The Third Claude E. Shannon

 Memorial Lecture April 29, 2005

Are There Turbo-Codes on Mars?

Robert J. McEliece
California Institute of Technology

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."

To solve this problem, Shannon created a branch of applied mathematics which is today called Information Theory...

Information Theory 1101

Entropy

Entropy $H(X)$ measures our uncertainty about the event X .

$$
H(X)=-\sum_{x} p(x) \log p(x)
$$

Relative entropy $H(X \mid Y)$ measures our uncertainty about X after Y is observed
$H(X \mid Y)=-\sum_{x, y} p(x, y) \log p(x \mid y)$

Mutual Information

Mutual Information $I(X ; Y)$ measures

 the amount of information the event Y provides about the event X$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Channel Capacity

The capacity C of a channel is the

 highest possible rate (in bits per second) at which reliable communication over the channel is possible$$
C=\max _{X} I(X ; Y)
$$

Compressibility

The Compressibility Function $R(\delta)$ is the minimum number of bits per second required to communicate the source output with "distortion" δ.

$$
R(\delta)=\min _{Y:|X-Y| \leq \delta} I(X ; Y)
$$

Shannon's Equations

$$
\begin{aligned}
H(X) & =-\sum p(x) \log p(x) \\
I(X ; Y) & =H(X)-H(X \mid Y) \\
C & =\max _{X} I(X ; Y) \\
R(\delta) & =\min _{Y} I(X ; Y)
\end{aligned}
$$

Dr. Shannon's Prescription for Excellent Communications

Channel Coding (Error Correction)
Source Coding (Data Compression)

Summary

- Of the 35 patterns of three erasures:

25 are correctable with the simple algorithm
3 more are correctable with the complex algorithm
7 are uncorrectable (codewords)

In a Hamming Code of Length n :

Theorem 1. The number of erasure patterns of weight 3 is $\sim \frac{1}{6} n^{3}$.

Theorem 2. The number of [easily] correctable erasure patterns of weight 3 is $\sim \frac{1}{6} n^{\log _{2} 5}=\frac{1}{6} n^{2.322}$.

Theorem 3. The number of uncorrectable erasure patterns of weight 3 is $\sim \frac{1}{6} n^{2}$.

Visit To A Small Red Planet

"The fundamental problem of communication is that

 of reproducing at one point either exactly or approximately a message selected at another point."Mars

Point A

Earth

Point B

Example: Mariner 4 (1965)

- $\mathrm{F}=2.3 \mathrm{GHz}$ (S-band)
- BPSK modulation
- $\mathrm{R}=8.33$ bits per second
- No Error Correction
- No Data Compression

This is our baseline system.

Mariner 4

The First Close-Up of Mars!

Mariner 4

Before and After

Mariner 4

A Memento of Mariner 4

Mariner 4

Another Mariner 4 Picture

Simulated view through a telescope of Mars from Earth

Earth to Mars distance: 259 million km

Date: 7 February 2003

Normalized Rate R*

We normalize the data rate R to R^{*}, the rate in image-bits/sec to account for the distance to Mars and a few other factors.

Viking Mars Orbiters/ Landers (1976)

- $\mathrm{F}=2.3 \mathrm{GHz}$ (S-band)
- BPSK Modulation
- $\mathrm{R}^{*}=3 \mathrm{~K}$ ibps
- $(32,6)$ Biorthogonal Code
- No compression

Viking Lander

Viking I Landscape

Viking Orbiter

The Great Equatorial Canyon

A 20-Year Gap and Then:

Mars Global Surveyor (1997)

- $\mathrm{F}=8.4 \mathrm{GHz}$ (X - band)
- BPSK Modulation
- $\mathrm{R}^{*}=128 \mathrm{~K}$ ibps
- $(7,1 / 2) \mathrm{CC}+(255,223) \mathrm{RS}$
- 2:1 lossless Rice compression

"Voyager" (7, 1/2) Convolutional Encoder

Reed-Solomon Codes

Mr. Reed

Mr. Solomon

$M G S$

$M G S$

The "Face" on Mars (Cydonia)

Earth and Moon from MGS

Mars Pathfinder (1997)

- $\mathrm{F}=8.4 \mathrm{GHz}(\mathrm{X}-\mathrm{Band})$
- BPSK Modulation
- $\mathrm{R}^{*}=8 \mathrm{~K}$ ibps
- $(15,1 / 6) \mathrm{CC}+(255,223) \mathrm{RS}$
- 6:1 lossy JPEG compression

"Galileo" (15, 1/6) Convolutional Encoder

Pathfinder

"Sojourner"

Simulated view through a telescope of Mars from Earth

Earth to Mars distance: 259 million km

Date: 7 February 2003

Mars Exploration Rovers (2004)

- $\mathrm{F}=8.4 \mathrm{GHz}$ (X -Band)
- BPSK Modulation
- $\mathrm{R}^{*}=168 \mathrm{~K}$ ibps
- $(15,1 / 6) \mathrm{CC}+(255,223) \mathrm{RS}$
- 12:1 lossy "ICER" compression

Leaving the Lander

The "Columbia Hills" (Spirit)

HUSBAND HILL

WEST SPUR

MER

Eagle Crater (Opportunity)

Example of composite Pancam image

Progress, 1965-2004

- 1965 (Mariner 4): $\mathrm{R}^{*}=8.33 \mathrm{ibps}$ - 2004 (MER): R*= 168K ibps
- This is a 20000-fold increase, or 4.3 orders of magnitude (43 dB).

Clash of the Titans

Newton vs. Shannon

- Newton (Physics)
- Aperture
- Frequency
- Power

- Shannon (Mathematics)
- Error-Correction
- Data Compression

4.3 Orders of Magnitude Improvement in Image Bit Rate, 1965-2004

A Look at the Future

"Turbo Codes" (1993)

Claude Berrou

Alain Glavieux

Turbo Convolutional Encoder / Verify / Decoder System Architecture

Newton Fights Back with More Aperature

Green Bank 100m Antenna

Array of 12m Antennas

MRO

Mars Reconnaissance Orbiter (2006)

- $\mathbf{F}=\mathbf{3 2} \mathbf{~ G H z}$ (Ka - Band)
- QPSK Modulation
- $\mathrm{R}^{*}=\mathbf{6 M}$ ibps
- $(8920,1 / 6)$ CCSDS turbo code
- 2:1 lossless compression \because

Was It Worth the Effort?

"Frequently the messages have meaning"

A Tour of the Solar System.

A Tour of the Solar System.

Ludwig van Beethoven, Moonlight Sonata Daniel Barenboim, pianist

UCSD
April 29, 2005

Mercury
 Mariner 10
 1974

Venus
 Magellan
 1990

The Far Side of the Moon
 Apollo 16 1972

Mars
Mars Global Surveyor 1997

Sunset on Mars
Viking Lander
1976

The Asteroid Gaspra

Galileo
1991

Jupiter
Voyager 1
1979

Jupiter's moon lo

 Galileo1996

lo and Jupiter
 Cassini
 2004

Jupiter's moon Europa

Galileo 2000

Jupiter's moon Callisto
Galileo
2001

Saturn
Cassini
2004

Saturn's moon Titan

Cassini
2004

Saturn's moon Phoebe
Cassini

Uranus
 Voyager 2 1986

Neptune
Voyager 2 1989

Pluto and its moon Charon
 Hubble Space Telescope 1994

Earth and Moon
 Apollo 8 1968

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.
-T. S. Eliot, Little Gidding.

