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(A Tale of Two Claudes)

Shannon Berrou
1948 1993



A General Communication system.
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Here the rate is R = % bits per channel in-
put, and the decoded error probability is % =
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Four Discrete Memoryless Channels.

9 0O )
0 0 0 0 A A
1 A 0 i
1 1 ' 5 ;
ISSinary . EB:inary Innominate
}Iflmme;rlc 1}; asurel Ternary
Channe Channe Channel

Additive White
Gaussian Noise Channel



Every Channel has a Capacity C
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Shannon’s Theorem 11 and a Bit More
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The Shannon Challenge

How close can you get to C In practice?



Classic Practitioners
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Pre-1993 State of the Art on the AWGN Channel
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Jupiter from Cassini




May 1993: And Then Came...

NEAR SHANNON LIMIT ERROR - CORRECTING
CODING AND DECODING : TURBO-CODES (1)

Claude Berrou, Alain Glavieux and Punya Thitimajshima
Claude Berrou, Integrated Circuits for Telecommunication Laboratory
Alain Glavieux and Punya Thitimajshima, Digital Communication Laboratory

Ecole Nationale Supérieure des Télécommunications de Bretagne, France

(1) Patents N° 9105279 (France), N° 92460011.7 (Europe), N° 07/870,483 (USA)
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The Turbo-Era State of the Art on the AWGN Channel
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Overview

With hindsight it is clear that pre-1993 coding theory and
practice was hopelessly mired in a maximume-likelihood (ex-
act inference) paradigm. The justly celebrated turbo de-
coding algoritm is a low-complexity iterative approx-
imation to maximum a posteriori probability decoding,
whose performance, while demonstrably suboptimal, has
nevertheless proved to be nearly optimal in an impressive
array of experiments around the world.
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The Original Turbo-Code.
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The Turbo Decoding Problem (Simplified)
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Infer u from {y;,y>}, i.e., calculate

PY{UZ :O|Y1 :yl,YQ :yg}, (fOI’i: 1,,k)
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The Turbo Decoder Structure
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e Dec; and Decy communicate their results to each other,
updating their estimates of u as they go, until a consensus

is reached
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Typical Performance of Turbo Decoding
vsS. maximum a posteriori decoding
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Turbo Codes are Being Replaced by LDPC Codes

LOW-DENSITY
PARITY-CHECK CODES

PUBLISHED 1963 BY THE M.LT. PRESS, CAMBRIDGE, MASSACHUSETTS

ROBERT G. GALLAGER
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Figure 4.1, Parity-check set tree.

Assume now that both digit d and several of the digits in the
first tier are transmission errors, Then on the first decoding at-
tempt, the error-free digits in the second tier and their parity-
check constraints will allow correction of the errors in the first
tier. This in turn will allow correction of digit d on the second
decoding attempt. Thus digits and parity-check equations can aid
in decoding a digit seemingly unconnected with them. The prob-
abilistic decoding scheme to be described next utilizes these ex-
tra digits and extra parity-check equations more systematically.

4.2 Probabilistic Decoding

Assume that the code words from an (n, j, k} code are used
with equal probability on an arbitrary binary-input channel. For
any digit d, using the notation of Figure 4.1, an iteration proc-
ess will be derived that on the m!P iteration computes the prob-
ability that the transmitted digit in position d is a 1 conditional
on the received symbols out to and including the mth tier. For
the first iteration, we can consider digit d and the digits in the
first tier to form a subcode in which all sets of these digits that
satisfy the j parity-check equations in the tree have equal prob-
ability of transmission.®



Turbo Codes are Being Replaced by LDPC Codes

Gallager MacKay

This is certainly a startling development, since LDPC codes
were invented by Robert Gallager in 1962! However, LDPC
codes were largely forgotten until their rediscovery by David
Mackay in 1998, who not only rediscovered them but used
powerful modern computers (which were not available to
Gallager) to simulate their performance and thereby demon-
strate their astonishing power.
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Another Landmark Paper (1997)

(LDPC Codes for the Binary Erasure Channel)

Practical Loss-Resilient Codes

i

Michael G. Luby*

Daniel A. Spielman®

Abstract

We present randomized constructions of linear-time en-
codable and decodable codes that can transmit over lossy
channels at rates extremely close to capacity. The encod-
ing and decoding algorithms for these codes have fast and
simple software implementations. Partial implementations
of our algorithms are faster by orders of magnitude than the
best software implementations of any previous algorithm for
this problem. We expect these codes will be extremely useful
for applications such as real-time audio and video transmis-
sion over the Internet, where lossy channels are common and
fast decoding is a requirement.

Despite the simplicity of the algorithms, their design and
analysis are mathematically intricate. The design requires the
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Volker Stemann?

ficients determined by the graph structure. Based on these
polynomials, we design a graph structurethat guarantees suc-
cessful decoding with high probability.

1 Introduction

Studies show that the Internet exhibits packet loss, and
the measurements in [10] show that the situation has become
worse over the past few years. A standard solution to this
problem is 1o request retransmission of data that is not re-
ceived. When some of this retransmission is lost, another re-
quest is made, and so on. In some applications, this intro-
duces technical difficulties. For real-time transmission this
solution can lead to unaccepiable delays caused by several

rominde of commnicatinn hetwesn eonder and rereiver For



The Parity-Check Matrix

1 1.0 1 0 1
H=11 01 1 1 0
0O 1 1 0 1 1

The valid codewords are required to satisify the parity-
checks: Hx! = 0.
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The Tanner Graph
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC

Using Message Passing
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Decoding an LDPC Code on the BEC

Using Message Passing
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC
Using Message Passing
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What is the Complexity of Iterative
Message-Passing Decoding?

e Complexity per iteration:

E
XIT — 2?7
where E is the number of edges in the Tanner graph, and
k is the number of information bits (x;r is an ensemble

invariant).

e N(e¢,m) = Number of iterations needed to achieve error
probability 7.

xp(€,m) = xr7 - N(e,m).
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An Example
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Log Bit Error Prob

An Example
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Theory Is Available!

Richardson Urbanke

“The capacity of low-density parity-check codes
under message-passing decoding”
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“Density Evolution” isthe Tool

In density evolution, the idea is to treat the messages sent
as random variables, and to track the probability density
function of the messages. For example, on the binary era-
sure channel, one can simply track the probability that a
given message is an “‘erasure.”
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The Fine Print

e The ensemble of codes must satisfiy the RU condition:
For any fixed L, the probability that the depth-L neighbor-
hood of a randomly selected edge contains a cycle goes to
zero as k — o0.

e Therefore L-fold density evolution gives the limiting value
(k — o0) of the ensemble bit error probability after L it-
erations. This limiting value will depend on the “noise pa-
rameter” of the channel. The largest noise parameter for
which the limiting bit error probability is zero is called the
ensemble noise threshold.
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Tanner Graph for a (regular) (3,6) LDPC Code Ensemble

check nodes

I nterl eaver 11

vari abl e nodes

38



Density Evolution
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The (3,6) Ensemble, showing just one degree-3 variable
node and one degree-6 check node. Evidence from the chan-
nel arrives from below. This evidence, which “seeds” the
decoder, is absent (erased) with probability p.
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Density Evolution, First Iteration
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x = probability that the indicated message is “erasure.”
(On the first iteration, z = p.)
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Density Evolution, First Iteration
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y is an erasure iff at least one of the x’s is an erasure. Thus
y=1-—(1-1x)°.
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Density Evolution, First Iteration
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x’ is an erasure iff both y’s and the channel input are: =’ =
py? =p(1 — (1 —=)°)%
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Density Evolution, Lth Iteration

If the probability of an erased message is xj on the Lth
literation, then

LrL+1 — f(ajL)a

where

f(z) =p(l—(1-2))%
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Density Evolution, the Payoff

p=0.4

With p = 0.4, the only solution to the equation f(x) = z is
x = 0.
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Density Evolution, the Payoff

With p = 0.42944, the curves just touch. Therefore the
noise threshold for the (3,6) ensemble is 0.42944. On the

other hand with p = 0.42944, channel capacity is 0.57056.
In summary, R = 0.5, C' = .57056, or 87.6% of capacity.
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To do Better, We Need Irregular Ensembles

Richardson

Urbanke
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How We May Appear to Future Generations

Claude Shannon — Born on the planet Farth (Sol II1) in
the year 1916 A.D. Generally regarded as the father of the
Information Age, he formulated the notion of channel capac-
ity wn 1948 A.D. Within several decades, mathematicians
and engineers had devised practical ways to communicate
reliably at data rates within 1% of the Shannon limit . ..

Encyclopedia Galactica, 166th ed.
—_~ |




