrantcx and Rack- 
off [lo] for decision problems: virt,ual substitution methods 
for clwmtifirr cliriiinat.ion date back t.0 il thcoretiral *Xll)t!r 

by Wispfenniug [15]. Corresponding mct.hods over the rc- 
als have been successfully used for solving problems from 
numerous areas in science and engineering [7]. 

For eliminating the quantifiers from an input formula 

p(w1:. ..: u,,i) G Q,:rl .Q,>l.,lC’:(w,;. :u,~,:cI,. .T,Z) 

where Qi E {l: V}, the c~limination starts with the innermost, 
cpilllt.ificr regarding the othrr quant,ified variables within ,+ 
as c’stra paramct,crs. Universal quantifiers are lia~idlcd by 
Ill~illlS Of the equivalence V2dj +-+ ~32+. \V(? Illily thus 
reskict our at,tent,ion to a formula of t.lic form 

q*(ul;. i W.k) FE 3211,‘(7/,,~. . :‘,LI;,X): 

where t.he u,,,+J. . : 7~k are actually zi quanfified from fur- 
ther outside. The idea is now to fid a finite eliminution set 
E of terms in UI , . . . . 7~~ such t.hat 

ilxt/:-(,rl:. ,Wk,X) G v 7j-[.c/t](u,, . . ,I&). 
tEE 

That is, the above disjunction is a quantifier-free equivalent 
for w*. Not,e t,hat it is not necessary to perform any Wins- 
formation on the boolean structure of 7,$*. The elimination 
method is single exponential in the number of quantified 
va,riables, and double esponcntial in the number of quanti- 
ficr blocks. It has t.urncd out. suitable for parallelization [3]. 

By keeping track of the t.erms t substituted during the 
elimination process? we obtain instead of a. quantifk-free 
equivalent V:=, ~$!x[~:/ti] a guarded expression [A] 

1 

including satisfving sample points. This process of extended 
qr~n?Ltifiw eZiminutior2 can also bc rrpeilted for several ex- 
istent.ial quantifiers. The result. then is a set of conditions 
each associated with au answer for each eliminated variable 
obtained by resubst.it,ution. 

The construction cif climinatio7l sets for linear formu- 
las in valued fields has been described by t.he swond all- 
thor [13]. Before, 1Veispfcnning had given elimination sets 
for special casts of valued fields including the case of I>-adic 
valuations [lj]. 

The existcncc of a quantifier elimination procedure for 
the general case including non-linear formulas has been 
Shown independently by As a.nd Koclml [l] and Ershov [9]. 
The first. explicit, procedure: has bwn given by Cohen [2]. 
Considerable progress has been made by bIacint;rc [l l] turn- 
ing to a mow reasonable langimge including root predicates 
in UlalOgy to t,lie reals. This has hen made explicit by 
Weispfenning [14]. 

Our cliniinatioii procedure for linear formulas only re- 
lies on elementary arithmetic and on the valuation axioms. 
In pi~rticular, it. does not require the corisidcrcd field to be 
complete or even Hensclian. It, follows that our elimiuation 
resu1t.s are correct over both Q and Ql, . The same applies to 
our simplification strategies discussed in the following WC- 
t.ion. 
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4 Simplification 

With virtual substit.ut.ion m0t 110dS it IlitS t.UrIld Out CrUCiill 

to have sopliist,icated simplification nicl.llorls at. hand [O;]. In 
fa(:t,, the succws of REDLOC: is hasctl mainly on it.s powerful 
simplifier. 

The corresponding algorithms have bern described in tlc- 
t.ail by t,he authors taking ordered fields its ill1 CXiUllple [6]. 
We ildil~)t this fritnlework I.0 the t.licwry Of valued fi(!lds. Aft.w 
defining appropriate si~npl~fi~icutl:nn !&s, the task of sinipli- 
fic:at;ion SlJlitS into two major subproblems. Firstly: OIIP ham 
t.0 simplify single c0nstraint.s. Se~OIldly, OIlC hiiS tO simplify 
nested booloan combinations of constraint,s detecting algc- 
braic relationships among them. 

4.1 Simplification goals 

It is not alwavs clear what. kind of formulas are t.o 1~ consid- 
ered “simple.” ive summarize a.1~1 espla.in our simplification 
goals: 

Few constraints This is clearly onr of the main goals. 
QUilIltifi<!r elimination Out.prlt, is oft,eu t.oo large to be 
read a.nd understood by a human. 

Few different constraints This is verv convenient for 
quantifier elimination by virtual subs&ion; which we 
use. III addition, caring for the itlentificabion of equiv- 
a.lent constraints will support our smart, simplification, 
which is concerned with detecting algebraic rrlation- 
ships iIIIlOIlg separilte ConsCrailits. 

Simple terms This keeps the out.put small and compre- 
llensiblo. WC prefer a logic representation of knowledge 
to an algchraic one cwn for t.he price of more COII- 

sbraints. For instance: f = 0 V g = 0 is hct,ter t.han 
fg = 0. 

Convenient relations We prefer field c:onst.raints to valu- 
ation constraint.s. The former are much more familiar. 

Some of these: goals obviously contradict, 01x a.nothcr. They 
give, however. au idea of the issues addressed by o11r work. 

4.2 Simplification of atomic constraints 

The simplification st.rategics for a.t.omic- constraint.s distin- 
guish between field co&~%ts f = g: f # g OIL one hand 
and ~c~l~~tl:o7~ COTLS~TU~T~.~S f 1 !I, f I( 9: f N 9; f + g 011 th<! 
other ha.nd. 

Wcx bcit.ly assume that st,raight.for~~,~d simplificat.ions 
like evaluating const.raint,s with equal siclcs or lcxicographi- 
tally ordering constraints wit.11 symmetric relations such as 
“-‘I are applied whenever appropriate. 

4.2.1 Field constraints 

The simI)lific:at.ion of field (:onstr;Gnts has been thoroughl?; 
investigated in thr coutext of ordered fYds [G]. The: follow- 
iug lemma involvf5 only comput.at,ions that cit11 be pwfOrrllc!d 

wry cfficicnt,. Recall t.hat the computation f / gcd( f, f ‘) of 
the squarefree part. of a univariate polynomial f a11 be re- 
Cursively extended to t.lw nlultiyasiitte case. 

Lemma 1 Consider a p-adic: valua.tiOn. Let f. g E Z[s. 7i] 
with f # 9. CoIlsicIer ii COIlStriliIlt. y E f Q g for p E {=; #}. 

Denote b?; I/ the srIua.refrec part. of f - y, which is 111adc 

primit.ive iu such a way t.hat the lxad coefficient is positive. 
Then 9 H II Q 0. Furthermore. if 11 = T“\I’, then we may 
won set q ++ 11’ Q 0. 0 

If t.lle left. hand side of t,he rrsulting Consbraint. is 1: it. Citll 
finally he cvitluatetl to either “t.rue” or ~false.!’ 

4.2.2 Valuation constraints 

Our first wsult provides il.11 a1gorithnlic: ted for wphcillg 

within vallli\tiOIl wilstraints pC~l~IlOIllii~ls iIl Our coustaut~ 7r 

ly single monomials. Due t,o the cquiralcnces f = 0 tf 
j w 0 and f # 0 +-+ f + 0, it can also lx applied to field 
const,raints with zero right. hand sides. 

Lemma 2 Consider wt. a I)-adic valuation 

a.ricl let 0 < X- 5 7n be minimal with ZI; # 0. Coniputc 
thr: primr: factor decomposit.ion 21: = 9:’ . qf,” . Assume 
t.hat for a11 prime fa.ctors 9j wit,11 1 5 1: 5 n iid for ill1 

k + 1 5 1 5 m with k + el > I we have (I~+“~~‘-’ 1 2, over 
t.hc integws. Then vI, (f) = vp(zk, d’). 

Proof Let. k: + 1 5 1 5 m. If 11 = 9i. then WI: have for 
k + e, < I t,1iilt, 

So fix all p-ildiC valuatious we tlavc +(z~.ii”) < I~l,(z~7i’), aIlt1 

wc can apply the ultranif%ric triaIlg1C cqilality. 0 

The following lemma is conccrwd with cancclling great,- 
est common divisors from hot.11 sides of a constraint. 

Lemma 3 Consider a p-adic valuikiOIl. Let. f: g E Z[& ir] 
with f # 0 or g # 0. Let h = gcd(f,q), f,, = f/h, ad 

.(lh = g/ll. Then 

The CXD COIllpUtitt.iOIl km! invo1vcs both the pO1~~IlOIllia1 

(:(.:I> of f and 9 over Z[L ~1 :mcl the int.eger C:C:D of the cor- 
responding conttxlts. The conditions h = 0 and h # 0 will 
undergo the field COIlStriliIlt si~liplific~ation dcscribecl abow. 

Since gctl(f, 0) = f i we Obti~iIl the following corollary ilS 

:I. Spf?&l CaSc’ Of LtIllIIIa 3. 
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Corollary 4 Consider a. p-adic valuation. Let f E Z[L 7i] 
with f # 0. Then 

0 11 f +-+ false, 

The next lern~na shows how to shift valuation information 
onto one side of a const.raint provided that the valuation is 
fixed. 

Lemma 5 Consider a p-adic ~i~lllatiOn. Let f, g E Z!.[AJ 
with f: g # 0. Split b0t.h f and !/ int.0 cont,ent and priniitivc 
part: f = cf . f* and y = cy g’: and set, b = Iv(cf) - u(c!,)I. 
Let p E {I, 11, w: +}. Then for v(c,) 5 A; we have 

SiAlarly, for ,~(c,) > v(cB), WC obtain f Q g tt p”f* Q 
9.. 0 

According to Lemnla 3, within constraints involving only 
niononiial occurrences of 7r: the occurrence will be restricted 
to one side of t.hc const,raint. One can then use the following 
siuiplification to cornplct.ely get. rid of the constant n. 

Lemma 6 Consider a p-adic valuation. Let z: ,I’ E Z be 
relativclly prime wit.li z, ,z’ # O? aid let, 2 = (1:’ . q? bc the 
prime factor decomposition of 2. Let. 7) E Ni? and set 

and z> = n{ (I, : e, 2 n }. Then 

Proof \;C prove part 1, the other parts are analogous. 
Consider ~‘77~ N 2. If p does not, divide 2’ we may obvi- 
o~~sly drop it. If p divides z’; then it does not divide 2. since 
z and 3’ are relatively prinic. That is 2 N 1, and n” N s is 
“false” a.s well as 2~” - 4. We thus nlay a.lso drop z’ in t.his 
Ci3SC. 

Assume now that 7i” N z holds. Then 1) occurs with 
the power of 71. in 2. It follows that p divides z=-: and thus 
2= + 1. Assunic vice versa t.hat z= + 1. ‘Then 1) divides 2=; 
and by the definition of z= we how that p occurs in t with 
the power of 7)., i.c, K” N z. 

The second equivalence z’~T” # 2 +--) z= N 1 is simply 
the contrapositive of t.lie first enc. q 

Const.raints involving only integers can be nornlalized in 
such a WX~ t.ha.t their right. hand side is 1: 

Lemma 7 Let. 2, 7’ E Z be relatively prime. Then 

1. z N 2 ct Zl’ - 1 and 2 + z’ f--) 32’ + 1; 

2. 2 I z’ tf z - 1 and 2 I( 2’ +-+ z’ + 1. 0 

The remaining integers in the pure int,eger constraints 
can be replaced b; their squarcfrcc parts: 

Lemma 8 Let I, z’ E Z be relat.ively prime. Denote by z,? 
and 21 t.he squarefree 1~art.s of 2 and z’, respectively. Then 
for r, E (1: 11: N, +} we have z Q 2’ tf 2.F p -’ q -9 . 

For solving syst,cnls of integer congruences we will use 
sontc extra sinlplification, which obviously contradict,s the 
goal of few constrain& Instead: it. focuses on producing few 
different constra.ints: 

Lemma 9 Let 2 E Z: 2 # 0 with prime factor decomposi- 
tion 2 = qp’ (1:‘. T~PIJ 

4.3 Smart simplification 

Our sinlplifier will, of course, perfornl the following straight- 
forward siIilI~lific:at,ions: in conjunct,ions we drop :‘true,” and 
we kill all ot.her constituents if “false” occurs. For disjunc- 
t.ions the dual sirnl)lificat.ioIls are applied. 

Moreover, we wish t.o take into account, algebraic rela- 
t,ionships between several constraints. For instance, a = 0 A 
u 11 1 should become “false.” Furthcrniore. we want to make 
use of such relationships cvcn for constraints that occur at 
different. places deeply 11estctl inside a cornples formula. For 
t,his, we construct implicit thcorics during the recursive elinl- 
ination process. 

.4 theory 8 is a set of constraints considered conjunctive. 
We say that, two forniulas ‘jl (L) and jc2 (A-) are equionle~~t 
ur7-t. 0 if 91 (I) +--+ 92(g) for all values (8 that. satisfy 8. 
Formall; considering our constraint variables as constants 
in the SCIIS~ of first-order logic, we may then writ,c 

Theories ~111 bc passed to our sinqlifier in order to rep- 
resent solne external knowledge. The crucial point., however; 
is t.hxt they arc inlplicitly const,ructed by the simplifier itself 
during recursion. \Ve shall first clarif\; how to simplify a sin- 
gle conjunction or disjunction wrt. a given t.heory, and then 
sketch the implicit theory const,ruction during deep simpli- 
fication. 

4.3.1 Evaluating algebraic relationships 

The sinq>lification of a disjunct,ion Vi y1 wrt. a theory 8 is 
pcrfornled in two strps: First sinq)lify A, 7, which is rquiv- 
alent to 1 Vi yl: wrt. 8: and then negate the result. back in 
thf? SilIllC Inimncr. It. thus Suffices to explain 1lOW to sirnplifv 
a conjunct,ion wrt. Q. 

The simplification of a coIi,junction /\; yL wrt. a theory 
0 is based on the following i&a: Regard 8 as a simplified 
knowledge base. Successively add to 0 each piece of knowl- 
rdgc yi keeping 0 simplified. Finally extract from Q all new 

knowledge. This new knowledge replaces t,he input conjunc- 
tion. Kate that ilIly list of constraints input as a theory can 
be turned int,o a sinlplified knowledge base by successively 
adding the constraints to the cnlpty base. 

We have to clarify t.he following two issues: 

1.. How do we recognize the new knowledge in the end? 



Table 1: Smart, simplification for ruabching terms. Table 2: Smart simplification for crossed terms. 

# I D - I< - I< 
K I< C(Ij) 
DI D 

-K- D ID I 
4 I D C (11) K I D 

2. How can one add one -yi to 0 such t,hat t.hc latter re- 
m&s simplified? 

For rwognixing the IICW knowledge t.lrere is each constraint 
in (3 labeled with numbers ranging from 0 to II. Each newly 
added consbraint origined by some y, will bc then labeled 
rl + 1. Not.c that there is in general not simply yi added to 
0 but only the extra. information contained in yi. If, e.g.: 
(z # TJ, 11,) E 0 and 7i E 2 1 ?/> t.hen WC will add (:c 11 2/, TX+ 1) 
to 0 and delete (.r + y, ,n) from 0. This new constxaint z 11 ZJ 
is exactly the information we wish to have in the simplified 
constraint,. It is finally extracted due to its lilhel 11 + 1. 

Let, us now esamine in detail how to add 7i t,o 0 depend- 
ing on u-hat is already present there. We successively pick 
the rl, and run t,hrough 8 comparing yi to each d E (3. The 
relationships we consider het,ween ,3 and yi are that thcrc 
occur the same terms with different relations. 11’1~ il1ustrat.e 
the four types of simplification t.hat can occur by example. 
The complete set of simplifications is collected in Table 1 
and Table 2: 

If ?Y EE f = 0 and yi E f # 0, t.hen me have discovarcd 
an inconsistency. We may abort, the computation, and 
return “false.” This case’is marked in the tables by “1” 
for inconsistent. 

If 8 E f 1) 9 and y1 E f # g, then ,i) + yi. 1Ve 
may smply drop a,;, and proceed to ?!+I. This <‘iLye is 
marked by “D” for drop. 

If 19 E f # g and yt G f 11 g7 then similarly to the 
previous case, f # g can be tlelcted. This time, dele- 
tion take place in the theory, and we have to continue 
scanning 8 with yi. This cast is marked in the ta.blcs 
as :;E;:: for J.ill. 

If 8 E f 1 g and 7; G g 1 f, then 6 A yi +-+ f N g. 
We thus chnn?e yt int.o f w g, kill 8: and continue 
scanning 0 with the new -/i. One easily verifies by 
inspection of the tables t,hat with our simplifications it 
is not necessary to restart scanning 0 with the new yi. 
This case is marked in the tables by ‘C” together with 
the 11ew yi. 

If none of the first two cases happens, thr possibly changed 7, 
is finally labeled awl added to 8. Recall from the previous 
section that equations illld inequalities are simplified such 
t1la.t their right hand side becomes zero. For the purpose 
of the simplifications described here, WC: are, of course, able 
to match, e.g., f - 9 = 0 wit,11 f 1 g by means of a simple 
subtxxtion. 

4.3.2 Deep simplification 

AR already indica.t.cd, XVV(: use our concept of a theory for re- 
lating information located on tliffercnt. boolean levels. More 
precisely, WC use constraints, which are located on a cer- 
tain booltran level, deeper inside the formula by enlarging 
an implicit theory which is recursively passed down. This 
technique of theory inhwitc~7~w: has been clescribcd in detail 
for ordcrcd fields b,v the authors [6]. -4 careful analysis has 
Shown t.lliLt. there arc 110 MlilptiOIlS necessary for the parlrt.ic- 
ular situation of valued fields. 

5 Implementation in Redlog 

Quant.ifier elimination and estendcd quantifier elimiuat.ion 
by virtual substitut.ion have bwn generically inq~lcr~icntcd 
within t,he ISEDUCE package REDLOG. REDLOG is a computer 
Zogic system providing not only yuautificr elimination but a 
sophisticat.cd working envirounwnt for first-order logic over 
various languages and t.hcoriw [5]. The ItEDLO(: Source code 

and documcnt.ation are freely availa.blc on the w\v\v.~ 
-~ftcr the great success of REDLOG for solving real prob- 

lems~ qua.ntificr eliminat,ion and extended quantifier climi- 
rialion for y-adic valued fields have been iUl(kd as further 
instances of the generic climinat.ion code. 

Tllf? COrreSpOlldiIlg REDLOG COIltfxt DVFSF (See [5] for de- 
tails) corrrsponds to p-adic valued fields. W1u.m switching 
t.o it: ouc passes a paranwl.er 9 which is a possibly nega- 
tive primal or 0. For positive q all comput.at.ions t.ake place 
wt. thr wrrespontling 9-adic valuation. For q = 0, the 
COl~lpllti~tiOIlS arc uniformly correct for all p-a&: V~l.llliltiOllS. 

Both input. and output possibly involve a symbolic constant 
“p” which corresponds to the constant n of our language. 
Finally, for rwgat.ive q. the **-” can be read as “up t,o,” i.e.; 
all comput,ations are performed in such a way that t.hey are 
correct. for all p-adic valuations wit.h p 5 191. III this ca.se: the 
knowledge of an upper bound for p supports t,he elimination 
process [13]. 

For our cornpu t.at.ion examples, we shall focus on the 
most, general setting 9 = 0. It will t.urn out that t.hc simpli- 
fication st.rategics described above are so powerful, that, in 
t,he pasa.mctcr-free case we obtain a st,raightforward descrip- 
Con of the class of valll~d fields in which the corresponding 
formula holds. 

6 Example computations 

-111 our comput,at,ions 1lilVP heen carried out on a Sun Cltra.-1 
Motlcl 140 using 6-l MB of memory. The smallest mcasura.blc 
CPU tinw is 10 nis. 

‘http://vuv.fmi.uni-passau.de/-redlogl 
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6.1 P-adic balls 

Wit,h respect to I’-adic absolute wlucs. we consider open 
balls 

{ .r E Q : 15. - o(,, < r } 

of radius ‘r. Due to t.he ultrametric t,riauglc incqualit~y~ they 
have the following prop&,v: For each pair of given Mls 
there is cithcr oue of them inch&d in the other one: or they 
are disjoint:. ‘This is statccl by the following fil~lIlllliX 

vr,Vr2vnVh(3.c(r, 11 x-u A I’2 11 .x - 6 A r1 1 f2) ---+ 

t/!/(7-2 11 y - 6 ---+ r’l 11 .(/ - a)). 

For automatically proving tllc t.hcoreul uuifbm~ly for all y- 
adic valuations, we elirninatc all the variables. Recall that 
we have to cspcct. the result to contain cor1st.raiut.s iuvolv- 
ing the constant p. In addit~iou: thcrc might be variable- 
free constraints such ilS 2 = 3: which cannot ncccssari1y IJe 

C?Vidllihd to truth values. SO fol1owiIlg the qllilntdif~r elini- 
ination, siniplificat,ion is a substmtial step for obtaining a 
comprehensible result here. In fi.lCt,, cliiaIitificr-clilrlirlatioll 
without. simplification yields after S69 s il rrsult coutaiuing 
287655 constraint,s. 4utoniat~ii: application of our sirnplifica- 
tiou stra.tegies during the elimination process tlccrcascs tllc 
corriput.ation time to 2.2 Y and shrinks t.hc result. t.o 24 con- 
st,raints. By inspection they cau easily verified to he %rue” 
for ilIIy vi~llli~tiOn. 

Fisiug the valuat,ion to 212 or ~I:~OOOC,~ and using our siru- 
plification wit.11 tlic clinlination we obt,ain “true” after 0.9 s 
and 1.1 s: rc~spc:c:tivcl\;. 

6.2 Size of the residue field 

We are going to construct a first-or&r foruiula over our lau- 
guage that holds if and only if IJCUl = IRr/I,.I > 5; i.c., 
thcb residue field wt. t,llc valuation coritains at. least five el- 
c:mcmt,s. Since for p-adic vidlliLt.iOIlS wc? have Ii, = Z/I). the 
result of our uniform elimination should thcu so11x11ow st,at,c 
1) > 5. It will lx iut,cwstiug to observe how this is encoded 
in valuation constraints. 

Our approach is t.0 state that 0, . 3 rqmsfmt separate 
residue classes, ant1 fiirtllerniore CliLiIll the c:sistcncc of some 
2; which does not belong t.o any of t.hese (.lasscs. For au?; 
residue field 11~~~ we rertainl)- have 0 # i. aud it, follows 
that i # Z and Z # 3. Similarly, i # 3 will follow from 
Ti # 2. It t.hus suffices to explicitly si.iM: b # 2 ant1 U # 3. 

That is, 2 - 0: 3 - 0 $ I,: in ot.her words x(2) = 0 = U(I), 
v(3) = 0 = v(l), which is in our langllilgf? 2 N 1 A 3 - 1. 
In the smic way: w’c dcscrilw C # fi: , ? # S I,?; x - 0 N 
lA,,.Az-3 N 1. Together; we obtain t.hc following input. 
formula: 

342 - lA3--1Ax- 1 A A 3: - 3 N 1). 

Wit.hout, simplification the elimination of 3~ yields 295 COII- 
straints within 50 ins. Using our siinplificat,ion wc obtain 
aft.er 120 111s the following result. cxmsisting of only 23 COII- 
straints: 

(3-lA2~l)v 

(7 - lAG-lA5-lA3-lA2-1)V 

(5-lA3-lA2-1)V 

(11-i~i0~1~6~1~3~1~2~1)~ 

(7 - IAG-lA3-lA2-1)V 

(G--A/\-1A3-112-l). 

Xutonmtically checking for subsunipt.ion l~c~tw-ocn 1.h~ cou- 

junctious yields aft,cr 10 IN the simple solution 

3--lA2-1: 

which states in a nice \ray t,hat our input formula holds for 
any p-adiC valuat.ion oscept for (12 and v:3. 

6.3 Properties of affine linear functions 

So far we have o~lly considerecl parameter-free decision proh- 
lems. Our first pasa.nlet,ric problem is concerned with t.hc 
quest,ion which affine linear funct,ions have a zero of a. value 
lwtwccn 1 and 1.000: 

h(u3. + 6 = 0 A p 1 L A 3’ 1 pl”““). 

This yields after 10 rns the following equivalent condition in 
tlic paranwtcrs: 

Up !w' + 6 = 0 V up + 6 = 0 V (ctp I 6 A (I # 0 A 6 1 q~~“~~). 

Extended qualtificr c:linliuation yields thcsc conditious to- 
gether with satisfying sample poini,s: 

[ 

flj) + b = 0 x=y 

oj~ggg + 6 = 0 1’ = ,$99 

nj, 1 h A u # 0 A 6 1 .pl”“” .I; = --b/u 1 
This computation also takes only 10 111s. 

Our ncxl. c!sarnplc asks for a characterization for t.wo 
a&e linear functions t.ho zcrocs of which have the same 
\sluc: 

This yields after 20 nls the following ecluivalcnt condition in 
thf> pi~i~Illct,crs (Z 1: 61: ~2. a.~~d 62: 

(a.16:! - ~261 = 0 A UI # 0) V 

(6, = 0 A 62 = 0 V (~1 + 6, = 0 A ~12 + 62 = 0) V 

(cf.1 - hl A ~1 # 0 A u: + 6s = 0) V 

(a,!~:! + 0261 = 0 A (~2 # 0) V 

(cc,62 + (1~6,p = 0 A tzz # 0 A 62 = 0) V 

(c/,2 # 0 A hl = 0 A b:! = 0) V 

(01 + hl = 0 A (12 - 62 A 02 # 0) V 

(ulb:! - 026, A CLI # 0 A (11’ # 0). 

Ol~ti~ining sarnplc! solutiolis is iLlSo no problem here. 

6.4 Linear congruences over the integers 

\:e ccmsidw the following systcni of liuear congrucnccs: 
which has been randomly generated: 

33x3 + 62 E 0 (IllOd p’O): 

13~~ + 17x3 + 10x.1 + 25:~~ + 51 = 0 (mod 1)s). 

19x2 + 5411, + 89 G 0 (mod p7)? 

88x2 + 5G.f; + 74 E 0 (1110d jP)> 

9G.r1 + 94x2 + 92x;< + 50x5 + 48 E 0 (mod y’). 



Note that. the prinlc p is not fiucd. Our goal is to solve the 
svstenl for concret~e p over the integers Z. 

*’ The system is f&siblc over Z if and ouly if it is feasible 
over blic p-adic iiitcgcrs R,.,. ‘The latter feasibility (311 lx: 

checked I.)?; applying our quiultific:r cliruiuation to the follow- 
ing formula: 

p2 1 962, + 94x:! + 92x3 + 5O:ce + 48). 

Quautifier elimiuation with successive ~~lll,OlIliltiC applicatiou 
of Lcnma. 9 yields after 1.4 s the following necessary and 
sufficient wndit.iou for t,litr feasibility of t,lic systcni: 

-161 -lAll-lA5-lA3-lA2-1, 

tl1a.t is p $ (461, 11, 5: 3, 2). Exteuded quantifier eliminatiorl 
yicltls iu addit.iou a sa~uplc solution in &,, As usual, the 
timings for extended and non-t:xl.cudt:d quautificr climina- 
t,ion are the wine: 

5683171 247 

Jr, = 2920806’ 
3’:!=E, 1.3=-!? 

33? 

2320471 3213 
x.1 = - 2g208g60 : 3’s = -=. 

Given a concrctc prime y; wc can riom easily lift. this solutiou 
as follows: Fix, for example, p = 13. recall that the grcatcst 
power of 1, in the input system is 1)‘“: and consider ~1. W: 
compute bp the extended Euclidean algorit.lm (10 ms) 

1 = 53810023598.2920896 - 1140713.1310. 

That is 53840023598 . 2920896 q 1 (mod IIB~~, ). hence 

5683171. ‘53830023598 .292089G 
.I:, s 

292089G 
(IIlOd 1,:jIo) 

= 3059820ti0751469258 E Z. 

The cougrucucc module 1,3~~ certaiuly implies the congru- 
~IICX 1r10du10 I,:+. for all 1 < AY < 10. This “a?, W: automat- 
ically lift all solut.ions withill 10 nis: 

2, = 305982060751469258, x:! = 8157363288997, 

.I::< = 259006863472. xj = 51185905138020710. 

x:, = lG6~62558935687. 

Note that the esscnt.ial I)itrt of the comput,at.ioIial work, 
namely the cstcntlctl cpantififlr elinlinaticm~ is done uni- 
formly for all p. In our example this uniform part makes 
Ilp 99.93 perccnt of Lllc c:OInpllt.ilti011 t.ime. 

In general: one will Obtain not. only one IJut several con- 
ditions each associat.cd wit.h il Wnlple point. After sclrcting 
a prime: I>, arc can, however, ewluatc \vit,h our simplifier each 
of t,lie conditions to either Yrue” or “falsr” iIllCl among the 

“true” CiLSCS pick a suitable jxltlic integer solut.ion. 

7 Conclusions 

\Ve have discussed sirnplifici~tion st.rirWgies a.nd corrcspond- 
iug iIilpleIlieIit,atioli techniques for forniulas over Q or Q,, 
with p-adic vahmtious. Our simplifier iS iniplenientetl within 
the RKI)I.:C’I.: package W:I)I.OG. It is closely conncctc~d to the 
quantifier clirnina.t.iou for linear formulas t.hcw. Both proce- 
dures t.ogct.lwr CnaI)lf! US t:o p;lr;lmtrt,ric:allv~ll~ check 1>-adi(: con- 
straints for fcasibi1it.y. The rxtcxtlcd quantifier climinat.ion 
also available in H.EDLO(: together with the simplifier yields 
satisf\;iug parametric sample p0int.s for f~~i~Sil&! Wnst.rilints. 
Opt.ionally, all tllcsr computations can be pc~rfornicd uni- 
formly for all lbatlic valuations. .-\n int,er&ing application 
of our nletliod is the solution of systcuis of sirnult~aneous 
congrucnccs module prime powers over the inwgcrs. IJp t,o 
a st,raiglit.forward final lifting st.cp: this is doue uniformly for 
all primes. 
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