
What is Generic Programming?

Gabriel Dos Reis
Department of Computer Science

Texas A&M University
College Station, TX–77843

gdr@cs.tamu.edu

Jaakko Järvi
Department of Computer Science

Texas A&M University
College Station, TX–77843

jarvi@cs.tamu.edu

Abstract

The last two decades have seen an ever-growing interest in
generic programming. As for most programming paradigms,
there are several definitions of generic programming in use.
In the simplest view generic programming is equated to a set
of language mechanisms for implementing type-safe poly-
morphic containers, such as List<T> in Java. The notion
of generic programming that motivated the design of the
Standard Template Library (STL) advocates a broader defi-
nition: a programming paradigm for designing and devel-
oping reusable and efficient collections of algorithms. The
functional programming community uses the term as a syn-
onym for polytypic and type-indexed programming, which
involves designing functions that operate on data-types hav-
ing certain algebraic structures. This paper aims at analyzing
core mathematical notions at the foundations of rational ap-
proaches to generic programming and library design as rea-
soned and principled activity. We relate several methodolo-
gies used and studied in the imperative and functional pro-
gramming communities. As a necessary step, we provide
a base for common understanding of techniques underpin-
ning generic software components and libraries, and their
construction, not limited to a particular linguistic support.

1 Introduction

The notion of “generic programming” has been in use for
about four decades, popularized in the ’60s with the LISP
programming language and its descendents [McC60, ASS84]
providing direct support for higher-order functions. Since
then, programming techniques and linguistic support for
defining algorithms that are capable of operating over a wide
range of data structures have been subjects of a large body of
work. The notion of polymorphism appears to be an essen-
tial ingredient of generic programming. In 1967, Christopher
Strachey proposed a classification of polymorphism [Str67],
based on the linguistic supports present in programming

Submitted to LCSD’05

languages. Luca Cardelli and Peter Wegner later refined
that classification [CW85], accounting for new language con-
structs.

Curiously, language features for writing some classes of poly-
morphic functions and data structures have received more
attention than sound programming techniques at the foun-
dation of generic libraries. In fact, generic programming
(as usual with successful programming paradigms) is often
equated with language features. It is not uncommon to see
definitions of “generic programming” that are more or less
crafted to mean what the specific programming languages
under consideration support [BJJM99]. Similarly, much of the
conventions and practice of generic programming in the con-
text of C++ [ISO03, Str00] is shaped by the template system
of C++. It is thus difficult to objectively define generic pro-
gramming without a bias to a particular programming lan-
guage over others. But if we want to think of generic pro-
gramming as a principled, reasoned activity, such a language
independent understanding is necessary. Consequently, this
paper will not focus on language features as the subject of
study. The reader interested in a comparison of mainstream
programming language features for generic programming is
referred to the report of Ronald Garcia et al. [GJL+03]. To
avoid being lost in the twists and turns of the “empty set the-
ory” we illustrate our ideas and claims with extensive exam-
ples written in concrete programming languages, in particu-
lar, C++ [ISO03, Str00], Haskell [PJ03], and Scheme [R5R98].
The list of programming languages used in this paper is kept
short to avoid distraction. Of course, we hope that the reader
would translate or re-express our examples in his or her own
favorite programming languages.

Our long term goal is to develop useful theories of generic
programming, to better understand and advance the practice
of generic programming as a principled activity. This paper
reports work in progress along this path, starting from ana-
lyzing and relating several notions of generic programming.

It is good to have theories that clarify practice. Good the-
ories, however, are not those that simply rehash common
knowledge. Good theories help predict and conquer unex-
plained and/or unexplored territories. For example, New-
ton’s theory of gravitation was good because it clarified prac-
tices and beliefs of the time but also helped predict eclipses
within reasonable precision. The theories of relativity devel-
oped by Einstein were good because they explained facts that
left physicists perplexed, and took up where Newton’s the-
ory was defeated in predictions. From empirical sciences,

1

one can observe that useful theories are falsifiable. That is,
they can be confronted with hard data from the world. Simi-
larly, we posit that useful theories that help gain better under-
standing of generic programming should be confronted with
practices from the real world. The theories are not the goals
in themselves, they are means by which we seek to have bet-
ter understanding. Also, care must be exercised so as not to
confuse theories with realities in interpretations.

As its main contribution, this paper shows how different ap-
proaches to generic programming can be explained within
the same mathematical framework, leaning on category the-
ory. We note that the connection between category theory
and generic programming in functional programming lan-
guages has been well established — many generic algorithms
draw their motivation from categorial notions. A novelty
of this paper is the establishment of similar connections for
generic programming approach as pioneered by Alexander
Stepanov, David Musser and their collaborators (at the foun-
dation of the STL), which arises largely from a practical per-
spective of organizing generic software components for in-
creased reusability. The latter approach builds on low level
language features — driven by efficiency considerations —
much more so than the other approaches to generic program-
ming. As a result, however, proving properties of and rea-
soning about STL generic algorithms is difficult. We believe
a stronger connection to a formal model of generic program-
ming will aid in this respect, guiding the development of
generic libraries, and program manipulation tools for them.

2 Background

Generic programming has been approached from various an-
gles in both the functional programming and imperative pro-
gramming communities. We identify two main schools of
thought:

1. the “gradual lifting of concrete algorithms” discipline as
first described by David Musser, Alexander Stepanov,
Deepak Kapur and collaborators;

2. a calculational approach to programming, the founda-
tions of which were laid by Richard Bird and Lambert
Meertens.

The first school defines the discipline of generic program-
ming essentially as follows: start with a practical, useful,
algorithm and repeatedly abstract over details; at any stage
of the gradual abstraction, the “generic” version of the algo-
rithm shall be such that when instantiated it shall match the
original algorithm both in semantics and efficiency. The grad-
ual lifting stops when these conditions cease to hold. Quoting
Musser and Stepanov [MS88]:

By generic programming, we mean the definition
of algorithms and data structures at an abstract
or generic level, thereby accomplishing many re-
lated programming tasks simultaneously. The cen-
tral notion is that of generic algorithms, which are
parameterized procedural schemata that are com-
pletely independent of the underlying data repre-
sentation and are derived from concrete efficient al-
gorithms.

The requirement of abstract specification independent of the
actual data representation is fundamental for two reasons: 1)

it is at the basis of substitution of one datatype interface for
another when they are similar; and 2) it allows for classifica-
tion of similar interfaces based on their efficiency. For exam-
ple, the linear search function find() of the Standard Tem-
plate Library [SL94] works on iterators coming from either
a linked-list or an input stream because they provide sim-
ilar interfaces for increment and value-fetching. However,
binary search() is defined only for forward iterator inter-
faces.

The second school of thought in generic programming has its
root in the initial algebra approach to datatypes as advocated
by Joseph Goguen and collaborators [GTWW77, TWW82]
and a calculational approach to program construction [Bir87,
Mee86]. Category theory is an essential tool in this setting. In
“Generic Programming — an Introduction” [BJJM99], Roland
Backhouse et al. stated:

we introduce another dimension to the level of ab-
straction in programming languages, namely pa-
rameterization with respect to classes of algebras
of variable signature.

In this approach, also referred to as datatype generic program-
ming, structures of datatypes are parameters of generic pro-
grams. Datatype generic programming [JJ96, JJ97, BJJM99,
Hin00, Hin04] has had a strong focus on regular datatypes
essentially described by algebras generated by the functors
sum, product and unit. Algorithms written for those functors
can then operate on any inductive datatype, and are thus in-
herently very generic. Indeed, a fairly large class of generic
algorithms can be defined in this manner, such as structural
equality, serialization/deserialization, zips, folds, and traver-
sals.

The Musser–Stepanov style of generic programming empha-
sizes concept analysis, the process of finding and establishing
the important classes of concepts that enable many useful al-
gorithms to work. Programmers then explicitly define corre-
spondence from their datatypes to those classes of concepts.
A thesis of this paper is that concept analysis is a way of look-
ing for functors that capture common structures. We can see
that the two definitions of generic programming are funda-
mentally very close to each other, but the emphasis in each
view is on different aspects: one focusing on a particular
structural algebra for datatypes and the algorithms defined
in terms of that algebra, whereas the other on finding and
classifying classes of algebras based on some notions of effi-
ciency.

Finally, we can observe that while both methodologies have
an underlying theoretical language-independent model, C++
has become the dominating platform for the Musser–
Stepanov style1, whereas Haskell and its variants are the al-
most exclusive tool for data-type generic programming.

3 Using category theory

Category theory is a branch of mathematics originally devel-
oped as a language to unify and abstract over many structure
and proof patterns in Algebraic Topology. Category theory —
also occasionally referred to as “abstract nonsense” or “the

1Though Musser’s and Stepanov’s early work on generic
programming was in the context of Scheme and Ada.

2

theory of empty set” — has found an unreasonably effective
application in Computer Science. The theoretical core ideas
of the categorial approach to datatypes and generic functions
go back at least to Goguen and collaborators [GTWW77].

3.1 Elementary notions

This section recalls some basic notions of category theory
and establishes vocabulary used in the rest of the paper. We
have kept the load of jargon to the minimum; the reader
interested in further development of category theory might
advantageously consult the standard textbook of Saunders
Mac Lane [ML01]. Within the discussion, we include exam-
ples of how the categorial notions become manifest as idioms
and patterns in practical programming.

3.1.1 Categories

A category C is a collection of objects and arrows (also called
morphisms) between objects with three fundamental opera-
tions:

1. Every arrow ϕ in C is associated with two objects:
• its source domϕ, an object of C , and

• its target codϕ, also an object of C .
Thus, an arrow is often written as ϕ : X → Y , where X is
the source and Y the target.

2. Every object X in C is associated with a distinguished
arrow IX : X → X , called the identity arrow of object X .

3. For two composable arrows ϕ : X → Y and ψ : Y → Z in
C , the composition η = ψ◦ϕ : X → Z is again an arrow in
C .

Furthermore, the composition operator must be associa-
tive and admits the identity arrow as unit, which dia-
grammatically reads

X
(η◦ψ)◦ϕ=η◦(ψ◦ϕ) //

ϕ

��

SSSSSSSSS

))SSSSSSSSS

T

Y
ψ

//

55kkkkkkkkkkkkkkkkkkk Z

η

OO X
ϕ //

ϕ
��?

??
??

??
Y

IY

��

ψ

��?
??

??
??

Y
ψ

// Z

The collection of arrows from an object X to an object Y is
called the hom-set from X to Y and written homC (X ,Y). The
subscript is used to emphasize the category under consider-
ation.

3.1.1.1 Examples

Small sets Our first example of a category is Set whose ob-
jects are sets and arrows are the usual total functions between
sets.

Complete partial orders Recall that a partial order 4 on a
set X is a binary relation on X that is reflexive, transitive and
antisymmetric. A set equipped with a partial order is said a
partially ordered set or poset for short. For example, the set N
of natural numbers equipped with the relation “divides” is a
poset. A function f from a poset (X ,4X) to a poset (Y,4Y)

is said monotonic if f (x1) 4Y f (x2) whenever x1 4X x2. An ω-
chain in a poset X is a sequence x :N→ X such that xi 4 xi+1.
A poset in which every ω-chain has a least upper bound is
called an ω-complete poset. An ω-complete poset with a least
element is said to be an ω-complete pointed poset. For example,
the power set 2A of a set A is an ω-complete pointed poset
when equipped with inclusion as partial order.

A continuous function between two posets is a monotonic
function that sends the least upper bound of an ω-chain to
the least upper bound of the image of the chain. The collec-
tion CPO of ω-complete pointed posets is a category where
the arrows are continuous functions; CPO⊥ is a CPO with a
least element.

3.1.2 Initial and terminal objects

An object i is called initial in a category C if, for every object X
in C , the hom-set homC (i,X) is a singleton. Dually, an object
t is said to be terminal if for every object X in C , the hom-set
homC (X , t) is a singleton. A category can admit at most one
initial (resp. terminal) object, up to isomorphism.

3.1.2.1 Examples

In Set, the empty set 0 is initial. On the other hand, every
singleton 1 is terminal.

3.1.3 Functors

Categories are not very interesting by themselves; what is
interesting about them is what is happening in or between
them, e.g. functors, etc. that we will define shortly. When
studying structures, the first natural thing one usually does
is to look for properties that remain unchanged over simi-
lar structures. For categories, that means properties that re-
main unchanged through the composition operator in a class
of structures.

A functor F from a category C to a category D is a morphism
of categories; it consists of two parts:

1. An object function which assigns an object F (X) in D to
every object X in C ;

2. An arrow function that assigns an arrow F (ϕ) : F (X) →
F (Y) in D to every arrow ϕ : X → Y in C such that

• the identity arrow is sent to the identity arrow, i.e.,

F (IX) = IF(X)

for every object X in C ,

• two composable arrows ϕ : X → Y and ψ : Y → Z
are sent to composable arrows and the property

F (ψ◦ϕ) = F (ψ)◦F (ϕ)

holds.

We will say that F (ϕ) is the lift of the arrow ϕ by F .

3.1.3.1 Examples

Identity functor A ubiquitous functor is the identity func-
tor I. Both its object function and arrow function yield their
arguments unchanged.

3

Constant functor Any object A in a category C gives rise to
a functor A as follows: the object function sends all objects
to A, and the arrow function sends all arrows to the identity
arrow of A. In particular, “the” singleton object 1 gives rise to
the unit functor 1.

3.1.4 Multivariate functors

The notion of functor can be generalized to that of bifunctor,
operating simultaneously on two categories so that the com-
position law holds component-wise:

F (ϕ2 ◦ϕ1,ψ2 ◦ψ1) = F (ϕ2,ψ2)◦F (ϕ1,ψ1) .

3.1.4.1 Examples

For the purpose of this paper, we will assume that we are
mostly working in CPO⊥. This simplifies the exposition al-
lowing us to talk about least and greatest fixed points, mak-
ing the connection to algebras and co-algebras less heavy-
weight. The functor examples given in this section could,
however, be defined in a more general setting by universal
property, i.e., by singling out specific objects with unique ar-
rows to or from them.

Product functor A commonly used functor is the product
functor. Its object function sends two objects X and Y to the
object

X×××Y = {(x,y) | x ∈ X ,y ∈ Y}

and its arrow function sends two arrows ϕ : X → S and ψ :
Y → T to the arrow ϕ×××ψ : X×××Y → S×××T defined by

(ϕ×××ψ)(x,y) = (ϕ(x) ,ψ(y)) .

It can be readily verified that××× indeed is a bifunctor.

The product functor is concretely realized in programming
languages in various ways. In C++ for instance, the object
function is implemented by the standard library class tem-
plate std::pair<X, Y>. However, there is no predefined ar-
row function. One can be literally defined as

template<class X, class Y, class S, class T>
std::pair<S, T>
lift(const std::pair<X, Y>& p, S f(X), T g(Y))
{
return std::pair<S, T>(f(p.first), g(p.second));

}

Associated with the product functor are the projection com-
binators π1 and π2 leading to the tupling combinator 4 that
makes the following diagram commute

T
ϕ

||yy
yy

yy
yy

y
ψ

""DD
DD

DD
DD

D

ϕ4ψ

��
X X×××Y

π1oo π2 // Y

for any pair of arrows ϕ : T → X and ψ : T → Y .

In code, the tupling combinator would read

template<class T, class X, class Y>
std::pair<X, Y> tuple(T t, X f(T), Y g(T))
{

return std::pair<X, Y>(f(t), g(t));
}

Sum functor Yet another commonly used functor is the
discriminated union. It takes objects to tagged pairs

X +++Y = {0}×××X ∪{1}×××Y ∪{⊥}

and arrows to arrows defined by case analysis

(ϕ+++ψ)(⊥) =⊥
(ϕ+++ψ)((0,x)) = (0,ϕ(x))
(ϕ+++ψ)((1,y)) = (1,ψ(y))

where a pattern matching is done as follows: if the argument
is junk, then it is returned untouched; if the argument was
built from an element of the first component then it is ex-
tracted, given to the first arrow and the result is packaged
back into the first component; otherwise if the argument was
built from an element of the second component then it is ex-
tracted, given to the second arrow and the result is packaged
back into the second component.

The above behavior takes lots of words to describe but very
few symbols to define in Haskell

data Either a b = Left a | Right b
eitherLift ::
(a -> c) -> (b -> d) -> Either a b -> Either c d

eitherLift f g (Left x) = Left (f x)
eitherLift f g (Right y) = Right (g y)

Discriminated unions are idiomatically expressed in lan-
guages without built-in pattern matching as instances of the
Visitor Design Pattern [GHJV94]. In C++ for example, us-
ing this scheme we define a base class Either with derived
classes Left and Right. A class EitherVisitor that can visit
classes derived from Either is also needed.

template<class X, class Y> class Either;
template<class X, class Y> class Left;
template<class X, class Y> class Right;

template<class X, class Y>
struct EitherVisitor {
virtual void visit(const Left<X, Y>&) = 0;
virtual void visit(const Right<X, Y>&) = 0;

};

template<class X, class Y>
struct Either {
virtual ˜Either() { }
virtual void accept(EitherVisitor<X, Y>& v) const = 0;

};

template<class X, class Y>
struct Left : Either<X, Y> {
const X& x;
Left(const X& x) : x(x) { }
void accept(EitherVisitor<X, Y>& v) const
{ v.visit(*this); }

};

4

template<class X, class Y>
struct Right : Either<X, Y> {
const Y& y;
Right(const Y& y) : y(y) { }
void accept(EitherVisitor<X, Y>& v) const
{ v.visit(*this); }

};

The code has a fair amount of boilerplate to simulate pattern
matching. Now, the lift mapping itself can be defined as

template<class X, class Y, class S, class T>
const Either<S, T>
lift(const Either<X, Y>& e, S f(X), T g(Y))
{

typedef S (*F)(X);
typedef T (*G)(Y);
struct Impl : EitherVisitor<X, Y> {

F f;
G g;
const Either<S, T>* value;
Impl(F f, G g) : f(f) g(g), value() { }

void visit(const Left<X, Y>& e)
{

value = left<S, T>(f(e.x));
}
void visit(const Right<X, Y>& e)
{

value = right<S, T>(g(e.y));
}

};

Impl vis(f, g);
e.accept(vis);
return *vis.value;

}

We use helper functions left<S, T>() and right<S, T>()
for allocating objects of the obvious types. The code is un-
doubtly more involved than the corresponding few lines in
Haskell (or ML). It is not intended as a translation of Haskell
to C++, but as illustration of both basic categorial constructs
and common techniques used in languages lacking direct
support for pattern matching.

Dually to the case of product, the sum functor comes with
two injection combinators ι1 and ι2 and a conflating combi-
nator O making

X
ι1 //

ϕ

""EE
EE

EE
EE

E X +++Y

XOY
��

Y
ι2oo

ψ

||zz
zz

zz
zz

z

Z

a commutative diagram, for any pair of arrows ϕ : X → T and
ψ : Y → T .

In code, the destruction combinator is typically given by case
analysis (because its domain is a discriminated union).

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y

The Maybe functor It is the functor 1+ I whose action is
described diagrammatically as

X
Maybe //

ϕ

��

1+X

Maybe(ϕ)
��

Y
Maybe // 1+Y

Conceptually, it describes the type of objects that may hold
values of another datatype or nothing.

3.1.5 Algebras and co-algebras

In this section we consider only endofunctors, i.e., functors
with identical sources and targets.

3.1.5.1 Algebras

The notion of algebra generalizes that of Σ-algebra from the
theory of Universal Algebra [Coh81] where an algebra can be
thought of as interpretation of a collection of function sym-
bols, and the structures of their domains are given by the
functor.

Given an endofunctor F of a category C , an arrow of the form

α : F(X)→ X

is called an F-algebra — written (α,X)F or simply (α,X) when
the functor is understood from context — and the object X is
its carrier.

In CPO⊥ for example, if one thinks of a polynomial functor
as describing a structure X together with operation symbols,
then an algebra appears as an interpretation by case analysis.

Example The Haskell datatype

data Nat = Zero | Succ Nat

is a Maybe-algebra, because the above definition introduces
the operation Zero�Succ where

Zero :: Nat -- can be thought as Zero :: 1 -> Nat
Succ :: Nat -> Nat -- successor operation

Here we would like to interpret Zero as the natural number
0, and Succ as the operation that yields the successor of a
natural number. Of course, that is not the only possible in-
terpretation; but among all possible interpretations, there is
a distinguished one. We make that idea more precise in the
following paragraphs.

Given an endofunctor F on a category C and two F-algebras
(X ,α) and (Y,β), an arrow ϕ : X → Y that makes

F (X) α //

F(ϕ)
��

X

ϕ

��
F (Y)

β // Y

5

a commutative diagram, i.e., ϕ ◦α = β ◦F (ϕ), is called an F-
algebra homomorphism. The collection Alg(F) of F-algebras
can be readily seen to form a category where the arrows are
the F-algebra morphisms. The initial object (µF, [) of that cat-
egory, when it exists, is called the initial F-algebra. It has the
distinguishing characteristic that given any F-algebra (ϕ,X)
there is unique F-algebra homomorphism — written ([ϕ]) —
from µF to X making the diagram

F (µF) [//

F(([ϕ]))
��

µF

([ϕ])

��
F (X)

ϕ // X

commutative. The arrow ([ϕ]) is said to be the catamorphism of
ϕ. Examples of catamorphisms will be given in §3.2.1

3.1.6 Coalgebras

A coalgebra is the dual notion of an algebra, i.e., an arrow of
the form

α : X → F (X)

which we will denote by [α,X]F . One can also define the no-
tion of F-coalgebra homomorphism which is an arrow ψ : X →Y
that makes the diagram

X

ψ

��

α // F (X)

F(ψ)
��

Y
β // F (Y)

commute for any pair of F-coalgebras α and β. The collec-
tion CoAlg(F) of F-coalgebras, with F-coalgebra homomor-
phisms as arrows, is a category. The terminal object (νF,])
of that category, when it exists, is called the final coalgebra of
the functor F . It is characterized by the fact that given any
F-coalgebra [ψ,X], there corresponds a unique F-coalgebra
homomorphism from X to νF that makes

X

[(ψ)]

��

ψ // F (X)

F([(ψ)])
��

νF
] // F (νF)

a commutative diagram. The F-coalgebra [(ψ)] is called the
anamorphism of the arrow ψ.

3.2 Categorial datatypes

3.2.1 Initial datatypes

The initial algebraic approach to datatypes posits that when
working in an appropriate category, many abstract data types
are nothing but initial algebras of some functor. For example,
the usual set of natural numbers as described by the Peano
axioms is the initial algebra of the functor Maybe.

The main benefit of viewing datatypes as initial algebras is
that an iteration operator over the datatypes, called fold, fol-
lows for free. That crucial property provides a convenient

implementation tool and reasoning device to capture patterns.
In CPO⊥ for instance, it can be shown that every polynomial
functor has an initial algebra, which in fact is its least fixed
point.

For example, consider the bifunctor

S (T,X) = 1+++T×××X = Maybe(T×××X).

Its least fixed point with respect to the second argument
yields an object parameterized by T

Seq(T) = 1+++T×××Seq(T)

which captures many algebraic aspects of finite sequences of
values of type T . When viewed as acting on T , it can be
thought of as a functor; we will call it the sequence functor. A
cons-list from functional programming practice is an example
of such an object. In Haskell, it is defined by

data List a = Nil | Cons a (List a)

For a fixed T , Seq(T) is the least fixed point of the functor
X 7→ 1+++ T ×××X . Computing the length of such list is readily
implemented by

length :: List a -> Int
length Nil = 0
length (Cons a as) = 1 + length as

where it is apparent that the length function is obtained by
sending the unit value (1) to 0 and the list constructor Cons
to the successor operation. That is the essence of catamor-
phisms, i.e., mapping constructors to functions. Note how
that description is an abstract specification of the following
C++ algorithm:

template<class Forward>
int length(Forward first, Forward last)
{
int n = 0;
for (; first != last; ++first)

++n;
return n;

}

The fundamental operations of the functor Seq are material-
ized here by

• when to stop or empty sequence 1↔ first == last;

• next elements of the sequence ++first.

Then the mapping corresponds to initialization to 0 and in-
crementation respectively. The act of replacing a signature
(here 0 and the successor functions) with a function is the
essence of catamorphism, and the basis of polytypic func-
tions. The STL algorithm accumulate is the fold for sequences,
and many other STL algorithms are specializations of it.

3.2.2 Final datatypes

Final datatypes are dual to initial datatypes. They can be
modeled as final coalgebras. In the category CPO⊥, the final
coalgebra of a polynomial functor is its greatest fixed point.
For example, the greatest fixed point of the functor

X 7→ T×××X

6

is the infinite list or stream of values of types T , characterized
by two fundamental operations

head : Stream(T)→ T
tail : Stream(T)→ Stream(T) .

The C++ standard iterator ostream iterator<> is a genuine
example of handles to streams — there is no way to test for
“stopping conditions”.

The greatest fixed point of the X 7→Maybe(T×××X) (see §3.2.1)
is a potentially infinite list. Unlike the case for streams, one can
test a potentially infinite list for stopping conditions.

The main difference between initial datatypes and final
datatypes is that the former are characterized by constructors
whereas the latter are characterized by observers and modi-
fiers.

4 Recursion patterns

The categorial approach to data types makes clear connec-
tions between the patterns of “regular” recursive algorithms
and those of data types. The most popular being catamor-
phism, anamorphism and hylomorphism (an anamorphism
followed by a catamorphism) [MFP91]. Interestingly, such
patterns are essentially present in the Musser–Stepanov ap-
proach to structure algorithms, in slightly different forms (it-
erative mostly) and spelled out differently. Consider the fol-
lowing function template accumulate from the STL:

template <class Input, class T, class BinOp>
T accumulate(Input first, Input last, T init, BinOp op)
{
for (; first != last; ++first)

init = op(init, *first);
return init;

}

This function essentially defines what corresponds to a fold,
the general recursion operator for defining catamorphisms,
over a List functor. Compare this to the typical definition of
a fold in, say, Haskell:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

When foldr is called with a mapping for the data construc-
tors list, we get specific catamorphisms. This is directly visi-
ble in the Haskell case: the mapping z is applied to lists con-
structed with [], and f to lists constructed with the cons op-
erator :. We use foldr (instead of foldl) because it is the
natural iteration operation for the list datatype as defined in
Haskell. For example, foldr (+) 0 a:(b:(c:[])) gives, af-
ter mapping + and 0 appropriately, a+(b+(c+0)).

In the C++ version, init corresponds to z, the empty list is
denoted by the negation of first != last, and op is the same
as f. As an example, in Haskell, the catamorphism length for
computing the length of a list is obtained by mapping 0 to the
empty list, and an increment function to the cons constructor:

length ls = foldr (1+) 0 ls

Analogously, the C++ length function can be written in terms
of accumulate as follows:

struct incrementor {
template<class X, class Y>
X operator()(X x, const Y& t) const { return x + 1; }

};

template <class In>
int length(In first, In last)
{
return accumulate(first, last, 0, incrementor());

}

With the help of a library that provides convenient notation
[JPL03], one can simply write

template <class In>
int length(In first, In last)
{
return accumulate(first, last, 0, _1 + 1);

}

Many other STL algorithms — for each, transform, and find
to name a few — can be defined as catamorphisms using
accumulate. The view of a fold as a combinator that defines
a traversal, or recursion pattern, for algebras with a partic-
ular signature, applies equally well in the context of STL, as
it does in the context of Bird–Meertens formalism. However,
whereas generalized folds over all regular data types, such as
binary trees, are possible in data-type generic programming,
this is not the case for STL. For example, accumulate is de-
fined only for sequences, not for algebras describing binary
trees. As a remedy, STL defines a homomorphism from bi-
nary trees (the map data structure implemented as red-black
trees) to sequences, but this does not enable generic algo-
rithms that truly operate on the structure of the tree. In par-
ticular, the homomorphism fixes in-order as the only traver-
sal for STL maps. There are practical consequences of this.
For example, copying a STL map to another map with the
std::copy algorithm exhibits worst case complexity in terms
of necessary rotations in the underlying red-black tree. Simi-
larly, the generic find algorithm cannot take advantage of the
special structure of the tree.

5 Transforming sequences

In line with our “meta” views developed in the opening of
this report, we start with the simple idea of transforming a
sequence into another one by applying a given function to
each element. For concreteness, here is a Scheme routine for
that:

(define (map function sequence)
(cond ((null? sequence) nil)

(else (cons (function (car sequence))
(map function sequence)))))

That definition assumes the ubiquitous, built-in, Scheme
datatype of list to represent a sequence of items. The pro-
gram fragment inspects its input with the observers

• null? to test for an empty sequence;

7

• car to inspect the value of the head of a sequence;

• cdr to get to the remaining items in a sequence;

and constructs its output with:

• cons to construct a new sequence out of an existing item
and a sequence.

These operations seem to be fundamental primitives needed
to write the algorithm as a Scheme program. Data con-
structors (e.g. cons) are typical to initial algebra treatment
of generic datatypes and functions, whereas observers (e.g.
null?, car, cdr) are defining characteristics of final coalge-
bras. Consequently, this expression of the transformation
function makes a mixture of initial algebras and final coalge-
bras. Is that mixture essential to capture the algebraic essence
of map? We will see a purely initial algebraic formulation in
§5.1. If not, is that mixture essential to make map operate on a
wider class of sequence implementations? A fundamentally
final coalgebraic definition is given in §5.2 as a C++ function
that operates on a wide variety of sequence instances.

The definition of map has a direct imprint of the built-in list
type — uses of null?, car, cdr and cons that have built-in
meaning. As is, it is not usable with another incarnation of
sequences, say with vectors. However, that limitation can
be overcome in several ways. One way is to use symbols —
e.g. empty?, head, tail, new-seq and null — that can support
the abstract operations on a variety of sequence implementa-
tions, based on the “data-directed” programming paradigm
[ASS84]. In that perspective, their implementations would
abstract away the differences in sequence implementations
through runtime type-based dispatch. In C++ such an ap-
proach could be expressed through overloading or overrid-
ing, whereas in Haskell it would take the form of type classes.

Another way of removing the limitation is via higher-order
functions, passing the necessary operators as parameters:

(define (map fun seq empty? head tail new-seq null)
(cond ((empty? seq) null)

(else (new-seq (fun (head seq))
(map fun (tail seq) empty?

head tail new-seq null)))))

This version is fully general and makes no hard-coded as-
sumptions on how the sequence is represented. However,
the function may be awkward to use. In particular, every use
site of this function must ensure that the right operations are
passed along with the right sequence implementations. For
example, calling map with a list and vector-ref will lead to
(runtime) error. We see that what we need here is a way of re-
ferring to the iteration operator of the concrete implementation
of the notion of sequence.

This new version of map, as well as the first, features several
issues in generic programming — accessors as final coalge-
bras and constructors as initial algebras.

5.1 A slightly different look at map

The map function is also part of the Haskell Prelude [PJ03] and
defined as

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

The explicit type annotation makes it unambiguous that map
is defined to work only on Haskell’s built-in datatype list.
The only genericity achieved here is the variability of the con-
tained element type. However, as we observed in the previ-
ous section, the notion of transformation is not restricted to a
specific instance of the notion of sequence.

This expression of map uses a slightly different approach.
Namely, it accesses the building blocks of the input sequence
through pattern matching. Therefore it makes essential use of
the list data constructors, and is completely defined in terms
of those. It can be completely characterized in terms of the
initial algebra for list (which really has a stack implemen-
tation in most functional programming languages). Conse-
quently, while the definition works on the list implementa-
tion of the notion of sequence, it does not work on the Haskell
Array implementation or any other sequence implementation
that does not use the list constructors.

To overcome the use of built-in constructors that tie map to a
given data type, the Haskell library uses a type class Functor
as implementation of the general notion of functor, as dis-
cussed in §3.1.3:

class Functor f where
fmap :: (a -> b) f a -> f b

The idea is that the symbol fmap will be applicable to all type
constructors for which there are known instance declarations
stating that they act like functors. Given such a declaration, a
use of fmap on a particular concrete sequence is to be made in
conjunction with Functor instance declarations for that con-
crete sequence implementation. This situation reminds us of
the drawbacks typical of object oriented programming where
operations are closely tied to objects (e.g. member functions)
so that writing N algorithms for P datatypes requires solving
N×P problems.

Applying Stepanov–Musser’s methodology to lift map to
more generic levels, capable of operating over a wider range
of data types, requires giving up specific knowledge of the
built-in list type. As a consequence, the expression of the idea
of sequence transformation seems to become more involved.
To what extent are the added complexities intrinsic to map as
opposed to language artifacts? Is the increase of complexity
a sign of useful generality gain?

5.2 Yet another look at map

In this section, we look at the expression of the map that
in the C++ community is known as the standard algorithm
transform:

template<class In, class Out, class Oper>
Out transform(In first, In last, Out out, Oper op)
{
for (; first != last; ++first)

*out++ = op(*first);
return out;

}

8

It is standard, in programming with C++, to represent se-
quences as pairs of iterators; thus generic sequence algo-
rithms operate on such representations, as laid out in the
STL [SL94]. The operations of reading the head of a sequence
and moving to the remaining parts are implemented by * and
++ operators. The C++ version of transform does not use list
(sequence) constructors to build the result. Rather, the for-
mulation uses accessors, as if the view is that of final datatypes.
Consequently, the algorithm can work on all instances of it-
erators (therefore sequence instances) that provide similar in-
terfaces. The complexity in terms of the number of concrete
sequence implementations and concrete transformation im-
plementations is significantly reduced.

6 Limitations

The semi-open interval model used in the STL to represent
sequences leaves some data structures out of the picture,
most notably circular lists. Similarly, circular list appears to
resist initial data type formulations. In fact, circular lists ap-
pear to be more amenable to formalization through final coal-
gebras [Kam83].

What do we gain from the category theory approach to
generic programming? Is it effective? What does it explain
and what does it predict?

In our view, the categorial approach seeks to capture com-
mon algebraic structures, similarities of interfaces as advo-
cated by Dehnert and Stepanov [DS98] (see Section 7). For
example, the fold() iteration operators are implementation tools
and reasoning devices for capturing traversal and proof pat-
terns common to a class of generic functions [Hut98]. We
find the categorial approach as a promising starting point for
a theory that can clarify and explain the practice of Musser–
Stepanov style generic programming. Moreover, we believe,
in accordance with what we state in the introduction of this
paper, that the mathematical framework is sufficient for pre-
diction and conquering new grounds as well such as STL in
parallel and distributed programming contexts. Along those
lines, we mention that libraries and compiler frameworks
[RG03] based on the calculational approach, from functional
programming perspective, are subjects of active research.

7 Discussion

In this section, we examine, within the mathematical frame-
work in place, the main two approaches to generic program-
ming. The purpose is to identify commonalities and differ-
ences in more definite terms.

Dehnert and Stepanov [DS98] advocate maximizing reuse of
software components through alikeness identification:

[...] Breadth of use, however, must come from the
separation of underlying data types, data struc-
tures, and algorithms, allowing users to combine
components of each sort from either the library
or their own code. Accomplishing this requires
more than just simple, abstract interfaces — it re-
quires that a wide variety of components share
the same interface so that they can be substituted

for one another. It is vital that we go beyond the
old library model of reusing identical interfaces
with pre-determined types, to one which identi-
fies the minimal requirements on interfaces and al-
lows reuse by similar interfaces which meet those
requirements but may differ quite widely other-
wise. Sharing similar interfaces across a wide va-
riety of components requires careful identification
and abstraction of the patterns of use in many pro-
grams, as well as development of techniques for
effectively mapping one interface to another.

Separating data structures from algorithms is key to reduc-
ing the complexity of implementing N algorithms for P data
structures, as exemplified by the STL. At first sight, that
seems to run contrary to the practice of the calculational ap-
proach which puts emphasis on iteration operators (folds) in-
timately associated with recursive data structures. However,
it should be observed that once the class of algorithms of in-
terest is identified (e.g. sequence algorithms) the iteration op-
erator is also fixed. Other data structures “just” need to have
their iteration operators adapted or mapped to the iteration
scheme of reference. For example, in the STL all sequences as
well as associative containers (binary trees in disguise) provide
means to iterate linearly over them.

The “minimal requirements” tip translates to “final coalge-
bras” in our framework. That aspect is unlike the approach
of the Bird–Meertens formalism, which has been traditionally
based on “initial algebras.”

Dehnert and Stepanov [DS98] continue:

We call the set of axioms satisfied by a data type
and a set of operations on it a concept. Examples
of concepts might be an integer data type with an
addition operation satisfying the usual axioms; or
a list of data objects with a first element, an iterator
for traversing the list, and a test for identifying the
end of the list. The critical insight which produced
generic programming is that highly reusable com-
ponents must be programmed assuming a minimal
collection of such concepts, and that the concepts
used must match as wide a variety of concrete pro-
gram structures as possible. Thus, successful pro-
duction of a generic component is not simply a
matter of identifying the minimal requirements of
an arbitrary type or algorithm — it requires identi-
fying the common requirements of a broad collec-
tion of similar components. The final requirement
is that we accomplish this without sacrificing per-
formance relative to programming with concrete
structures.

We can contrast the above to a characterization of abstract
data types as classes of algebras. According to Thatcher et
al [TWW82]:

what is “abstract” about an abstract data type is
that it consists of an isomorphism class of algebras
rather than any concrete representation of the class.
When it comes to specifying an abstract data type
one can display a particular algebra and define the
abstract data type as the isomorphism class of that
algebra. The proposed alternative is to character-

9

ize the isomorphism class using axioms written in
terms of the operations on the types.

A fundamental difference between the first school and the
second school is that the latter equates linguistic support
with generic programming, while the former defines it as
a methodology. Furthermore, the Musser–Stepanov school
promotes structuring components based on the efficiency or
algorithmic complexity offered by the coalgebras, whereas
those concerns appear to be secondary in the calculational
approach. For example, the data structure list is usually taken
as the canonical realization of sequences in the functional pro-
gramming setting. We are not aware of work in the calcula-
tional approach, where complexity guarantees of operations
(in the style of Musser–Stepanov) and genericity are given
equal weight.

In a sense, the opposition of styles is similar to that of bottom-
up versus top-down design. From our perspective, a good
theoretical framework for generic programming should pro-
vide for mathematical tools necessary for systematic applica-
tion of Dehnert and Stepanov’s methodology to both the im-
plementation and correctness proof of generic components as
exhibited by the Bird–Meertens formalism.

8 Conclusions

The two approaches to generic programming, 1) as defined
by the process and outcome of designing STL and similar li-
braries, and 2) as defined by the practice of data-type generic
programming in the functional programming community,
are intrinsically connected. The first approach to generic
programming focuses on finding useful fundamental alge-
bras, and defining generic functions mapping to such alge-
bras following a final coalgebra point of view. The second,
datatype generic programming, operates on initial algebras
and focuses on finding algorithms on those algebras. These
algorithms are applicable to a wide variety of data-types, as
there are conversions from regular inductive datatypes to the
structures of the functors that define them. The most inter-
esting aspect of datatype generic programming is iteration
operators for free as implementation tools and reasoning de-
vices to capture patterns in proofs about generic functions.
Combining Musser–Stepanov’s methodology with a catego-
rial approach to datatypes appears to be a promising road
for systematic implementation and proof of properties about
useful generic programming, and is subject for future work.

9 Acknowledgments

We are grateful to the anonymous reviewers for their com-
ments and suggestions that improved the paper. We are
grateful to Bjarne Stroustrup for suggesting the doggiemor-
phism recursion pattern, which regretfully did not fit within
the space limits.

10 References

[ASS84] Hal Abelson, Jerry Sussman, and Julie Sussman.
Structure and interpretation of Computer Programs.
MIT Press, 1984.

[Bir87] Richard Bird. Logic of Programming and Calculi
of Discrete Design, volume F.36 of NATO AI Se-

ries, chapter An introduction to the theory of list.
Springer Verlag, 1987.

[BJJM99] Roland Backhouse, Patrik Jansson, Johan Jeur-
ing, and Lambert Meertens. Advanced Functional
Programming, volume 1608 of Lecture Notes in
Computer Science, chapter Generic Programming
— An introduction, pages 28–115. Springer-
Verlag, 1999.

[Coh81] Paul Cohn. Universal Algebra. Kluver, 1981.

[CW85] Luca Cardelli and Peter Wegner. On Under-
standing Types, Data Abstraction and Polymor-
phism. Computing Surveys, 17(4):471–522, De-
cember 1985.

[DS98] James C. Dehnert and Alexander Stepanov. Fun-
damentals of Generic Programming. In Report
of the Dagstuhl Seminar on Generic Programming,
volume 1766 of Lecture Notes in Computer Science,
pages 1–11, Schloss Dagstuhl, Germany, April
1998.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johson, and
John Vlissides. Design Patterns. Addison-Wesley,
1994.

[GJL+03] Ronald Garcia, Jaakko Järvi, Andrew Lums-
daine, Jeremy Siek, and Jeremiah Willcock. A
Comparative Study of Language Support for
Generic Programming. In Proceedings of the 18th
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applica-
tions, pages 115–134. ACM Press, 2003.

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wganer, and
J.B. Wright. Initial Algebra Semantics and Con-
tinuous Algebra. Journal of the Association of Com-
puting Machinery, 24(1):68–95, January 1977.

[Hin00] Ralf Hinze. A New Approach to Generic Func-
tional Programming. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages, pages 119–132,
Boston, USA, 2000. ACM Press.

[Hin04] Ralf Hinze. Generics for the masses. In Proceed-
ings of the ninth ACM SIGPLAN International Con-
ference on Functional Programming, pages 236–
243, Snow Bird, UT, USA, 2004.

[Hut98] Graham Hutton. Fold and Unfold for Program
Semantics. In Proceedings of the third ACM SIG-
PLAN International Conference on Functional Pro-
gramming, pages 280–288, Baltimore, Maryland,
USA, 1998.

[ISO03] International Organization for Standards. In-
ternational Standard ISO/IEC 14882. Programming
Languages — C++, 2nd edition, 2003.

[JJ96] Johan Jeuring and Patrik Jansson. Polytypic Pro-
gramming. In Advanced Functional Programming,
Second International School-Tutorial Text, volume
1129 of Lecture Notes In Computer Science, pages
68–114. Springer-Verlag, 1996.

[JJ97] Patrik Jansson and Johan Jeuring. Polyp — a
polytypic programming language extensions. In
Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Lan-

10

guages, pages 470–482, Paris, France, 1997.

[JPL03] J. Järvi, G. Powell, and A. Lumsdaine. The
Lambda Library : unnamed functions in C++.
Software—Practice and Experience, 33:259–291,
2003.

[Kam83] Samuel Kamin. Final Data Types and Their
Specification. ACM Transaction on Programming
Languages, 5(1):97–123, January 1983.

[McC60] John McCarty. Recursive Functions of Sym-
bolic Expressions and Their Computation by
Machine, Part I. Communications of The ACM,
April 1960.

[Mee86] Lambert Meertens. Algorithmics — toward pro-
gramming as a mathematical activity. In J.W
de Bakker and J.C van Vliet, editors, Proceedings
of the CWI Symposium on Mathematics and Com-
puter Science, pages 289–334, North-Holland,
1986.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Pater-
son. Functional programming with bananas,
lenses, envelopes and barbed wire. In Pro-
ceedings of the 5th ACM conference on Func-
tional programming languages and computer archi-
tecture, pages 124–144, New York, NY, USA,
1991. Springer-Verlag New York, Inc.

[ML01] Saunders Mac Lane. Categories for the Working
Mathematicians. Springer, 2nd edition, 2001.

[MS88] David A. Musser and Alexander A. Stepanov.
Generic Programming. In In proceeding of In-
ternational Symposium on Symbolic and Algebraic
Computation, volume 358 of Lecture Notes in Com-
puter Science, pages 13–25, Rome, Italy, 1988.

[PJ03] Simon Peyton Jones. Haskell 98 Language and Li-
braries, The Revised Report. Cambridge Univer-
sity Press, 2003.

[R5R98] Revised5 Report on the Algorithmic Language
Scheme. Higher-Order and Symbolic Computation,
11(1), August 1998.

[RG03] Fethi A. Rabhi and Sergei Gorlatch, editors.
Patterns and Skeletons for Parallel and Distributed
Computing. Springer, 2003.

[SL94] Alexander Stepanov and Meng Lee. The
Standard Template Library. Technical Report
N0482=94-0095, ISO/IEC SC22/JTC1/WG21,
May 1994.

[Str67] Christopher Strachey. Fundamental Concepts in
Programming Languages. lecture notes for the
International Summer School in Computer Pro-
gramming, August 1967.

[Str00] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, special edition, 2000.

[TWW82] J.W. Thatcher, E.G. Wagner, and J.B. Wright.
Data Type Specification: Parameterization and
the Power of Specification Techiniques. ACM
Transcation on Programming Languages and Sys-
tems (TOPLAS), 4(4):711–732, October 1982.

11

