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Abstract

We automatically check for the feasibility of arbitrary
boolecan combinations of lincar parametric p-adic constraints
using a quantifier elimination method. This can be done
uniformnly for all p. We focus on the necessary simplification
methods. Our method is implemented within the computer
algebra system REDUCE. We illustrate the applicability of
this implementation to non-trivial problems including the
solution of svstems of linear congruences over the integers.

1 Introduction

It is well-known that lincar parametric constraint solving
over the reals has numerons important applications in sci-
ence and engincering. The same holds for corresponding
integer and mixed real-integer problems.

In this article, we consider analogue problems over p-adic
numbers instead of real numbers. This also has important
though less obvious applications, mainly in class field theory
and Diophantine analysis [8].

One can, for instance, weaken the problem of find-
ing integer solutions to a Diophantine polvnomial equation
f(z1,...,z4) = 0 to considering for a fixed prime p only
congruences f(x1,...,xn) = 0 (mod p*) for all prime pow-
ers. This can in turn be reduced to considering the initial
cquation over the p-adic integers, which is much easier than
over Z.

An important special case of our linear method is testing
for the feasibility and finding sample solutions of a systemn
of simultaneous congruences in linear variables zy, ..., x,
over the p-adic integers:

aper + -+ arpdn b1 (mod p’”)

b Kan )

11+ -+ Gna (mod p
These p-adic solutions can then be easily lifted to Z.

As a very important feature, our approach can solve
problems uniformly for all p-adic valuations. In such a set-
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ting, variable-free constraints can, in general, not be eval-
unated to truth values. A variable-free constraint might
¢.g. state that both 1 and 2 have the same value, which is true
only for p # 2. Heunce, the quantifier climination procedure
does not amount to a decision procedure when climinating
all the variables. It is crucial to have sophisticated simplifi-
cation methods at hand to obtain comprehensible results.

Both the quantifier elimination and the simplification
methods discussed here are efficiently implemented within
the REDUCE package REDLOG. Source code and documenta-
tion are freely available.

The plan of the paper is as follows: Section 2 suminarizes
some basic facts on valued fields, and introduces the for-
mal language we use for our constraints. Section 3 sketches
the elimination method, which is described in detail clse-
where [13]. In Section 4 we describe in detail the mathe-
matics behind our simplification method and its algorithmic
vealization. Section 5 provides a brief summary of the rele-
vant features of REDLOG. Section 6 is a collection of examples
computed with our implementation in REDLOG. Section 7 fi-
nally summarizes our results.

2 Some facts on valued fields

Given a field K and an ordered additive Abelian group T, a
valuation v : K = T'U {oco} is a map with v(«) = oo if and
only if a = 0, and
v(ab) = v(a) + v(b), u(a+b) > min(v(a),v(b)).

It follows that v{a+b) = min(v(a), v(h)) if v(a) # v(b). This
fact is referred to as the ultrametric triangle equality.

Consider e.g. the rational numbers. For any primep € N,
they allow the p-adic valuation v, : Q = Z U {oo} defined
by ,(0) = co and

vp(r/s) =max{n eN:p" |r} —max{neN:p" | s}

for r/s € Q*. Note that for = € Z we have v,(p°) = z. i.c.,
vp is onto. Due to a famous theorem by Ostrowski [12] the
p-adic valuations are essentially the only possible valuations
on Q.

The interest in valuations origins in considering possi-
ble absolute values for fields. In fact, for ' C R absolute
values obeying the ultrametric triangle inequality o + 8| <
max(|al, |b]) can be obtained as ||, = 27"*) and vice versa.
For the p-adic valuations one usually replaces |al, = p~ Cpled

Given such an absolnte value | - |., the valued field K
can be completed by adding limits for all Cauchy sequences
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Figure 1: The structure of a valued field

wrt. ||, in analogy to the construction of the reals. For any
|-1» on Q this process yields the well-known p-adic numbers

One reason for switching from absolute values to maps v
as discussed here is that the latter algebraically structure the
field K: The elements of non-negative value form a ring, the
valuation ring R,. In R, the elements of positive value form
a maximal ideal, the valuation ideal I,, which is the only
maximal ideal in R.. The elements Uy, = R, \ I, form the
multiplicative group of units of R,. From the maximality
of I, it follows that K. = R, /I, is a field. the residue class
field wrt. v. All ideals in R, are of the form

I,={a€eR,:v(a)>v} for 0<~veTl.
The various structures are visualized in Figure 1.

The image v(K”) C T of the multiplicative group of K
is called the wvaluation group of K and w. The valuation is
called diserete if this valuation group is discrete, i.e. contains
an element of minimal positive value. The p-adic valuations
arc discrete with value group Z.

A valuation can be essentially recovered from its valua-
tion ring R, possibly switching to an isomorphic valuation
group. To avoid a two-sorted language, we may thus drop
the information about the actual value group by using the
language of rings together with ebstract divisibilities. These
divisibilities express ordering relations in the value group by
relating field clements:

zly «— v(z)<Loly),
elly = o) <oly),
r~y «—— u(r)=v(y).

Note that —(x | y) «— y || ¢ and vice versa. For conve-
nience, we also introduce x # y «— —(x ~ y) and write
z # y for ~(z = y). For any constraint y we denote by ¥
the constraint, equivalent to —y. For discretely valued fields,
we furthermore add a constant 7 of value 1 to our language.
For p-adic valuations, 7 could be interpreted e.g. as p.

Note that our language does not include reciprocals. For
convenience, we allow ourselves to identify terms with poly-
nomials in Z[.X, ] where the sct X stands for the contained
variables, and = is the constant of our language.

2

3 An outline of the elimination method

For solving our lincar constraints, we use an effective linecar
quantifier elimination procedure based on wvirtual substitu-
tion of test points. Based on ideas of Ferrante and Rack-
off [10] for decision problems, virtual substitution methods
for quantifier climination date back to a theoretical paper
by Weispfenning [15]. Correspounding mcthods over the re-
als have been successfully used for solving problems from
numerous arcas in science and engineering 7).
For eliminating the quautifiers from an input formula

plr, o um) = Q. Quenti(tr, . o, Um, T1y ... Th)

where Q; € {3,V}, the elimination starts with the innermost
quantifier regarding the other quantified variables within
as extra parameters. Universal quantifiers are handled by
means of the equivalence Vry) <— —3Jz—y. We may thus
restrict our attention to a formula of the form

where the wmyi. ..., wy are actually z; quantified from fur-
ther outside. The idea is now to find a finite elimination set
E of terms in u), ..., ug such that

Jad™ (g, .. ug,x) = V ¢ [/t ua, ...
teE

yUR).

That is, the above disjunction is a quantifier-frec equivalent
for ©*. Note that it is not necessary to perform any trans-
formation on the boolean structure of ¥**. The elimination
method is single exponential in the number of quantified
variables, and double exponential in the number of quanti-
fier blocks. Tt has turned out suitable for parallelization [3].
By keeping track of the terms ¢ substituted during the
elimination process, we obtain instcad of a quantifier-free
equivalent \/*_. v~ [£/t;] a guarded expression [4]

=1
wiz/t] =t

wle/ti] @ =ty

including satisfving sample points. This process of extended
quantifier elimination can also be repeated for several ex-
istential quantifiers. The result then is a set of conditions
each associated with an answer for cach eliminated variable
obtained by resubstitution.

The counstruction of climination sets for linear formu-
las in valued ficlds has been described by the second au-
thor [13]. Before, Weispfenning had given elimination sets
for special cases of valued fields including the case of p-adic
valuations [13].

The existence of a quantifier elimination procedure for
the general case including non-lincar formulas has been
shown independently by Ax and Kochen [1] and Ershov [9].
The first explicit procedure has been given by Cohen [2].
Counsiderable progress has been made by Macintyre [11] turn-
ing to a more reasonable language including root predicates
in analogy to the reals. This has been made explicit by
Weispfenning [14].

Our climination procedure for linear formulas only re-
lies on elementary arithmetic and on the valuation axioms.
In particular, it does not require the considered field to be
complete or even Henselian. It follows that our elimination
results are correct over both Q and @Q,. The same applies to
our simplification strategies discussed in the following sec-
tion.



4 Simplification

With virtual substitution methods it has turned out crucial
to have sophisticated simplification methods at hand [6]. In
fact, the success of REDLOG is based mainly on its powerful
simplifier.

The corresponding algorithms have been described in de-
tail by the authors taking ordered fields as an example [6).
We adapt this framework to the theory of valued ficlds. After
defining appropriate simplification goals, the task of simpli-
fication splits into two major subproblems. Firstly, one has
to simplifv single constraints, Secondly, one has to simplify
nested boolean combinations of constraints detecting alge-
braic relationships among them.

4.1 Simplification goals

It is not always clear what kind of formulas are to be consid-
ered “simple.” We summarize and explain our simnplification
goals:

Few constraints This is clearly onc of the main goals.
Quantifier elimination output is often too large to be
read and understood by a human.

Few different constraints This is very convenient for
quantifier elimination by virtual substitution, which we
use. In addition, caring for the identification of equiv-
alent constraints will support our smart, simplification,
which is concerned with detecting algebraic relation-
ships among separate constraints.

Simple terms This keeps the output small and compre-
hensible. We prefer a logic representation of knowledge
to an algchraic one even for the price of more con-
straints. For instance, f = 0 V g = 0 is better than
fg=0.

Convenient relations Wc prefer field constraints to valu-
ation constraints. The former are much more familiar.

Some of these goals obviously contradict one another. They
give, however, an idea of the issues addressed by our work.

4.2 Simplification of atomic constraints

The simplification strategies for atomic constraints distin-
guish between field constraints f = g, f # g on one hand
and weluation constraints f | g, f |l g9, f ~ g, f # g on the
other hand.

We tacitly assume that straightforward simplifications
like evaluating constraints with equal sides or lexicographi-
cally ordering constraints with symmetric relations such as
“~" are applied whenever appropriate.

‘Y
~

4.2.1 Field constraints

The simplification of field constraints has been thoroughly
investigated in the context of ordered fields [6]. The follow-
ing lemma involves only computations that can be performed
very efficient. Recall that the computation f/ged(f, f') of
the squarefree part of a univariate polynomial f can be re-
cursively extended to the multivariate case.

Lemma 1 Consider a p-adic valuation. Let f. g € Z[X, 7]
with f # g. Cousider a constraint ¢ = f o g for p € {=, #}.
Denote by h the squarefree part of f — g, which is made

primitive in such a way that the head coefficient is positive.
Then ¢ +— h ¢ 0. Furthermore, if h = ="}’ then we may
cven set o > h' 0.0

If the left hand side of the resulting constraint is 1, it can
finally be evaluated to either “true” or “false.”

4.2.2 Valuation constraints

Our first result provides an algorithmic test for replacing
within valuation counstraints polynomials in our constant 7
by single monomials. Due to the equivalences f = 0 +—
F~0and f #0 «— f 0, it can also be applied to ficld
constraints with zero right hand sides.

Lemma 2 Counsider wrt. a p-adic valnation

n

f= Z:,-?r", 2 €7,
i=0

and let 0 < k < m be minimal with =z # 0. Compute
the prime factor decomposition z gyt ogqfn. Assume
that for all prime factors ¢; with 1 < i < n and for all
k+1<!<mwith k+e; > [ we have qi1+1“+5"_l | 21 over
the integers. Then v,(f) = vp(z17").

Proof Let k+1 <! < m. Ifp= g, then we have for
k+e; <l that

'vp(:kﬂ'k) —e;+h<I< 'u,,(zlrrl),
while for & + ¢; > [ it follows that
vplam ) =e+hk<(1+k+e—D)+1<vplar).
If p#q; for all 1 <i < n, we have
'u,,(:,\.fr’“) =k<l< v,,(~l7r’).

So for all p-adic valuations we have v, (2, 7%) < vp(z7"), and
we can apply the ultrametric triangle equality. [J

The following lemma is concerned with cancelling great-
est common divisors from both sides of a constraint.

Lemma 3 Consider a p-adic valuation. Let f, g € Z[X, 7)

with f # 0or g # 0. Let h = ged(f,9). fo = f/h, and
gn = g/h. Then

fllg «— fullgn AR#O,
flg <« flgnVh=0,
f~g & fa~gpVh=0,
frg «— fodgp ANh#0. O

The Gep computation here involves both the polynomial
aep of f and g over Z[X, 7] and the integer G¢D of the cor-
responding contents. The conditions h = 0 and h # 0 will
undergo the ficld coustraint simplification described above.

Since ged(f,0) = f, we obtain the following corollary as
a special case of Lemma 3.



Corollary 4 Consider a p-adic valuation. Let f € Z[X, 7]
with f # 0. Then

0| f ¢ false,

10— true,

fHO0—= 04 fe—=fA0e— f#0,

0|f+—0~f+—f~0—f=0. O

The next lemma shows how to shift valuation information
onto one side of a constraint provided that the valuation is
fixed.

Lemma 5 Counsider a p-adic valuation. Let f, g € Z[X]
with f, g # 0. Split both f and g into content and primitive
part: f=c¢y-f" and g =¢,-g", and sct § = |v(cy) — v(cy)l-
Let g € {|,|].~,#}. Then for v(cs) < (c,) we have

foege f op’g.

Similarly, for v(cs) > v(cy), we obtain f o g +— p°f* o
g*. O

According to Lemma 3, within constraints involving only
monomial occurrences of w, the occurrence will be restricted
to one side of the constraint. One can then use the following
simplification to completely get rid of the constant .

Lemma 6 Consider a p-adic valuation. Let z, 2’ € Z be
relatively prime with z, 2’ # 0, and let z = ¢ - - - q3* be the
prime factor decomposition of z. Let n € N, and set

=]{gi:ei=n}, z2x=1l{gi:ei>n},
[T{¢: : e, > n}. Then

and z»

1. 't~z z=Aland 2’7" £z ¢ 2= ~ 1,

2. 2" |z e x> A land 2 || 27— 2p ~ 1,

3. Zn" |z > 2> Aland z | 7" 5 25 ~ L.

Proof We prove part 1, the other parts are analogous.
Consider z'7" ~ z. If p does not divide 2’ we may obvi-
ously drop it. If p divides z’, then it does not divide z, since
z and z' are relatively prime. That is z ~ 1, and 7" ~ z is
“falsc” as well as 2’7" ~ 2. We thus may also drop 2’ in this
case.

Assume now that 7" ~ z holds. Then p occurs with
the power of n in z. Tt follows that p divides z=, and thus
= o 1. Assume vice versa that z= % 1. Then p divides 2=,
and by the definition of z— we kuow that p occurs in z with
the power of n, i.e, 7" ~ z.

The second cquivalence 2’7" £ z +— 2= ~ 1 is simply
the contrapositive of the first one. (J

Constraints involving only integers can be normalized in
such a way that their right hand side is 1:
Lemma 7 Let z, 2’ € Z be relatively prime. Then
l.z2~zZ > z2' ~land z ¢ 2/ «— 23" £ 1,

2 z|Fd e z~landz || F =2 £ 1.0

The remaining integers in the pure integer constraints
can be replaced by their squarefree parts:

Lemma 8 Let z, 2’ € Z be relatively prime. Denote by z,
and | the squarefree parts of z and z', respectively. Then
for o € {|.|l,~,#} we have 2 p 2’ «— z, p 2. O

For solving systems of integer congruences we will use
some extra simplification, which obviously contradicts the
goal of few constraints. Instead, it focuses on producing few
different constraints:

Lemma 9 Let =z € Z, z # 0 with prime factor decomposi-
tion z = ¢4{' -+ - ¢ . Then

z~lé—qa~1A---Agy~1,

andz A lée—qgalVv---Vg A£1.0

4.3 Smart simplification

Our simplifier will, of course, perform the following straight-
forward simplifications: in conjunctions we drop “true,” and
we kill all other constituents if “false” occurs. For disjunc-
tions the dual siruplifications are applied.

Morcover, we wish to take into account algebraic rela-
tionships between several constraints. For instance, a = 0 A
@ || 1 should become “false.” Furthermore, we want to make
use of such relationships even for constraints that occur at
different places deeply nested inside a complex formula. For
this, we construct implicit theories during the recursive elim-
ination process.

A theory © is a set of constraints considered conjurnctive.
We say that two formulas ¢1(X) and ¢2(X) are equivalent
wrt. @ if ¢,(a) «— pa(a) for all values a that satisfy ©.
Formally considering our constraint variables as constants
in the sense of first-order logic, we may then write

O | (p1 ¢ p2).

Theorics can be passed to our simplifier in order to rep-
resent sotne external knowledge. The crucial point, however,
is that they are implicitly constructed by the simplifier itself
during recursion. We shall first clarify how to simplify a sin-
gle conjunction or disjunction wrt. a given theory, and then
sketch the implicit theory construction during deep simpli-
fication.

4.3.1 Evaluating algebraic relationships

The simplification of a disjunction V/;y: wrt. a theory O is
performed in two steps: First simplify A, 77, which is equiv-
alent to =/, vi, wrt. ©, and then negate the result back in
the same manner. It thus suffices to explain how to simplify
a conjunction wrt. ©.

The simplification of a conjunction A;v: wrt. a theory
© is bascd on the following idea: Regard © as a simplified
knowledge base. Successively add to © each piece of knowl-
edge v; keeping © simplified. Finally extract from © all new
knowledge. This new knowledge replaces the input conjunc-
tion. Note that any list of constraints input as a theory can
be turned into a simplified knowledge base by successively
adding the constraints to the cmpty base.

We have to clarify the following two issues:

1. How do we recognize the new knowledge in the end?



Table 1: Smart simplification for matching terms.

Yi

= # | N ~ #
= D I D 1 D I
# I D - K - K

9 | K - D K K C(

| 1 D D D I D
~ K - D 1 D 1
# 1T D C() K 1

2. How can one add one ; to © such that the latter re-
mains simplified?

For recognizing the new knowledge there is cach constraing
in O labeled with numbers ranging from 0 to n. Each newly
added constraint origined by some «; will be then labeled
n + 1. Note that there is in general not situply +; added to
© but only the extra information contained in ~;. If, e.g.,
(z #y,n) € Oandy; =2 |y, then we will add (z || y,n+1)
to © and delete (x # y,n) from ©. This new constraint z || y
is exactly the information we wish to have in the simplified
constraint. It is finally extracted due to its label n + 1.

Let us now examine in detail how to add v; to © depend-
ing on what is already present there. We successively pick
the v;, and run through © comparing «; to cach ¥ € @. The
relationships we consider bhetween @ and +; are that there
occur the same terms with different relations. We illustrate
the four types of simplification that can occur by example.
The complete set of simplifications is collected in Table 1
and Table 2:

1. f9=f=0and v = f #£ 0, then we have discovered
an inconsistency. We may abort the computation, and
return “falsc.” This case is marked in the tables by “I”
for inconsistent.

2 If9=f|lgaud v = f # g, then ¥ — ;. We
may simply drop 7, and proceed to v;y1. This case is
marked by “D” for drop.

3.9 =f#gand vy = f| g, then similarly to the
previous case, f # g can be deleted. This time, dele-
tion take place in the theory, and we have to continue
scanning © with v;. This case is marked in the tables
as “K* for kill.

4. Ifd=f|gandy; =g | f, then 9 A v +— f ~ g.
We thus change ~; into f ~ g, kill ¥, and continue
scanning © with the new ;. One easily verifies by
inspection of the tables that with our simplifications it
is not necessary to restart scanning © with the new +;.
This case is marked in the tables by “C” together with
the new ;.

If none of the first two cases happens, the possibly changed +;
is finally labeled and added to ©. Recall from the previous
section that equations and inequalities are simplified such
that their right hand side becomes zero. For the purpose
of the simplifications described here, we are, of course, able
to match, e.g., f —g = 0 with f | g by means of a sinple
subtraction.

5

Table 2: Smart simplification for crossed terms.

YisSgof
| Il ~ #
T Cf~9) T K C{ Ty
d=fog | I I 1 D
D I

4.3.2 Deep simplification

As already indicated, we use our concept of a theory for re-
lating information located on different hoolean levels. More
precisely, we use constraints, which are located on a cer-
tain boolcan level, deeper inside the formula by enlarging
an implicit theory which is recursively passed down. This
technique of theory inheritance has been described in detail
for ordered fields by the authors [6]. A careful analysis has
shown that there arc no adaptions necessary for the partic-
ular situation of valued fields.

5 Implementation in Redlog

Quantifier elimination and extended quantifier elimination
by virtual substitution have been generically implemented
within the REDUCE package REDLOG. REDLOG is a computer
logic system providing not only quantificr climnination but a
sophisticated working environment for first-order logic over
various languages and theories [5]. The REDLOG source code
and documentation are freely available on the www.!

After the great success of REDLOG for solving real prob-
lems, quantifier elimination and extended quantifier climi-
nation for p-adic valued fields have been added as further
instances of the generic climination code.

The corresponding REDLOG context DVFSF (see [5] for de-
tails) corresponds to p-adic valued fields. When switching
to it, one passes a paramecter ¢ which is a possibly nega-
tive prime or (). For positive ¢ all computations take place
wrt. the corresponding g-adic valuation. For ¢ = 0, the
computationus are uniformly correct for all p-adic valuations.
Both input and output possibly involve a symbolic constant
“p” which corresponds to the constant = of our language.
Finally, for negative ¢, the “—" can be read as “up to,” i.e.,
all computations are performed in such a way that they are
correct for all p-adic valuations with p < |¢|. In this case, the
knowledge of an upper bound for p supports the elimination
process [13].

For our computation examples, we shall focus on the
most general setting ¢ = 0. It will turn out that the simpli-
fication strategics described above are so powerful, that in
the parametcr-free case we obtain a straightforward descrip-
tion of the class of valued fields in which the corresponding
formula holds.

6 Example computations

All our computations have been carried out on a Sun Ultra-1
Model 140 using 64 MB of memory. The smallest measurable
CPU time is 10 ms.

'http://www.fmi.uni-passau.de/ redlog/



6.1 P-adic balls

With respect to p-adic absolute values, we consider open
balls
{x€eQ:|z—al, <}

of radius r. Due to the ultrametric triangle inequality, they
have the following property: For each pair of given balls
there is cither one of them included in the other one, or they
are disjoint. This is stated by the following formula:

VriVraVaVh(3xz(r || e —a Ara |z —bAr | r2) —

Vy(rz fly —b— 7 ||y —a)).

For automatically proving the theorem uniformly for all p-
adic valuations, we eliminate all the variables. Recall that
we have to cxpect the result to contain constraints involv-
ing the constant p. In addition, there might be variable-
free constraints such as 2 ~ 3, which cannot necessarily be
evaluated to truth values. So following the gquantifier elim-
ination, simplification is a substantial step for obtaining a
comprehensible result here. In fact, quantifier-elimination
without simplification yields after 869 s a result containing
287655 constraints. Automatic application of our simplifica-
tion strategies during the elimination process decreases the
computation time to 2.2 s and shrinks the result to 24 con-
straints. By inspection they can casily verified to be “true”
for any valuation.

Fixing the valuation to v2 or 100003 and using our sim-
plification with the climination we obtain “true” after 0.9 s
and 1.1 s, respectively.

6.2 Size of the residue field

We are going to construct a first-order formula over our lan-
guage that holds if and only if |K,| = |R./I.| > 5, i.ec,
the residue field wrt. the valuation contains at least five el-
ements. Since for p-adic valuations we have K. = Z/p, the
result of our uniform elimination should then somechow state
p > 5. It will be interesting to observe how this is encoded
in valuation constraints.

Qur approach is to state that 0, ..., 3 represent separate
residue classes, and furthermore claim the existence of some
« which does not belong to any of these classes. For any
residue field K, we certainly have 0 # 1, and it follows
that T # 2 and 2 # 3. Similarly, T # 3 will follow from
0 # 2. It thus suffices to explicitly state 0 # 2 and 0 # 3.
That is, 2 -0, 3 — 0 ¢ I, in other words #(2) = 0 = w(1),
v(3) = 0 = v(1), which is in our language 2 ~ 1 A 3 ~ 1.
In the same way, we describe T #0, ..., T#3 by —0~
1A+ Azx—3~ 1. Together, we obtain the following input
formula:

P(2~1A3~1AZ~1A---Ax—3~1).

Without simplification the elimination of 3z yields 295 con-
straints within 50 ms. Using our simplification we obtain
after 120 ms the following result consisting of only 23 con-
straints:
3~1A2~1)V
(T~IAG~1AB~1A3~1A2~1)V
(b~1A3~1A2~1)V
(11~1A10~1A6~1A3~1A2~1)V
(T~1TA6~1A3~1A2~1)V
(6~1A53~1TA3~1A2~1).
Automatically checking for subsumption between the con-

Junctious yields after 10 s the simple solution

3~1A2~1,

which states in a nice way that our input formula holds for
any p-adic valuation except for vy and vs.

6.3 Properties of affine linear functions

So far we have only considered parameter-free decision prob-
lems. Our first parametric problem is concerned with the
cuestion which affine linear functions have a zero of a value
between 1 and 1000:

Ju(ar+b=0Ap|lzAz| %),

This yiclds after 10 ms the following equivalent condition in
the parameters:

ap’® +b=0Vap+b=0V (eplbAa#0AD|ap®).

Extended quantifier elimination viclds these conditions to-
gether with satisfying sample points:

ap+b=0 r=p
ap™@ +b=0 x = p"®
ap |bAa#O0AD|ap'™ &= —b/a

This computation also takes only 10 ms.

Our next example asks for a characterization for two
affine linear functions the zcroes of which have the same
value:

Az 3xza(arzy + b1 = 0 A asza +bo =0 A 2y ~ x2).

This yiclds after 20 ms the following equivalent condition in
the parameters ay, by, a2, and ba:

(a1b2 — a2by =0 A a2 7’-‘ 0) \%

(a1ly —abi =0AuL #0) V
(b1 =0Ab:=0Var+bir =0Aa2+ba=0)V

(a1 ~bi1ANa1 Z0Aar+ba=0) V

(arba + a2 =0Aaz #0) VvV
(atbr +a2bip=0Aas #Z0A by =0) V

(a2 ZOAbL=0Ab2=0)V

(a1 +b1=0Aaz~b2Aaz #0) V

(ar1by ~ az2by ANa1 #0 A ax #0).

Obtaining sample solutions is also no problem here.

6.4 Linear congruences over the integers

We consider the following system of linear congruences,
which has been randomly generated:

33z + 62

1321 4+ 17x3 + 1024 + 2525 + 51
19> + 5425 + 89

88x2 + 565 + 74

96z, + 94xo + 92243 + 50z + 48

(mod p'%),
(mod p*),
(mod »p7),

e m
cc oo c

il

(mod p®),
(mod p?).



Note that the prime p is not fixed. Our goal is to solve the
system for concrete p over the integers Z.

The system is feasible over Z if and only if it is feasible
over the p-adic integers R.,. The latter feasibility can he
checked by applying our quantificr climination to the follow-
ing formula:

o)z TwaTes(1 |z Al jaa Al |as Al |aa Allas A
P 33z3+62 A
P | 13@) + 1723 + 1024 + 2525 + 51 A
p | 1922 + 5425 4+ 89 A
P° | 8822 + 5625 + 74 A
P | 9621 + 9dws + 9223 + 50xs + 48).

Quantifier elimination with successive automatic application
of Lemma 9 yields after 1.4 s the following necessary and
sufficient condition for the feasibility of the system:

461 ~1A11~1ADB~1A3~1A2~1,

that is p ¢ {461, 11,5,3,2}. Extended quantifier elimination
yields in addition a sample solution in IZ2,,. As usual, the
timings for extended and non-cxtended quantifier climina-
tion are the same:

L, 0683171 M7 62
Y17 9920806° T 9220 T 33
2320471 3213
Ty =————, &5 =——.
29208960 ° 1844

aiven a concrete prime p, we can now casily lift this solution

as follows: Fix, for example, p = 13, recall that the greatest
power of p in the input system is p'”, and consider x;. We
compute by the extended Euclidean algorithm (10 ms)

1 = 53840023598 - 2020896 — 1140743 - 13'°.
That is 53840023598 - 2920896 = 1 (mod I,310), hence

5683171 - 53840023598 - 2920896
2920896

305982060751469258 € Z.

Il

(mod I,410)

The cougruence modulo I,510 certainly implies the congru-
ence modulo I 5 for all 1 < & < 10. This way, we automat-
ically lift all solutions within 10 ms:

1 = 305982060751469258, x» = 8457364288997,

T3 = 259006863472, x4 = 51485905148020710,
rs = 166462558935687.

Note that the essential part of the computational work,
namely the extended quantifier elimination, is done uni-
formly for all p. In our example this uniform part makes
up 99.93 percent of the computation timne.

In general, one will obtain not only one but several con-
ditions each associated with a sample point. After selecting
a prime p, we can, however, evaluate with our simplifier cach
of the conditions to either “true” or “falsc” and among the
“truc” cases pick a suitable p-adic integer solution.

7 Conclusions

We have discussed simplification strategies and correspond-
ing implementation technigues for formulas over Q or Q,
with p-adic valuations. Our simplifier is implemented within
the REDUCE package REDLOG. It is closely connected to the
quantifier elimination for linear formulas there. Both proce-
dures together enable us to parametrically check p-adic con-
straints for feasibility. The extended quantifier climination
also available in REDLOG together with the simplifier yields
satisfying parametric sample points for feasible constraints.
Optionally, all these computations can be performed uni-
formly for all p-adic valuations. An interesting application
of our method is the solution of systems of simultaneous
congrucnces modulo prime powers over the integers. Up to
a straightforward final lifting step, this is done uniformly for
all primes.
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