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(A Tale of Two Claudes)

Shannon
1948

Berrou
1993
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A General Communication system.
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Here the rate is R = k
n bits per channel in-

put, and the decoded error probability is Pb =
1
k

∑k
i=1 Pr{Vi �= Ui}.
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Four Discrete Memoryless Channels.
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Every Channel has a Capacity C
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Shannon’s Theorem 11 and a Bit More
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The Shannon Challenge

How close can you get to C in practice?
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Classic Practitioners

Richard Hamming
Hamming Code

Andrew Viterbi
Convolutional codes

Irving Reed
Reed-Solomon codes

Gus Solomon
Reed-Solomon codes
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Pre-1993 State of the Art on the AWGN Channel
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Jupiter from Cassini
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May 1993: And Then Came. . .
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The Turbo-Era State of the Art on the AWGN Channel
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Overview

With hindsight it is clear that pre-1993 coding theory and
practice was hopelessly mired in a maximum-likelihood (ex-
act inference) paradigm. The justly celebrated turbo de-
coding algoritm is a low-complexity iterative approx-
imation to maximum a posteriori probability decoding,
whose performance, while demonstrably suboptimal, has
nevertheless proved to be nearly optimal in an impressive
array of experiments around the world.

12



The Original Turbo-Code.
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The Turbo Decoding Problem (Simplified)
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Infer u from {y1,y2}, i.e., calculate

Pr{Ui = 0|Y1 = y1, Y2 = y2}, (for i = 1, . . . , k).
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The Turbo Decoder Structure

Dec1

Dec2

y1

y2

u1 u2

• Dec1 and Dec2 communicate their results to each other,
updating their estimates of u as they go, until a consensus
is reached
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Typical Performance of Turbo Decoding
vs. maximum a posteriori decoding
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Turbo Codes are Being Replaced by LDPC Codes
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Turbo Codes are Being Replaced by LDPC Codes

Gallager MacKay

This is certainly a startling development, since LDPC codes
were invented by Robert Gallager in 1962! However, LDPC
codes were largely forgotten until their rediscovery by David
Mackay in 1998, who not only rediscovered them but used
powerful modern computers (which were not available to
Gallager) to simulate their performance and thereby demon-
strate their astonishing power.
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Another Landmark Paper (1997)

(LDPC Codes for the Binary Erasure Channel)
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The Parity-Check Matrix

H =




1 1 0 1 0 1
1 0 1 1 1 0
0 1 1 0 1 1



 .

The valid codewords are required to satisify the parity-
checks: HxT = 0.
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The Tanner Graph
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Decoding an LDPC Code on the BEC
Using Message Passing
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Decoding an LDPC Code on the BEC
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What is the Complexity of Iterative
Message-Passing Decoding?

• Complexity per iteration:

χIT = 2
E

k
,

where E is the number of edges in the Tanner graph, and
k is the number of information bits (χIT is an ensemble
invariant).

• N(ε, π) = Number of iterations needed to achieve error
probability π.

χD(ε, π) = χIT · N(ε, π).
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An Example
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An Example
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Theory is Available!

Richardson Urbanke

“The capacity of low-density parity-check codes
under message-passing decoding”
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“Density Evolution” is the Tool

In density evolution, the idea is to treat the messages sent
as random variables, and to track the probability density
function of the messages. For example, on the binary era-
sure channel, one can simply track the probability that a
given message is an “erasure.”
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The Fine Print

• The ensemble of codes must satisfiy the RU condition:
For any fixed L, the probability that the depth-L neighbor-
hood of a randomly selected edge contains a cycle goes to
zero as k → ∞.

• Therefore L-fold density evolution gives the limiting value
(k → ∞) of the ensemble bit error probability after L it-
erations. This limiting value will depend on the “noise pa-
rameter” of the channel. The largest noise parameter for
which the limiting bit error probability is zero is called the
ensemble noise threshold.
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Tanner Graph for a (regular) (3, 6) LDPC Code Ensemble
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Density Evolution

=

+

p

The (3, 6) Ensemble, showing just one degree-3 variable
node and one degree-6 check node. Evidence from the chan-
nel arrives from below. This evidence, which “seeds” the
decoder, is absent (erased) with probability p.
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Density Evolution, First Iteration
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x = probability that the indicated message is “erasure.”
(On the first iteration, x = p.)
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Density Evolution, First Iteration
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xxx

yx x x x x

y is an erasure iff at least one of the x’s is an erasure. Thus
y = 1 − (1 − x)5.
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Density Evolution, First Iteration

=

+

p

y y y y y y

y y x'

x′ is an erasure iff both y’s and the channel input are: x′ =
py2 = p(1 − (1 − x)5)2.
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Density Evolution, Lth Iteration
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If the probability of an erased message is xL on the Lth
iiteration, then

xL+1 = f(xL),

where
f(x) = p(1 − (1 − x)5)2.
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Density Evolution, the Payoff
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With p = 0.4, the only solution to the equation f(x) = x is
x = 0.
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Density Evolution, the Payoff
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With p = 0.42944, the curves just touch. Therefore the
noise threshold for the (3, 6) ensemble is 0.42944. On the
other hand with p = 0.42944, channel capacity is 0.57056.
In summary, R = 0.5, C = .57056, or 87.6% of capacity.
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To do Better, We Need Irregular Ensembles
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How We May Appear to Future Generations

Claude Shannon — Born on the planet Earth (Sol III) in
the year 1916 A.D. Generally regarded as the father of the
Information Age, he formulated the notion of channel capac-
ity in 1948 A.D. Within several decades, mathematicians
and engineers had devised practical ways to communicate
reliably at data rates within 1% of the Shannon limit . . .

Encyclopedia Galactica, 166th ed.
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