The Third Claude E. Shannon Memorial Lecture April 29, 2005

Are There Turbo-Codes on Mars?

Robert J. McEliece California Institute of Technology

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."

To solve this problem, Shannon created a branch of applied mathematics which is today called Information Theory...

Information Theory 1101

Entropy

Entropy H(X) measures our uncertainty about the event X.

 $H(X) = -\sum p(x) \log p(x)$ T

Relative entropy H(X|Y) measures our uncertainty about X after Y is observed

 $H(X|Y) = -\sum p(x,y) \log p(x|y)$

x, y

Mutual Information

Mutual Information *I(X;Y)* measures the amount of information the event Y provides about the event X

I(X;Y) = H(X) - H(X|Y)

Channel Capacity

The capacity *C* of a channel is the highest possible rate (in bits per second) at which reliable communication over the channel is possible

 $C = \max_{X} I(X;Y)$

Compressibility

The Compressibility Function $R(\delta)$ is the minimum number of bits per second required to communicate the source output with "distortion" δ .

 $R(\delta) = \min_{Y:|X-Y| \le \delta} I(X;Y).$

Shannon's Equations

 $H(X) = -\sum p(x)\log p(x)$ I(X;Y) = H(X) - H(X|Y) $C = \max_{X} I(X;Y)$ $R(\delta) = \min_{V} I(X;Y)$

Dr. Shannon's Prescription for Excellent Communications

Channel Coding (Error Correction)

Source Coding (Data Compression)

Summary

- Of the 35 patterns of three erasures:
 - 25 are correctable with the simple algorithm
 - 3 more are correctable with the complex algorithm
 - 7 are uncorrectable (codewords)

Theorem 1. The number of erasure patterns of weight 3 is $\sim \frac{1}{6}n^3$.

Theorem 2. The number of [easily] correctable erasure patterns of weight 3 is $\sim \frac{1}{6}n^{\log_2 5} = \frac{1}{6}n^{2.322}$.

Theorem 3. The number of uncorrectable erasure patterns of weight 3 is $\sim \frac{1}{6}n^2$.

Visit To A Small Red Planet

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."

Mars

Rate: R bits per second

Point B

Earth

Point A

Example: Mariner 4 (1965)

- F = 2.3 GHz (S-band)
- BPSK modulation
- R = 8.33 bits per second
- No Error Correction
- No Data Compression

This is our baseline system.

Mariner 4

The First Close-Up of Mars!

Before and After

Mariner 4

62

A Memento of Mariner 4

PRESENTED TO DR.PICKERING BY T.C.A.T. A MEMENTO OF THE FIRST TELEVISION CLOSEUP OF MARS JULY 15 TH. 1965

Mariner 4

Another Mariner 4 Picture

Simulated view through a telescope of Mars from Earth

Éarth

Mars

Sun

Earth to Mars distance: 259 million km

Date: 7 February 2003

Credits

Normalized Rate R*

We normalize the data rate R to R*, the rate in image-bits/sec to account for the distance to Mars and a few other factors.

Viking Mars Orbiters/ Landers (1976)

- F = 2.3 GHz (S-band)
- BPSK Modulation
- R* = 3K ibps
- (32,6) Biorthogonal Code
- No compression

Viking Lander

Viking I Landscape

Viking Orbiter

The Great Equatorial Canyon

A 20-Year Gap and Then:

Mars Global Surveyor (1997)

- F = 8.4 GHz (X band)
- BPSK Modulation
- R* = 128K ibps
- (7, 1/2) CC + (255,223) RS
- 2:1 lossless Rice compression

"Voyager" (7, 1/2) Convolutional Encoder

Reed-Solomon Codes

Mr. Reed

Mr. Solomon

MGS The "Face" on Mars (Cydonia)

Earth and Moon from MGS

MGS

Mars Pathfinder (1997)

- F = 8.4 GHz (X-Band)
- BPSK Modulation
- $R^* = 8K$ ibps
- (15, 1/6) CC + (255,223) RS
- 6:1 lossy JPEG compression

"Galileo" (15, 1/6) Convolutional Encoder

Pathfinder

"Sojourner"

Simulated view through a telescope of Mars from Earth

Éarth

Mars

Sun

Earth to Mars distance: 259 million km

Date: 7 February 2003

Credits
Mars Exploration Rovers (2004)

- F = 8.4 GHz (X -Band)
- BPSK Modulation
- $R^* = 168K$ ibps
- (15, 1/6) CC + (255,223) RS
- 12:1 lossy "ICER" compression

Leaving the Lander

The "Columbia Hills" (Spirit)

MER

Eagle Crater (Opportunity)

Example of composite Pancam image

Progress, 1965-2004

1965 (Mariner 4): R*= 8.33 ibps 2004 (MER): R*= 168K ibps

• This is a 20000-fold increase, or 4.3 orders of magnitude (43 dB).

Clash of the Titans

Newton vs. Shannon

- Newton (Physics)
 - Aperture
 - Frequency
 - Power

- Shannon (Mathematics)
 - Error-Correction
 - Data Compression

4.3 Orders of Magnitude Improvement in Image Bit Rate, 1965-2004

A Look at the Future

"Turbo Codes" (1993)

Alain Glavieux

Claude Berrou

Turbo Convolutional Encoder / Verify / Decoder System Architecture

Newton Fights Back with More Aperature

Green Bank 100m Antenna

Array of 12m Antennas

Mars Reconnaissance Orbiter (2006)

- **F** = **32 GHz** (Ka Band)
- QPSK Modulation
- $\mathbf{R}^* = \mathbf{6M}$ ibps
- (8920, 1/6)CCSDS turbo code
- 2:1 lossless compression

Was It Worth the Effort?

"Frequently the messages have meaning"

A Tour of the Solar System.

A Tour of the Solar System.

Ludwig van Beethoven, Moonlight Sonata Daniel Barenboim, pianist

> UCSD April 29, 2005

Sunset on Mars Viking Lander 1976

The Asteroid Gaspra Galileo 1991

Jupiter Voyager 1 1979

lo and Jupiter Cassini 2004

Saturn's moon Phoebe Cassini 2005

Uranus Voyager 2 1986

Neptune Voyager 2 1989

Pluto and its moon Charon Hubble Space Telescope 1994

We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time. -T. S. Eliot, Little Gidding.
