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Theorem 1 q)(p) 

The probability of error in decoding an arbitrarily long 

convolutional code tree of constraint length N (channel 

symbols) transmitted over a memoryless channel is 

,/I 

R 
bounded by E(R) 

PE > exp I -NEL(R) + oW)lI 

where 
0 P 

(al p< I 

E:,(R) = ho (OSP< a) (164 

and 
P(p) 

R = %P>/P. (16b) 

Taking the derivative of (14) we find 

dR 
-= -mP) - &(P)IP 

dP 
5 0 for all p > 0 

P 

where we have made use of the fact that go(p) is concave. 

Also, from property b) we have lim,,,, &(p)/p = 

E’(O) = C. Thus we obtain 

E(R) 
R 

J-‘--l 
0 P 

(b) p’l 

Fig. 4. Graphical construction of EL(R) from I%(P). 

CorollarlJ 1 

The exponent E,(R) in the lower bound is a positive 

monotone decreasing continuous function of R for all 

OIR<C. 

A graphical construction of the exponent-rate curve 

from a plot of the function E,,(p) is shown in Fig. 4. We 

defer further consideration of the properties of (16) 

until after an upper bound is obtained. 

A tighter lower bound on error probability for low 

rates is obtained by replacing the sphere packing bound 

of (6) by the tighter lower bound for low rates recently 

obtained by Shannon, Gallager, and Berlekamp.17’ For 

this bound (6) is replaced by 

where 

Ez = ;y I -lim [P 111 F T p(4pb’) 
m 

&P(Y I 4P(Y I ~‘>Yl~ = &(i3. (17b) Y 

The straight line of (17a) is tangent to the curve of (6) 

at R = [(P + 1)/p@;(p). Repeating the minimization with 

respect to CL we find 

E&l = min [(P + l)Ez - &RI 
* 

=E,, -MC. 
0 < R < Elbl 

Thus, we have 

Corollary 2 

For low rates a tighter lower bound than that of 

Theorem 1 is: 

PX > & i -NE&) + o(N)lJ 

where 

p’ is the solution to the equation E,,(c) = E,, and E, is 

given by (17b). 

IV. A PROBABILISTIC NONSEQTJENTIAL DECODING 

ALGORITHM 

We now describe a new probabilistic nonsequential 

decoding algorithm which, as we shall show in the 

next section, is asymptotically optimum for rates R > 

R, = E,(l). The algorithm decodes an L-branch tree 

by performing L repetitions of one basic step. We adopt 

the convention of denoting each branch of a given path 

by its data symbol ai, an element of GE(q). Also, although 

GE(q) is isomorphic to the integers modulo (r only when 

Q is a prime, for the sake of compact notation, we shall 

use the integer r to denote the rth element of the field. 

In Step 1 the decoder considers all qK paths for the 

first K branches (where K is the branch constraint length 

of the code) and computes all qK likelihood functions 

n;?I1 p(y, 1 ai). The decoder then compares the likelihood 

function for the q paths: 

(0, az, a, . . * 4, 

0, a2, a3, ... ad, 
. . . . . . . . . . . . . . . . . . 

(a - 1, az, a3, . . . ad 

for each of the qK-l possible vectors (az, a3 . . . ar;). 

It thus performs qIcel comparisons each among q path 

likelihood functions. Let the path corresponding to the 

greatest likelihood function in each comparison be denoted 

the survivor. Only the q”-’ survivors of as many com- 

parisons are preserved for further consideration; the 

remaining paths are discarded. Among the qK-’ survivors 
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uniformly in t. Also, from Theorem A.2 and its corollary, 

$ w - m(Ol = F hw>, (13) 

both in the stochastic mean [PI] uniformly in t and almost 
surely [P,] for every t, -T 5 t _< T. Now from (ll), 

Thus, with the use of (lo), (12), (13), and mutual 
independence of { $ ) , 

= &(t) $ b(t) - ml(t)1 dt 

+ z akl $ [x(t) - ml(t)1 t=tt 

which proves ii). 

The author 

discussions. 
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Error Bounds for Convolutional Codes 

and an Asymptotically Optimum 

Decoding Algorithm 

ANDREW J. VITERBI, SENIOR MEMBER, IEEE 

Ahstraci-The probability of error in decoding an optimal con- 

volutional code transmitted over a memoryless channel is bounded 

from above and below as a function of the constraint length of the 

code. For all but pathological channels the bounds are asymptotically 

(exponentially) tight for rates above &, the computational cutoff 

rate of sequential decoding. As a function of constraint length the 

performance of optimal convolutional codes is shown to be superior 

to that of block codes of the same length, the relative improvement 
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Increasing with rate. The upper bound is obtained for a specific 

probabilistic nonsequential decoding algorithm which is shown to be 

asymptotically optimum for rates above Ra and whose performance 

bears certain similarities to that of sequential decoding algorithms. 

I. SUMMARY OF RESULTS 

s 

INCE Elias”] first proposed the use of convolutional 
(tree) codes for the discrete memoryless channel, 
it has been conjectured that the performance of 

this class of codes is potentially superior to that of block 
codes of the same length. The first quantitative verification 
of this conjecture was due to Yudkinr2’ who obtained 
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No Coding (Pre 1969) 

(32,6) Biorthogonal Block Code (1969 - 1975) 

K =7,    R = 1/2  Conv. Code +  Viterbi Decoding (1977 -- 1986)

Plus Reed-Solomon if Data Compression is Used

K= 15,  R = 1/6  CC/VD  + RS   (1986 -- 2004)

Turbo Codes  (2004 -- ?)

LDPC Codes   (2006 -- ?) 

Jet Propulsion Laboratory  
Interplanetary Error-Control Codes



No Coding: The Early Mariners	

Mariner 2, 1962

Venus Flyby 

Mariner 4, 1965

Mars Flyby 

First close-up photographs of another planet.  

Mariner 5, 1967

Venus Flyby



Mariners 6, 7 (1969)

Mars Flyby

Mariner 9 (1971)

Mars Orbit

(32,6) Biorthogonal Code + 
“Green Machine” Decoding

+ + + +

+ − + −

+ + − −

+ − − +

+ + + +

+ − + −

+ + − −

+ − − +

+ + + +

+ − + −

+ + − −

+ − − +

− − − −

− + − +

− − + +

− + + −

− − − −

− + − +

− − + +

− + + −

− − − −

− + − +

− − + +

− + + −

− − − −

− + − +

− − + +

− + + −

+ + + +

+ − + −

+ + − −

+ − − +

The (8,4) biorthogonal code



Mariner 10, 1973-1974

Mercury and Venus 

Viking Mars Landers, 1976

Mars’ Surface

(32,6) Biorthogonal Code/ 
“Green Machine” Decoding

+ + + +

+ − + −

+ + − −

+ − − +

+ + + +

+ − + −

+ + − −

+ − − +

+ + + +

+ − + −

+ + − −

+ − − +

− − − −

− + − +

− − + +

− + + −

− − − −

− + − +

− − + +

− + + −

− − − −

− + − +

− − + +

− + + −

− − − −

− + − +

− − + +

− + + −

+ + + +

+ − + −

+ + − −

+ − − +

The (8,4) biorthogonal code



Voyagers  1&2 (1977-- )

“Grand Tour”

Magellan Venus Radar Mapper (1989-1993)

Mars Global Surveyor (1997-  )

K= 7, R = 1/2 Convolutional Code
 with  Viterbi  Decoding 



Galileo (1989 -- 2003)

A Sea of Troubles

Mars Pathfinder (1996- 1997)

Sojourner

K = 15 Convolutional Codes with 
Big             Decoding 



K = 15 Convolutional Codes with 
Big            Decoding 

Cassini (1997 ---- )

Huygens Titan Probe, 2005

Mars Exploration Rover (2003--2004)

Spirit and Opportunity



A Brave New World :Turbo Codes

Messenger to Mercury (APL Mission: 2004--2011)

Mars Reconnaissace Orbiter (Aug 2005 Launch)

Both use (8920, 1/6) CCSDS turbo code  



Back to the Future: LDPC Codes 

Mars Telecomm Orbiter 2010

And Beyond ?

The Tanner Graph

Tanner


1 2 3 4 5 6

A 1 1 0 1 0 1
B 1 0 1 1 1 0
C 0 1 1 0 1 1

.

= = = = = =

1 2 3 4 5 6

A B C

22



-1

-2

-3

-4

-5

-6

Voyager

Cassini

Viking

Mariner 4
Voyager

-1.0 3.0 7.0 11.0

lo
g
1
0
P

b

MRO

1.0 5.0 9.0

Pathfinder

Magellan
Mariner 10

MGS

Galileo

MER

Uncoded
(32,6) Biorthogonal
(7, 1/2) Conv.Code 
(7, 1/2) + (255,223) RS
(15,1/6) + (255,223) RS
(8920, 1/6) Turbo

Messenger

Eb/N0,dB

SHANNON

LIMIT

-1.59 dB

SUMMARY



“The fundamental problem of communication is that of reproducing 
at one point either exactly or approximately a message selected at 

another point.”

“Frequently the messages have meaning”

Claude Shannon:



A Tour of the Solar System

Ludwig van Beethoven, Moonlight Sonata
Daniel Barenboim, pianist

On the Occasion of Andrew Viterbi’s 70th Birthday.





Mercury
Mariner 10

1974



Venus
Magellan 

1990



The Far Side of the Moon
Apollo 16

1972



Mars
Mars Global Surveyor

1997



The Surface of Mars
Mars Pathfinder 

1998



The Asteroid Gaspra
Galileo
1991



Jupiter
Voyager 1

1979



Jupiter’s moon Io
Galileo
1996



Io above Jupiter
Cassini
2004



Jupiter’s moon Europa
Galileo
2000



Jupiter’s moon Callisto
Galileo
2001



Saturn
Cassini
2004



Saturn’s moon Titan
Cassini
2004



Saturn’s moon Phoebe
Cassini
2005



Uranus
Voyager 2

1986



Neptune
Voyager 2

1989



??

Pluto and its moon Charon
Hubble Space Telescope

1994



We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.
       -T. S. Eliot

EEarthrise
Apollo 8
1968





Happy Birthday Andy!


