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Abstract. This paper describes a simple framework for automatically
annotating images using non-parametric models of distributions of image
features. We show that under this framework quite simple image prop-
erties such as global colour and texture distributions provide a strong
basis for reliably annotating images. We report results on subsets of two
photographic libraries, the Corel Photo Archive and the Getty Image
Archive. We also show how the popular Earth Mover’s Distance measure
can be effectively incorporated within this framework.

1 Introduction

Automated image annotation has arisen as a recent alternative to querying
databases of natural images directly by image content, with the benefit that
the content of a desired image can often be specified most conveniently with
keywords or natural language. Such a facility can be helpful for users wishing
to search increasingly large collections of unlabelled images available on the web
and elsewhere.

One of the first attempts at image annotation was reported by Mori et al.
[1], who tiled images into grids of rectangular regions and applied a co-occurence
model to words and low-level features of such tiled image regions. Since then re-
searchers have looked at the problem in two different ways. The first way has
been to use an image segmentation algorithm to divide images into a number of
irregularly shaped ‘blob’ regions and to operate on these blobs. This has been
pursued by several researchers recently. Duygulu et al. [2] created a discrete ‘vo-
cabulary’ of clusters of such blobs across an image collection and applied a model,
inspired by machine translation, to translate between the set of blobs compris-
ing an image and annotation keywords. Jeon et al. [3] recast image annotation
into a problem in cross-lingual information retrieval, applying a cross-media
relevance model to perform image annotation and ranked retrieval, obtaining
better retrieval performance than in the translation model of [2]. Lavrenko et
al. [4] adapted the model of [3] to use continous probability density functions
to describe the process of generating blob features, hoping to avoid the loss of



information related to quantization; they achieve substantially better retrieval
performance on the same dataset. Metzler and Manmatha [5] likewise segmented
training images, connecting them and their annotations in an inference network,
whereby an unseen image is annotated by instantiating the network with its
regions and propagating belief through the network to nodes representing the
words. Feng et al. [6] replace blobs with rectangular blocks and model image key-
words using a multiple Bernoulli distribution thus achieving better results than
in [4] and [5]. Other relevant research is that of Blei and Jordan [7], proposing
an extension of the Latent Dirichlet Allocation (LDA) model [8], which assumes
that a mixture of latent factors are used to generate words and blob features;
the authors then show how the model can be used to assign words to individual
blobs.

A second way is a simpler scene-oriented approach. This was explored by
Oliva and Torralba, who showed that images can be described with basic scene
labels such as ‘street’, ‘buildings’ or ‘highways’, using a selection of relevant low-
level global filters [9,10]. They further showed how simple image statistics can
be used to infer the presence and absence of objects in the scene [11].

This paper follows the second approach and explores the possibility of using
‘global’ features for automated image annotation, which are simpler still than
those used in [9-11]. Our modelling framework is based on nonparametric density
estimation, using the technique of ‘kernel smoothing’. We investigate how well
such an approach works with various global image features and show how the
popular Earth Mover’s Distance metric can be effectively incorporated within
this framework. We evaluate our aproach on two image collections: the 5,000-
image subset of the Corel Image Archive originally used by Duygulu et al. in
[2], which makes our results comparable to several recent works on the subject
[2-6], and our own set of about 7,500 images from the Getty Image Archive.

2 A simple framework for image annotation

Suppose a human annotator is prompted for a single annotation word for the
image x, and that he chooses word w with probability p(w|z). We wish to model
this process. We use Bayes’ Theorem to invert the conditional dependence as:

f(z]w)p(w)
fl@) 7

where we interpret f(x) as the probability density of image  and f(x|w) as the
density of x conditional upon the assignment of annotation w.

We now wish to model f(z|w) for each possible annotation word w by col-
lecting a sample T,, of images with each label w as a training set. A critical
factor in modelling the densities f(x|w) will be choosing a representation x for
the images. This paper considers two different representations: as a vector of
real-valued image features = (x1,...,24), ; € R; and as a ‘signature’ of im-
age features, defined later in this section. In general we want a representation for
which the densities are as separable as possible for different annotation classes

(1)
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w, yet are dense enough for reliable inference from a small sample of images for
each class.

One method of inference is to specify a parametric form a priori for the
true distributions of image features for the annotation class w and then estimate
the parameters using the methods of classical statistics. Another method is to
encode all our knowledge about the true distribution as constraints on the model
and choose the model subject to these constraints with maximum entropy (the
‘flattest’) or minimum relative entropy to some prior density. A third method
is to adopt a nonparametric estimator of the true density that makes no prior
assumptions about the true density.

The first method is less appropriate within this framework than the second
two. In general, the distributions of image features will have shapes that are
irregular, not resembling any simple parametric form. Instead we hope this ir-
regularity will be helpful in characterizing and distinguishing the distributions
under different word classes. This paper considers the third method, nonpara-
metric estimation.

2.1 Nonparametric Density Estimation

The simplest nonparametric estimator of a distribution function is the empirical
distribution function, but it is known that smoothing can improve efficiency for
finite samples [12]. ‘Kernel smoothing’, first used by Parzen in [13], is a general
formulation of this. Where z is a vector (z1, ..., z4) of real-valued image features,
we define the kernel estimate of f,,(z) = f(z|w) as
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where xy,7,..., %y  is the sample of images with label w in the training set
T, where k‘ is a kernel function that we place over each point (¥, and where

= [k(t)dt so that f(x) integrates to 1 and is itself a probability density.
We omit the subscripts w for the rest of this section to simplify the notation.
Here the positive scalar h, called the bandwidth, reflects how wide a kernel is
placed over each data point. Under some mild conditions [14], f converges to f
in probability as n — oo.

We experiment with two types of kernels. The first is a d-dimensional Gaus-
sian kernel
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where t = z — 2, and where we set each bandwidth parameter h; by scaling
the sample standard deviation of feature [ by the same constant .

Friedman et al. [15] point out that kernel smoothing may become less ef-
fective in high-dimensional spaces due to the problem known as the curse of
dimensionality. They examine a projection pursuit method for reducing the ef-
fective dimensionality of a space by projecting it onto a single dimension in a way



that preserves its most salient characteristics. This is one way of sidestepping
the problem, but this paper considers another way based on comparing image
signatures under the Earth Mover’s Distance (EMD) measure [16], which has
found several applications in image retrieval [17].

A signature is a representation of clustered data defined as
s = {(c1,m1),...,(cq,mq)}, where, for a cluster i, ¢; is the cluster’s centroid
and m; is the number of points belonging to that cluster or its mass. Given two
such signatures, EMD is defined as the minimum amount of work necessary to
transform one signature into the other (see [16, 18] for details). One can create
a signature for an image by grouping its colours into k clusters. Rubner et al.
[16] report that using EMD on images represented with as few as 8 clusters of
CIELab colour outperforms the traditional distance measures applied to high-
dimensional colour features.

We use this advantageous property of EMD for density estimation by defining

our second kernel as L o
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where d(s,s*) is the EMD between signatures s and s*), and where h is the
kernel bandwidth. The above kernel function exploits the fact that EMD is a true
metric [16, 18] to yield a density centered on each signature s in the signature
space; this allows us to estimate probability density functions of image signatures
for a particular word class. We shall refer to kg as the EMD kernel throughout
the rest of this paper.

Several methods have been studied for choosing the optimal bandwidth A for
a given kernel and density estimation task. [19] and [20] give a good overview. For
this paper we use the simple method of cross-validation, choosing the bandwidth
that maximizes performance on a withheld data set. The precise performance
measures are described in Section 4.

2.2 Bayesian Image Annotation

We now define the terms of the Bayesian model in Equation (1) for assigning
the probabilities of a word w to an unseen image x. In the case where x is a
d-dimensional feature vector, we model the probability density function f(z|w)
as

Z kg(z — @ h). (5)
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Similarly, for the signature case, we model f as
f(s|w) Z kg(s,s%;h). (6)
sMeT,
We then model the prior probability p(w) of the word w as

T
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where |T,,| is the size of the training sample for the word w. Finally, we make
the approximation f(z) ~ Y_, f(z|w)p(w) for simplicity.

Computational complexity. Using this model requires O (3, |T:|) time to
annotate a new image x. This is suitable for annotating images offline.

Relationship to other models. We make a note that our framework is differ-
ent to the Continous Relevance Model (CRM) by Larvernko et al. [4], which also
uses kernel smoothing for image features. CRM uses kernel density estimation to
define a generative model for observing a set of blobs in a training image, which
is then used as part of that image’s relevance model. In our approach kernels are
simply used for estimating densities of features conditional on each keyword.

3 Image Features

Global Features. We attempt to model image densities using two simple
classes of global image features: the distribution of pixel colour in CIE space, and
a subset of perceptual texture features proposed by Tamura [21] and adapted
for image retrieval by Howarth and Riiger [22]. For each pixel in the image, we
compute CIELab colour values and the coarseness, contrast and directionality
texture properties obtained using a sliding window. This results in a 6-channel
image representation. For each channel, the mean, second, third and fourth cen-
tral moments are computed resulting in a 24-dimensional feature vector com-
bining colour and texture. Additionally, this feature is split into two separate
12-dimensional colour and texture features, which are then evaluated indepen-
dently.

Locally Sensitive Features. We designed a tiled image feature to investigate
whether performance can be gained by looking at spatial configuration of colour
and texture properties. Each image is split into 3 x 3 = 9 equal rectangular tiles;
within each tile the mean and the second moment are computed for each of the
above 6 channels. This results in a 108-dimensional feature vector. Note that
this image segmentation is not context driven, i.e., we are not trying to detect
the presence of any object boundaries, so one can still argue that this is a global
feature.

Image Signatures. We used colour-only signatures for EMD computations,
which were extracted for each image by applying simple k-means clustering to
pixels in CIELab space and setting k to 16.



4 Performance Evaluation

4.1 Image and Caption Data

The Corel Dataset. One of the datasets we use is the one by Duygulu et
al. [2]. The dataset consists of 5,000 images from Corel Stock Photo library.
Fach image was also assigned 1-5 keywords from a vocabulary of 371 words.
To make our results comparable to those recently published in [2-5] we use the
same training and test dataset partition as in [2], where there are 4,500 training
images and 500 test images. To optimise the kernel bandwidth parameters for
different features we randomly divide the training set into 3,800 training images
and 700 images on which different bandwidth settings are evaluated.

The Getty Dataset. In the past the Corel photo collection has been criti-
sized that for being an easy collection from an image retrieval point of view. For
instance, Miiller et al. observed that image retrieval performance can be sub-
stantially improved if the right image subset is selected for evaluation [23]. We
attempted to build a more realistic dataset for our experiments by download-
ing 7,560 medium-resolution thumbnails of photographs from the Getty Image
Archive website!, together with the annotations assigned by the Getty staff to
catalogue those pictures. The selection of photographs was obtained by sub-
mitting the following query to the Getty website: “photography, image, not
composite, not enhancement, not ‘studio setting’, mot people”, with
the additional search option to exclude illustrations. With this query we sought
to obtain a random selection of photos, which excludes any non-photographic
content, any digitally composed or enhanced photos and any photos taken in un-
realistic studio settings. The constraint to exclude people is imposed to reduce
the semantic ambiguity of annotations. The resulting dataset contains pictures
from a number of different photo vendors, which — we hope — reduces the chance
of unrealistic correlations between keywords and image contents.

Keywords for Getty images come in three different flavours: subjects (e.g.
‘tiger’), concepts (e.g. ‘emptyness’) and styles (e.g. ‘panoramic photograph’).
We created our vocabulary using subject keywords only, of which there were over
6,000. We restricted the range of keywords to those, which occur in fewer than
10% of the images and those, which occur more than 50 times. We then pruned
references to specific locations (e.g. ‘europe’, ‘japan’), descriptions of dominant
image colour, verbs and abstract nouns (e.g. ‘flying’, ‘close-up’). This re-
sulted in a final list of 184 words ranging from specific objects (e.g. ‘insect’,
‘church’) to more general object categories (e.g. ‘building structure’) and
scene properties (e.g. ‘urban scene’, ‘autumn’, ‘illuminated’).

We randomly split the dataset into 5,000 training and 2,560 test images. The
list of Getty image IDs used to make up the dataset, the vocabulary and the
annotations can be downloaded?.

! http://creative.gettyimages.com
2 http://mmir.doc.ic.ac.uk/www-pub/civr2005



4.2 Image Annotation

The first task we evaluate is automated image annotation. Our approach is the
same as in [3-5], where top 5 most probable words are assinged to each unseen
test image after which mean word precision and recall are found. For each feature
we found the kernel scaling factor A (and the bandwidth h for the EMD kernel)
that maximized precision and recall figures on the withheld evaluation set. We
compare our results on the Corel dataset with the Continuous Relevance Model
(CRM) [4], the Inference Network Model (InfNet) [5] and the Multiple Bernoulli
Relevance Model (MBRM) [6]. Note that in this and the following sections we
do not set out to establish the relative merits of these models as compared to
ours. Rather, we use the published results to investigate whether comparable
performance can be achieved in principle using our approach.

# words w/  Precision  Recall

recall > 0
Random 15 0.01 0.02
Tamura 50 0.04 0.05
CIE 96 0.13 0.16
TamuraCIE 105 0.15 0.18
EMD 104 0.16 0.19
CRM 107 0.16 0.19
TamuraCIE-3x3 114 0.18 0.21
InfNet 112 0.17 0.24
MBRM 122 0.24 0.25

Table 1. Precision and recall results on the Corel dataset

As the table shows, the combined colour/texture feature (TamuraCIE) per-
forms comparably to CRM and the tiled colour/texture feature (TamuraCIE-
3x3) does somewhat better and gets close to the Inference Network performance.
This shows that retaining some structural information about the scene is helpful
and that kernel smoothing works well for this feature despite its high dimension-
ality. The EMD kernel does as well as CRM, which is particularly encouraging as
it only uses global colour information; this confirms our initial hypothesis which
led to the design of this kernel. All reported figures are significantly better than
what would be obtained if the top 5 captions were assigned by chance.

4.3 Ranked Retrieval

We use the same experimental setup as in [3] to evaluate ranked retrieval per-
formance. For the Corel dataset all 1- 2— and 3-word queries were generated
that would yield at least 2 relevant images in the test set. For the Getty dataset
we required at least 6 relevant images for any given query (to cut down the
greater number of queries due to the larger size of the test set), and gener-
ated all possible 1-4 word queries under this constraint. Given an m-word query
Q ={q1,92,-..,qm} the retrieval score for an image z is defined as:

m

(g1, 42, mlz) = [ [ P(a]2) (8)

i=1



Query results are then evaluated using the standard average precision met-
ric. As before, we optimised the kernel bandwidths for this task on the withheld
set. Results on the Corel dataset, presented in Table 2, show that TamuraCIE
has a reasonable performance compared to CRM and that TamuraCIE-3x 3 out-
performs both CRM and the Inference Network. The colour-only EMD kernel
performs slightly better than CRM and rivals the performance of the Inference
Network. All reported figures are significantly above random chance. The fea-
tures have a slightly different behaviour on the Getty dataset (Table 3), where
the EMD kernel comes top for queries longer than 1 word. The results show that
— despite Getty being an undoubtedly harder dataset — good retrieval perfor-
mance can be achieved using our framework in tandem with the simple features
we have chosen; they also highlight the robust performance of the EMD kernel.

Query Length 1 word 2 words 3 words
Number of Queries 179 386 178
Relevant Images 1675 1647 542
Random 0.0293  0.0198 0.0228
Tamura 0.0969  0.0871 0.1013
CIE 0.1963  0.1979 0.2325
TamuraCIE 0.2450  0.2450 0.2761
CRM 0.2353  0.2534 0.3152
EMD 0.2683  0.2734 0.3250
InfNet 0.2633  0.2649 0.3288
TamuraCIE-3x3 0.2861 0.2922 0.3301
MBRM 0.3000 — —

Table 2. Mean average precision for ranked retrieval on the Corel dataset

Query Length 1 word 2 words 3 words 4 words
Number of Queries 184 967 655 297
Relevant Images 9255 10722 4970 1950
Random 0.0233 0.0070 0.0063 0.0070
Tamura 0.0473 0.0225 0.0257 0.0276
CIE 0.0624 0.0411 0.0496 0.0520
TamuraCIE 0.0788 0.0613 0.0891 0.1109
TamuraCIE-3x3 0.0921 0.0907 0.1670 0.2412
EMD 0.0827 0.0917 0.1803 0.2759

Table 3. Mean average precision for ranked retrieval on the Getty dataset

4.4 Kernel bandwidth optimisation

At this point it is worth mentioning the motivation behind using two different
bandwidth setings for the ranked retrieval and image annotation tasks. Figure 1
shows how performance is affected by the choice of the kernel scaling factor
for the TamuraCIE-3x3 feature on the withheld set. One can see that wider
kernels seem to be more suitable for ranked retrieval, whereas narrower kernels
appear to be more favourable for automated annotation. This can be explained
by the different nature of the two tasks. In the first task we are interested in
ranking images as accurately as possible given a particular keyword and therefore
require individual keyword densities to be robust to noise in the high-dimensional
feature space. Increasing the kernel bandwidth achieves this goal by making the
estimated keyword densities smoother. However, it also has the effect of making



them less separable. This is detrimental for the second task, in which we are
interested in obtaining the most accurate ranking of keywords given an image.
This necessitates the use of different bandwidth values for the two tasks to
achieve optimal performance in both.

Kernel Bandwidth vs. Mean Average Precision for TamuraCIE-3x3 02 Kernel Bandwidth vs. Precision and Recall for TamuraCIE-3x3
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Fig. 1. Kernel bandwidth effects on the withheld set from Corel

5 Conclusions and Future Work

We have presented a simple framework for automated image annotation based
on nonparametric density estimation. We have shown that under this framework
very simple global image properties can yield reasonable annotation accuracies.
A surprising finding is that using merely colour information can achieve ‘state of
the art’ performance for the Corel dataset and good performance for the more
difficult Getty collection. We attribute this result to the robustness of the EMD
kernel and note that this kernel may be useful when one intends to use other
sparse image features within this framework. Our experiments have shown that
global colour is a strong basis for modelling keyword densities. This may be due
to the general homogeneity of photographic collections. We look forward on this
basis to exploring image features outside the colour domain.
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