Viterbi's Impact on the Exploration of the Solar System

Proof of Optimality of Orthogonal Codes

First Appearance of
$\frac{E_{b}}{N_{0}}>\ln 2$

Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm

IV. A Probabilistic Nonsequential Decoding Algorithm

We now describe a new probabilistic nonsequential decoding algorithm which, as we shall show in the next section, is asymptotically optimum for rates $R>$ $R_{0}=E_{0}(1)$. The algorithm decodes an L-branch tree by performing L repetitions of one basic step. We adopt the convention of denoting each branch of a given path by its data symbol a_{i}, an element of $G F(q)$. Also, although $G F(q)$ is isomorphic to the integers modulo q only when q is a prime, for the sake of compact notation, we shall use the integer r to denote the r th element of the field.
In Step 1 the decoder considers all q^{K} paths for the first K branches (where K is the branch constraint length of the code) and computes all q^{K} likelihood functions $\prod_{i=1}^{K} p\left(\mathrm{y}_{i} \mid a_{i}\right)$. The decoder then compares the likelihood function for the q paths:

$$
\begin{gathered}
\left(0, a_{2}, a_{3}, \cdots a_{K}\right), \\
\left(1, a_{2}, a_{3}, \cdots a_{K}\right), \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\left(q-1, a_{2}, a_{3}, \cdots a_{K}\right)
\end{gathered}
$$

for each of the q^{K-1} possible vectors ($a_{2}, a_{3} \cdots a_{K}$). It thus performs q^{K-1} comparisons each among q path likelihood functions. Let the path corresponding to the groon likelibood function in each comparison be denoted the survivor. Only the q^{K-1} survivors of as many comparisons are preserved for further consideration; the remaining paths are discarded. Among the q^{K-1} survivors

EE/Ma 127b, Class Project 2

Jet Propulsion Laboratory Interplanetary Error-Control Codes

No Coding (Pre 1969)
$(32,6)$ Biorthogonal Block Code (1969-1975)
$K=7, \quad R=1 / 2$ Conv. Code + Viterbi Decoding (1977-1986)

- Plus Reed-Solomon if Data Compression is Used
$K=15, R=1 / 6 C C / V D+R S(1986-2004)$
Turbo Codes (2004-?)
LDPC Codes (2006-?)

No Coding: The Eurly Mariners

Mariner 2, 1962

- Venus Flyby

Mariner 4, 1965

- Mars Flyby
- First close-up photographs of another planet.

Mariner 5, 1967

- Venus Flyby

$(32,6)$ Biorihogonal Code + "Green Machine" Decoding

Mariners 6, 7 (1969)

- Mars Flyby

Mariner 9 (1971)

| + | + | + | + | + | + | + | + |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | - | + | - | + | - | + | - |
| + | + | - | - | + | + | - | - |
| + | - | - | + | + | - | - | + |
| + | + | + | + | - | - | - | - |
| + | - | + | - | - | + | - | + |
| + | + | - | - | - | - | + | + |
+	-	-	+	-	+	+	-
-	+	-	+	-	+	-	+
-	-	+	+	-	-	+	+
-	+	+	-	-	+	+	-
-	-	-	-	+	+	+	+
-	+	-	+	+	-	+	-
-	-	+	+	+	+	-	-
-	+	+	-	+	-	-	+

The (8,4) biorthogonal code

(32,6) Biorthog onal Code/ "Green Machine" Decoding

Mariner 10, 1973-1974

- Mercury and Venus

Viking Mars Landers, 1976
Mars' Surface

| + | + | + | + | + | + | + | + |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | - | + | - | + | - | + | - |
| + | + | - | - | + | + | - | - |
| + | - | - | + | + | - | - | + |
| + | + | + | + | - | - | - | - |
| + | - | + | - | - | + | - | + |
| + | + | - | - | - | - | + | + |
+	-	-	+	-	+	+	-
-	+	-	+	-	+	-	+
-	-	+	+	-	-	+	+
-	+	+	-	-	+	+	-
-	-	-	-	+	+	+	+
-	+	-	+	+	-	+	-
-	-	+	+	+	+	-	-
-	+	+	-	+	-	-	+

The (8,4) biorthogonal code

$\mathrm{K}=7, \mathrm{R}=1 / 2$ Convolutional Code with Viterbi Decoding

Voyagers 182 (1977-)
 - "Grand Tour"

- Magellan Venus Radar Mapper (1989-1993)

Mars Global Surveyor (1997-)

$\mathrm{K}=15$ Convolutional Codes with Bit 59, Decoing

Galileo (1989-2003)

- A Sea of Troubles

Mars Pathfinder (1996-1997)

- Sojourner

$\mathrm{K}=15$ Convolutional Codes with Big 48, Decoding

Cassini (1997 -)

- Huygens Titan Probe, 2005

Mars Exploration Rover (2003-2004)

- Spirit and Opportunity

A Brave New World :Turbo Codes

Turbo Convolutional Encoder / Verify / Decoder System Architecture

Messenger to Mercury (APL Mission: 2004-2011)
Mars Reconnaissace Orbiter (Aug 2005 Launch)

Both use (8920, 1/6) CCSDS turbo code

Back to the Future: LDPC Codes

Mars Telecomm Orbiter 2010

$$
\begin{aligned}
& \\
& \mathrm{A} \\
& \mathrm{~B} \\
& \mathrm{C}
\end{aligned}\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

And Beyond?

SUMMARY

Claude Shannon:

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."
"Frequently the messages have meaning"

A Tour of the Solar System

On the Occasion of Andrew Viterbi's 70th Birthday.

Ludwig van Beethoven, Moonlight Sonata
Daniel Barenboim, pianist

Mercury
 Mariner 10
 1974

Venus
 Magellan 1990

The Far Side of the Moon Apollo 16 1972

Mars
Mars Global Surveyor 1997

The Surface of Mars
 Mars Pathfinder 1998

The Asteroid Gaspra
Galileo 1991

Jupiter
 Voyager 1
 1979

Jupiter's moon lo

 Galileo 1996

lo above Jupiter
 Cassini
 2004

Jupiter's moon Europa
 Galileo 2000

Jupiter's moon Callisto
 Galileo 2001

Saturn
Cassini
2004

Saturn's moon Titan

Cassini
2004

Saturn's moon Phoebe

Cassini 2005

Uranus
 Voyager 2
 1986

Neptune
 Voyager 2 1989

Pluto and its moon Charon
Hubble Space Telescope 1994

Earthrise Apollo 8 1968

We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time. -T. S. Eliot

Happy Birithday Andy!

