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Abstract 
So far the aspects related to efficient processing have dominated the research on recursive
queries. In this paper we consider how the formulation of recursive queries can be made
easier from the view point of the non-professional user - also in the context of complex
recursive queries. It is obvious that the conventional rule-based way of defining is too hard
and cumbersome for many non-professional users. We provide operations at a high
abstraction level in terms of which the user can formulate his recursive queries in a compact
and convenient way. In our approach  recursive processing is needed for constructing
transitive relationships among data. In practice, it is often very important to compute
transitive relationships among several union-compatible binary relations instead of one
binary relation as usual. We define the operations so that they are able to manipulate
transitive relationships among several relations. For the changing needs of the user our
approach contains three kinds of operations: relation-oriented, node-oriented and path-
oriented operations. In this paper we specify a functional language consisting of operations of
these types and give several examples on how the user can formulate his recursive queries in
terms of this language. We also discuss its role in deductive databases, i.e. its integration with
processing based on an extensional database.

Keywords: Deductive databases, recursive queries, transitive relationships, knowledge
representation, functional specification.

1. Introduction

It is typical of DBMS's that they are capable of offering for users two kinds of information:
explicitly stored and derived. Traditionally, the derived information is produced from the
explicitly stored data through the view mechanism. However, advanced applications (e.g.
many CAD/CAM and information retrieval applications) have revealed their incapability of
defining and processing structurally complex objects. Especially it has been recognized that
the view mechanisms are insufficient in producing all necessary derived information. The
greatest disadvantage is that they do not allow views which presuppose recursive definition
and processing. For example, it is widely known that it is impossible to produce virtual
relations or views which require construction of the transitive closure of a binary relation
with the relational algebra [1]. This is because the definition of the transitive closure is
recursive.

During the last years considerable attention has been paid to how the recursive expressive
power can be integrated into the conventional databases. The possibility of recursive
definition is so essential from the view point of the user that it is one of the basic starting
points in modern object-oriented database approaches (see e.g. [2], [3]). Logic is an effective
tool both for expressing recursion and for defining the essential issues related to databases.
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For example, Kowalski [4] has shown that logic is a uniform language for defining facts,
rules, programs, queries, views and integrity constraints. In other words, we can define all
derived information - also in recursive cases in terms of logic.

Recursive rule definitions have a central role in deductive databases. Deductive databases or
logic(al) databases are databases in which the derived information is defined by logic-based
rules (called the IDB or Intensional Data Base) from the explicitly stored data (called the
EDB or Extensional Data Base). Usually an IDB is represented by Horn clauses. Very often
only so called Datalog programs (see e.g. [5]) are allowed. Datalog programs consist of Horn
clauses without function symbols, i.e. they allow only variables and constants as arguments
of predicates.

The development of efficient evaluation methods has dominated research related to recursive
queries. Some evaluation methods have been intended for general recursive queries whereas
others have been tailored to some useful subsets of recursive queries. It is a very hard task to
define and classify recursion and its different types comprehensively and generally [6].
Therefore it is also difficult to define generality exactly in the context of evaluation methods.
The evaluation methods intended for general recursive queries can be divided into two
categories: actual evaluation methods and rewriting methods. Actual evaluation methods
themselves are sufficient to produce the answers for recursive queries whereas the rewriting
methods presuppose that they are followed by some actual evaluation method. In fact
rewriting methods are optimization techniques which transform rules so that recursive
queries can be performed more efficiently after transformation. Well-known actual
evaluation methods are e.g. naive evaluation [7], semi-naive evaluation [7], the Henschen-
Nagvi method [8], Prolog (see e.g. [9]) and rewriting methods are e.g. magic sets [10] and
counting [11]. Many general evaluation methods have been introduced and compared widely
in [12].

When algorithms are developed for subsets of recursive queries it is very important to find
such limited recursion types which are sufficient for the needs of most applications. It has
been accepted widely that the linear recursive queries are the most common recursion class
occuring in practice. We say that the definition of a predicate is linearly recursive if the
recursive predicate appears once and only once at the right side of a rule. Linear recursive
definitions correspond to the Chang's concept 'regularity' [13]. It has been shown in [14] that
each linear recursive query can be expressed in terms of such an operation sequence in which
the transitive closure operation is possibly preceded and followed by conventional relational
operations. This means that the transitive closure has a dominant role among linear recursive
queries.

Due to the great practical value of the transitive closure many authors propose that it should
be incorporated into the expressive power of conventional query languages. For example, its
incorporation into QBE [15], into SQL [16], [17] and into Quel [18] has been proposed.
Agrawal has introduced the so-called α-operator in terms of which the capability of
manipulating the transitive closure can be added to relational algebra [19]. The transitive
closure operation is also included in the so-called traversal recursion approach [20]. There
are also several algorithms (e.g. [21], [22], [23], [24], [25], [26], [27]) which have been
developed for implementing the transitive closure. We will also concentrate in this paper on
examining transitive relationships among data.

Aspects related to efficient computation have dominated the research on recursive queries so
far. In this paper we rather investigate how the definition of different transitive relationships
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could be made easier from the view point of a non-professonial user. From the view point of
the user we can divide the existing approaches into three main categories: rule-oriented,
graph-oriented and operation-oriented approaches. The most usual approach to recursive
queries has been that the user formulates a recursive query by using logic-based rules. A
typical work related to this approach has been introduced e.g. in [28] where the integration of
rules with relational databases has also been considered.

It is obvious that in the rule-oriented approach the user has to master recursion in the
conceptual sense very well and he has to have a capability of strong recursive thinking. The
definition of any  recursive rule presupposes that the user is able to formulate generally a rule
for transferring from one level of recursion to another and, in addition,  to give the exit rule
for terminating the recursion. In complex cases the definitions of many recursive rules can be
associated with each other. It is obvious that in practice the construction of recursive rules, at
least in complex cases, is too heavy for most non-professionals.

Moreover, existing systems developed for recursive queries require that the user masters in
detail the underlying evaluation strategy. For example, the user can define the transitive
closure in the logical sense correctly as follows. First he formulates the recursive rule so that
the definition is left recursive and second he gives the exit rule. However if we in this case
would use e.g. Prolog as our evaluation strategy then the computation would never terminate
due to the evaluation strategy of Prolog. We think that the non-professional user has to be
able to express his recursive queries without knowing aspects related to the evaluation
strategy. It is the duty of the logic programmer to know the underlying evaluation strategy
but it is not the duty of the non-professional user. Gruz et al. [29] have recognized the
difficulties associated with formulations of recursive rules and they introduce a graphical
query language in terms of which recursive queries can be formulated in a simpler way.

Rosenthal et al. [20] have introduced an interesting graph-oriented approach to recursion
called traversal recursion. It is based on the traversal of a graph. In traversal recursion a
graph consists of nodes and edges so that each node and edge contains some associated
information expressed with node and edge labels, respectively. It is typical that the output of
a query based on traversal recursion is another graph which consists of nodes and edges
derived from the original graph. The node and edge labels of the derived graph are
constructed when the original graph is traversed. A file structure, which efficiently supports
traversal recursion in large acyclic graphs, has been developed  in [30] .

Agrawal's approach [19] is an example of an operation-oriented approach. The α-operator in
this approach allows the definition of the transitive closure between two attributes with the
same domain. Both the argument and the result of the α-operator are relations. This means
that the α-operator is a relational operation in the formal sense. In turn this means that the α-
operator can be freely intermixed with other relational operations. The relational algebra,
which contains the traditional relational operations and the α-operator, is called the α-
extended relational algebra. In Agrawal's approach linear recursive queries are expressed as a
sequence of relational operations belonging to the α-extended relational algebra. The α-
operator in this algebra affords the possibility of defining transitive relationships among data. 

It is desirable that the user can formulate his queries in one homogeneous way. In the context
of non-procedural languages, non-professional users have practiced in defining their
information needs by combining available operations with each other. Therefore we choose
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the operation-oriented approach in this paper. Because also Agrawal's approach is operation-
oriented we consider differences between the starting points of these approaches.

Data, on which transitive computation is based, is organized in a different way. Agrawal's
[19] idea was to develop an advanced mechanism for transitive computation which
seamlessly works with other relational operations. The α-operator performs transitive
computation among the so-called distinquished attributes of its operand relation. In our
approach to deductive systems we connect our mechanism intended for transitive
computation to the EDB which can be based on different data models. In this paper we
consider principles in terms of which this mechanism can be connected to the EDB. In Part II
[31] we deal with the situation that the EDB is based on the relational model.

We think that in many applications from the user view point it is most appropriate to group
the data intended for recursive computation into a collection of binary relations instead of
one binary relation. This is due to the fact that the principle used for sharing contains
essential information in the semantic sense. We call an individual binary relation an ERP-
relation (an extensional basic relation intended for recursive processing) and all ERP-
relations constitute an ERP-base. This means that we have to search transitive relationships
among several ERP-relations when performing recursive queries. We will demonstrate that
the capability of our approach to computate transitive relationships in a certain scope (in a
collection of ERP-relations) reduces effort of the user in query formulation.

In Agrawal's approach all transitive computation, also aggregation related to it, is performed
by one powerful α-operator. However, it is typical of many applications, e.g. CAD/CAM
applications that the user is interested only in data which are in a specified transitive
relationship with given data. Especially the direction of transitive computation is often
important. For instance, in this paper our example deals with part hierarchies. By specifying
the direction of transitive computation we can express whether we are interested in those
products that include the given part or those components which are included in this part. In
order to support query formulation in such cases more specific operations than one transitive
closure operation is needed. The language defined in this paper offers such operations. In
addition, our language contains non-transitive operations such as top_nodes and
bottom_nodes (see 4.2) which find data in special positions from a collection of ERP-
relations. These operations are also useful in many applications (see e.g. [32]).

In addition to part-component hierarchies we have applied our approach to information
retrieval [32]). We apply it to classifications of terms on different abstraction levels.
Transitive computation is needed to find out the superclasses and subclasses of given terms.
Our operations have been defined so that the data in the ERP-base are acyclic whereas
Agrawal's α-operator allows also transitive computation among cyclic data. This means that
our approach cannot, without extensions, be used e.g. for processing road networks.

Also the integration principle of transitive computation with conventional database
computation is different. Agrawal's approach is based on the extension of the relation model
such that the extension is consistent with other relational processing. In our approach this
integration happens via standard operation(s) of the EDB. This means that in our approach
we have to tailor integration for each alternative data model which can be used in the
organization of the EDB. On the other hand we do not want to restrict our approach to any
data model which must be used in the organization of the EDB. In Part II [31] we give a
prototype implementation for integration in the case that the ERB-base is based on the
relational model. The integration with other data models is in progress.
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From the view point of an existing relational DBMS Agrawal's approach means that the new
α-operator has to be implemented and integrated with other relational processing. Because
Agrawal's α-operator extends the set of the  relational operations it means a.o. that the
optimization techniques developed for relational expressions have to be extended to
expressions involving the α-operator [19]. The so-called heterogeneous way for
implementing a deductive database system is based on an interface which is implemented
between two separate systems, i.e. we have a deductive system and a DBMS. In this
implementation way it is desirable that the execution of recursive queries can be performed
without modifying radically the architecture on which the conventional dbms processing is
based [33]. Our starting point is that some EDB-based operation(s) can be used in the
integration. In Part II [31] we show that a standard operation (restriction operation) can be
used in the integration when the EDB has been organized according to the relational model.
This affords the possibility of using the functional language defined in this paper as a
deductive system also in the context of a heterogeneous implementation way. We discuss
more this issue in Chapter 6 of Part II and demonstrate how conventional optimization
techniques of relational databases, without any modification, can be used in the optimization
of expressions consisting of ERP-based and relational operations.

In Agrawal's approach [19] the so-called additional attribute ∆ contains the derivation history
of the transitive computation. It is typical of the attribute ∆ that its scope is only the α-
operator and no relational operator (except for projection) are allowed on ∆ outside the α-
operator. As Agrawal [19] points out, this means that the α-operator cannot be used to
express a query that requires intersection of two or more traversal histories. In other words
the common elements of two or more transitive computations cannot be found. However this
would be a useful feature in many CAD/CAM and IR applications. Therefore our functional
language contains operations which support finding of common elements related to different
transitive computations. We will give examples on these operations.

Our functional language consists of operations at a high abstraction level. These operations
can be divided into three categories: relation-oriented, node-oriented and path-oriented
operations. Next we consider briefly features characteristic of different operation types
included in our language. In fact we apply in this paper only one relation-oriented operation
(∑_rel_union-operation). This operation identifies exactly those ERP-relations among which
transitive relationships are considered. The only role of this operation is to specify the ERP's
from the ERP-base or the scope of transitive computation. The scope has to be given for each
node-oriented or path-oriented operation. Thus this operation is embedded into the
definitions of all other operations of our language. By restricting our consideration to only
specific ERP-relations we can express essential semantic information as we shall see later in
our examples. 

Each ERP-relation or any collection of ERP-relations can be visualized as graph. An element
in an ERP-relation or in a collection of ERP-relations corresponds to one node in the graph
visualization. The node-oriented operations are used to examine which elements (nodes) are
in certain positions in an ERP-relation (or in a collection of ERP-relations) or which elements
are in certain transitive relations with the given elements. The first operations are typically
non-recursive in nature whereas the latter ones are recursive. We offer for the non-
professional user the node-oriented operations at high abstraction level. In our approach,
recursive manipulation is invisible from the view point of the user in cases which require the
construction of transitive relationships among elements. Our aim is to develop such
operations that the user can formulate his queries on the basis of concepts which have the
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natural correspondences in the universe of discourse at hand. For example, we provide
operations for the common successor or predecessor nodes of a given node set.

Sometimes the user is not satisfied with knowing only what elements have the desired
transitive relationship with given elements. The user is often interested also in possible paths
to connect the specific elements with each other in a collection of ERP-relations. We define
path-oriented operations for this purpose. Our aggregation operation involving transitive
computation is associated with  path-oriented operations because paths retain those elements
(nodes) which are needed in the transitive computation. Due to the fact that our aggregation
operation needs also information from the EDB we consider this operation separately. The
operations of our functional language are based purely on the ERP-base whereas the
aggregation operation needs the integration of ERP-based and EDB-based processing. In this
paper we consider both EDB-dependent and EDB-independent aspects of our aggregation
operation.

It is very important to all database applications that they are defined exactly and generally.
Generality means that the definition is not bound to any sample case and preciseness
guarantees that the application has a clear and unique semantics (meaning). If the meaning of
the application is unclear then it is difficult to understand, assess and use the application.
This is why the VLDB panel of Mexico City on "Type Specification and Data Bases"
proposed in its summary report [34] that in the future, a new model, feature, or language
should not be accepted without a precise and exhaustive specification. Therefore we also
define our approach and language with its operations exactly in this paper. It is worth noting
that the formal definition of our approach leaves many alternatives to implementing it. The
notational conventions, which we need in the formal definition, is defined in Chapter 2.

In Chapter 3 we consider how we represent the extensional information intended for
transitive computation in our approach. In other words we pay attention to how the data in
ERP-relations and in an ERP-base are organized and what structural constraints among the
data must hold. In this chapter we also give a sample ERP-base which we use to demonstrate
our approach through the whole paper. The different relation-oriented, node-oriented and
path-oriented operations are introduced and defined exactly in Chapter 4. The functional
language consisting of these operations is defined in Chapter 5. In Chapter 6 we demonstrate
how the user can formulate his queries in a straightforward way with this language - also in
those cases which require complex recursive manipulation. These examples show that the
recursive manipulation is invisible to the user. In this chapter we also discuss how, in terms
of the operation-oriented approach, we can avoid several troublesome aspects which are
related to a recursive rule-based query formulation from the view point of the user. Our
approach to deductive databases means that the functional language defined in this paper has
to be connected to some EDB. In Chapter 7 we deal with this issue. Also aggregation related
to transitive computation presupposes the integration of the ERP-based and EDB-based
information. Therefore we introduce also our aggregation principle in this chapter. Thus
Chapter 7 is the bridge to Part II [31].

2. Basic Notations

Our formalism in this paper is based on the following notational conventions.
Notational convention1: The power set of a set S is denoted by P(S). For example, if S =
{a,b,c} the P(S) = {{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.
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Notational convention2: The finite n-tuples (briefly tuples) are denoted between angle
brackets, for example <a,b,c>. The symbol <> means the empty tuple. We use also this
notational convention for tuples in our dse (data structure element) formalism (see e.g. [35],
[36]).

Notational convention3: The tuple set of a set S is denoted by T(S). The elements in T(S)
are tuples whose components belong to the set S. The set T(S) is formed so that it contains
each permutation, represented as a tuple, for each element belonging to the set P(S). For
example, if 
S = {a,b,c} then T(S) =
{<>,<a>,<b>,<c>,<a,b>,<b,a>,<a,c>,<c,a>,<b,c>,<c,b>,<a,b,c>,<a,c,b>,<b,a,c>,
<b,c,a>,<c,a,b>,<c,b,a>}. It is obvious that |T(S)| > |P(S)| if |S| ≥ 2 (the notation |A| means
the cardinality of the set A).

Notational convention4: The length of a tuple t is the number of the elements in the tuple
and it is denoted length(t). The length of the empty tuple is 0. For example, length(<a,b,c>) =
3.

Notational convention5: The symbol  is used to refer to an element in a tuple. For
example, 
a  <a,b,c> is true.

Notational convention6: The signature of a function is denoted by f:D∅R where f is a
function symbol, D is a domain set i.e. it defines a set of values to which the function can be
applied and R is a range set i.e. it defines a set of values which contains the results of
function applications.

3. The Representation of Extensional 
Information for Recursive Processing

In the database area two essential abstraction levels are distinquished: the schema and
instance levels. In the shema level we describe  the organization of data and the instance level
contains the actual data which conform to the given schema. Recursive processing is
associated purely with the instance level. Very often the need for the recursive processing
occurs among objects of the same type. It is characteristic of recursive processing that we are
intrested in the transitive relationships among objects whereas in the non-recursive
processing of databases different properties related to objects are interesting. In other words
the integration of non-recursive processing with recursive processing is an essential question.
We consider this integration in [31]. In this paper we concentrate on recursive processing.

3.1. The Formal Representation for Extensional                         Informat

It is desirable that the objects and relationships among them are represented in a compact
manner for recursive processing. Therefore we describe for recursive processing explicitly
only the identifiers of objects and the immediate relationships of objects on the basis of these
identifiers. In this paper the set, from which the identifiers of objects can take their values, is
denoted by Nodes. The definition of the set depends entirely on the universe of discourse. As
we shall see the set Nodes contains elements which are nodes when our representation is
interpreted graphically.
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Definition1: If a and b are two object identifiers (i.e. a Nodes b Nodes) and the immediate
relationship among of these objects exists then the immediate relationship is denoted by the
tuple <a,b>.

It is important to note that the order in the immediate relationship is essential i.e.
<a,b>≠<b,a>. In the context of any immediate relationship <a,b> we use the following
terminology. We call the element a an immediate predecessor of the element b and the
element b an immediate successor of the element a. It is typical that the immediate
relationship expresses the basic structure which has its own semantic meaning (see our
example below).

One of the ideas of deductive databases is to allow the processing of the general predecessors
and successors of objects. By grouping immediate relationships we get structures which
contain implicitly also other predecessors and successors than the immediate ones. For
example, if we have two immediate relationships <a,b> and <b,c> then a is an indirect
predecessor of c and c is an indirect successor of a. We believe that in practice it is often
most appropriate to group the immediate relationships into separate groups because the
grouping principle contains essential information in the semantic sense. We shall also see
later on that by grouping immediate relationships into separate groups it is possible to
process only relevant immediate relationships from the view point of a query instead of all
immediate relationships. This has of course a positive effect on the efficency of processing.

Definition2: We call a set achieved by grouping immediate relationships on the basis of the
used grouping principle an extensional basic relation intended for recursive processing or
briefly an ERP-relation.  

Formally, this means that an ERP-relation is a binary relation i.e. it is a subset of the
Cartesian product Nodes ∞ Nodes. We will refer to each constructed ERP-relation by its
unique name. In other words if A is an ERP-relation then A can be represented explicitly as
follows: A = {<a1,b1>,..., <an,bn>} where a1, ... , an,b1, ... ,bn  Nodes.

Definition3: An ERP-base is a collection of ERP-relations. Formally, An ERP-base is the
following set {erp-rel1,erp-rel2, ... ,erp-reln} where each erp-reli (i {1, ... ,n}) is a subset on
Nodes ∞ Nodes.

Because each ERP-relation in an ERP-base is a subset on Nodes ∞ Nodes it means that all
ERP-relations are union-compatible with each other,  interpreted in terms of the terminology
of the traditional relational model. In practice the construction of an ERP-base from the
universe of discourse resembles the process of discovering union-compatible relations in the
context of the traditional relational databases. Formally, it is obvious that an ERP-base and
any of its subset is an element in the set P(P(Nodes ∞ Nodes)) and an ERP-relation is an
element in the set P(Nodes ∞ Nodes).

3.2. The Sample ERP-base

Our example is associated with the following production process. We have a company which
makes products in three cities Munich, Stuttgart and Berlin. It can use these products for the
following purposes:
1) It can make from these products new products in the same factory.
2) It can make from these products new products in the factory of another city.
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3) It can sell these products.
It is important to note that the nature of this production process is recursive, because the
company constructs further products from  products made by itself. This kind of a production
process binds some products very closely with each other. Likewise the decision making in
this kind of a production process is much more complicated than in the traditional one. Let's
imagin that we have to make a decision on the quantity of a certain product that must be
made. It is not possible to make the decision solely on the basis of the market situation of this
product as usually. We must also to take into account the market situation of those products
in which the product at hand is an immediate or indirect component.

As we mentioned above we represent relationships among objects by grouping the immediate
relationships into separate ERP-relations. Objects in our example are products and we
associate the identifiers p1,p2, ... ,p19 with our sample products. The natural grouping
principle of immediate relationships is the factory or city where the production expressed by
an immediate relationship occurs. This grouping principle means that our sample ERP-base
contains three ERP-relations named by Munich, Stuttgart and Berlin. In our example the
immediate relationship <p2,p1> is interpreted so that the product p1 is used immediately in
the construction of the product p2 and the formal expression <p2,p1>  Munich means that
the immediate construction of the product p2 by using the product p1 as one component in it
occurs in Munich. In other words the ERP-relations themselves contain essential information.
In Figure 1 we represent explicitly our sample ERP-base. We will use this sample ERP-base
throughout this paper.

Sample-ERP-base = {Munich,Stuttgart,Berlin}

Munich = {<p1,p10>, <p1,p11>, <p1,p12>, <p2,p1>, <p2,p13>, <p3,p1>, <p3,p10>, <p3,p11>, <

Stuttgart = { <p7,p1>, <p7,p8>, <p14,p7>, <p14,p15>}

Berlin = {<p9,p16>, <p9,p17>, <p9,p18>, <p8,p17>, <p8,p19>}

Fig. 1. The sample ERP-base.

It is worth noting that our sample ERP-base in Fig. 1. can be represented explicitly as follows
{{<p1,p10>, ... ,<p6,p13>},{<p7,p1>, ... ,<p14,p15>}, {<p9,p16>, ... ,<p8,p19>}}. This
representation exemplifies that our sample ERP-base is an element in the set P(P(Nodes
∞ Nodes)). We can represent also the binary relations belonging to our sample ERP-base
graphically. In Figures 2a, 2b and 2c we represent the graphs related to the ERP-relations,
respectively. Likewise any combinaton of the ERP-relations corresponds to a graph. In
Figure 2d we give a common graphical representation for all sample ERP-relations.
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Fig. 2a-d. The graph visualizations for the ERP-relations Munich, Stuttgart, Berlin and the
common graph visualization for all sample ERP-relations.

We can find two kinds of elements which have a special position in ERP-relations. In any
ERP-relation there are some elements which have no predecessors or no successors. We call
the former top nodes and the latter bottom nodes. It is typical that the top nodes and the
bottom nodes have their own semantic meaning. In our example the top nodes identify that
there are no production processes after their construction. We call this kind of products end
products of production. In our example bottom nodes identify those products from which the
production process in this factory starts. We call these products starting products. In principle
the starting products, in our example, have two different sources: they can be bought from
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suppliers or they are transported from other factories producing them. For example, the ERP-
relation Munich has the following top nodes or end products {p5,p6} and the following
bottom nodes or starting products {p10,p11,p12,p13,p14}. From these starting products the
product p14 has been made in Stuttgart and the other products have been bought from outside
of the company. It is worth noting that any collection of  ERP-relations has its own top nodes
and bottom nodes. For example, the bottom nodes of the collection {Munich,Stuttgart} are
p10, p11, p12, p13, p8 and p5.

Consider an example on how complex the relationships among objects in our sample ERP-
base can be. We consider in this example the products p1 and p3 and how they are associated
with each other. The product p1 is essential for the production of the product p3 in two
different ways. The first one is that the product p1 is one of those four products which is
needed as an immediate component in the constructing of the product p3 in Munich. The
second one is that the product p1 is implicitly in the product p14 which in turn is also one of
the immediate components needed in the construction of the product p3. The construction of
the product p14 requires the transportation of the product p1 from Munich to Stuttgart
(because p1 is one bottom node in the ERP-relation Stuttgart). The construction of the
product p14 happens in Stuttgart (in fact the product p14 is the only end product made in
Stuttgart). And finally the product p14 has to be transported to Munich for constructing the
product p3 (p14 is one of the bottom nodes in the ERP-relation Munich).

3.3. The Acyclicity Constraint Related to the     Represen

We manipulate in this paper only binary relations which graphically correspond to acyclic
directed graphs. In practice we have many situations that presuppose acyclicity among nodes.
For example, if we would allow in our sample ERP-base cycles among nodes it would mean
that a product could be indirectly a component of itself. Of course this is an impossible
situation. Therefore we require that any representation for extensional information have to
satisfy the acyclicity constraint. The functional definition of the acyclicity constraint is based
on the transitive closure of the binary relation. Next we define the transitive closure on the
basis of our formalism.

Let R and S be any two binary relations on Nodes ∞ Nodes. The composition of R and S is
denoted by R°S and it is defined as follows.

Definition4:
_°_ : P(Nodes ∞ Nodes) ∞ P(Nodes ∞ Nodes) ∅ P(Nodes ∞ Nodes)
  R°S = {<a,c>|∃b Nodes:<a,b> R3<b,c> S}

On the basis of the composition we define the nth power of a binary relation R and we denote
it by power(R,n). Intuitively power(R,n) gives those node pairs whose distance from each
other in the corresponding graph visualization is n edges provided n is less or equal than the
height of R (see Definition 7). The power of a binary relation R is defined as follows when
we denote the set of positive integers by I+.

Definition5:
power: P(Nodes ∞ Nodes) ∞ I+∅ P(Nodes ∞ Nodes)
  power(R,n) =
   R ,if n=1
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   R°power(R,n-1) ,if n>1

For example, related to our sample ERP-base power(Munich,4) =
{<p5,p10>,<p5,p11>,<p5,p12>}.

Intuitively, the transitive closure of a binary relation contains all immediate and indirect
relationships among of objects of a given binary relation. Next we define the transitive
closure of a binary relation.

Definition6:
transitive_closure: P(Nodes ∞ Nodes) ∅ P(Nodes ∞ Nodes)
  transitive_closure(R) = ≈i {1, ... ,∞} power(R,i)

For example, related to our sample ERP-base transitive_closure(Stuttgart) = {<p7,p1>, <p7,p8>,
<p14,p7>, <p14,p15>, <p14,p1>, <p14,p8>}. Intuitively in the construction of transitive_closure(R)
the binary relation power(R,k+1) contains one edge longer indirect relationships among
objects than the binary relation power(R,k) does. It is obvious if we have a finite binary
relation R then there exists a positive integer i such that power(R,i) ≠ {} and power(R,j) = {}
always when j>i. This positive integer is called the height of the binary relation (or
sometimes the depth of the transitive closure [24]). Intuitively, if i is the height of a binary
relation then power(R,i) expresses the longest indirect relationships which can be found in
this relation.

The height of a binary relation is defined formally as follows.

Definition7:
height: P(Nodes ∞ Nodes) ∅ I+
  height(R) = n; n I+: power(R,n)≠  3 power(R,n+1)= 

For example, height(Munich) = 4 because power(Munich,4) ≠  and power(Munich,5) = .
In the context of finite binary relations it is interesting to compute powers for the transitive
closure only until the height of a binary relation because after that it is not possible to
produce new indirect relationships.

Intuitively, a binary relation contains a cycle if we can find from this binary relation two
elements (nodes in the graphical visualization) a and b such that on the other hand the
immediate relationship <a,b> exists and on the other hand the indirect relationship from the
element b to the element a can be derived in terms of the powers of the original binary
relation. Next we give a formal definition for the cyclicity and acyclicity of a binary relation.

Definition8: A binary relation R on Nodes ∞ Nodes is cyclic if ∃b,a Nodes 3
∃n I+:<a,b> R 3 <b,a> power(R,n). Otherwise a binary relation is acyclic.

As we explained above all binary relations included in an ERP-base have to be acyclic. Next
we define the function acyclic_checking which checks whether a given binary relation (the
argument of the function) is acyclic or not. The function requires that we compute powers
one after another. We construct power in the order power(R,1), power(R,2), ... and for each
power we check if the cyclicity condition specified above holds. If we can reach
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power(R,height(R)) without satisfying the above cyclicity condition then the binary relation
R is acyclic. In the definition we refer to set {true,false} by Boolean.

Definition9: 
acyclic_checking: P(Nodes ∞ Nodes) ∅ Boolean
acyclic_checking(ERP-relation) = 

through_powers(ERP-relation,ERP-relation )
where through_powers is defined recursively as follows
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through_powers: P(Nodes ∞ Nodes) ∞ P(Nodes ∞ Nodes) ∅ Boolean
      through_powers(Power, ERP-relation) =
  false, if ∃ <y,x> ERP-relation 3 ∃ <x,y> Power
  true, if Power = 
  through-powers(Power°ERP-relation, ERP-relation),    otherwise               

For example, related to our sample ERP-base the function acyclic_checking(Munich) yields
the value true.

We considered above the possible complexity of relationships among the elements in
different ERP-relations of an ERP-base. Therefore we have to require that an ERP-base at
hand does not contain any cycle. We can define this kind of a constraint related to an ERP-
base by constructing one common binary relation representation from all ERP-relations of an
ERP-base and by checking that this representation does not contain a cycle. We give the
function acyclic_ERP_base for this purpose.

Definition10: 
acyclic_ERP_base: P(P(Nodes ∞ Nodes)) ∅ Boolean
acyclic_ERP_base(ERP-base) =                                                                                   acyclic_c

where common_representation is defined as follows
common_representation: P(P(Nodes ∞ Nodes)) ∅ P(Nodes ∞ Nodes)
common_representation(ERP-base) = ≈i ERP-basei.

For instance related to our example acyclic_ERP_base(Sample-ERP-base) yields the value
true. This means that our sample ERP-base has an acyclic representation.

4.  Operations for Manipulating an ERP-base

In principle there are three kinds of information in an ERP-base which may be of interest to
the user: ERP-relations themselves, elements (nodes) in an ERP-base among of which certain
relationships hold and paths between elements in an ERP-base. Therefore we need for these
purposes three operation categories which can be characterized (binary) relation-oriented
operations, node-oriented operations and path-oriented operations, respectively. Each
operation category contains its own operations.

Because ERP-relations themselves contain essential semantic information it is natural that the
user specifies in his query those ERP-relations which are relevant to him. For instance,
related to our example the user may be intrested only in the part of the production process
which happens either in Stuttgart or Berlin. This is expressed in terms of our relation-oriented
operation. 

The result of node-oriented operations consists always of elements included in the ERP-base
at hand i.e. it consists of nodes if we interpret the result graphically. A path consists of a
finite number of nodes and in addition the order between these nodes is important. Therefore
we represent paths as tuples. The construction of paths is defined by path-oriented operations.
Next we consider operations belonging to the different categories in detail.

4.1. (Binary) Relation-oriented Operations
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Actually we apply in this paper only one binary relation-oriented operation which can be
considered as the generalization of the union operation of the traditional relational model.
Because  binary relations in an ERP-base are union compatible with each other we can define
the union of two binary relations R1 and R2 as follows.

Definition11: 
rel_union: P(Nodes ∞ Nodes) ∞ P(Nodes ∞ Nodes)∅ P(Nodes ∞ Nodes)
  rel_union(R1,R2) = {<x,y>|<x,y> R1∆<x,y> R2}

The result relation of the above operation contains the immediate relationships of only two
binary relations. We need such an operation in terms of which the user can choose any part of
an ERP-base. Therefore we have to generalize the above operation to permit any number of
ERP-relations. This is defined by the Σ_rel_union function.

Operation 1:
Σ_rel_union: P(P(Nodes ∞ Nodes)) ∅ P(Nodes ∞ Nodes)
  Σ_rel_union({ERP-rel1,ERP-rel2, ... ,ERP-reln}) = 
  {<x,y>|<x,y> ERP-rel1 ∆<x,y> ERP-rel2,∆ ... ,∆<x,y> ERP-reln}

It is obvious that the argument of the function Σ_rel_union can contain only ERP-relations of
the ERP-base at hand i.e. the function expression Σ_rel_union(X) has to satisfy the condition
ERP-base  X. For example, if in the context of our sample ERP-base the user is interested
only in the part of the production process which happens either in Stuttgart or Berlin, he can
express this by the function Σ_rel_union({Stuttgart,Berlin}) which gives the binary relation
{<p7,p1>, <p7,p8>, <p14,p7>, <p14,p15>, <p9,p16>, <p9,p17>, <p9,p18>, <p8,p17>, <p8,p19>}. In other
words, the result does not contain that part of the production process which happens in
Munich. 

It is also worth noting that the above formal definition for Σ_rel_union does not say anything
about how we should implement this operation, for example it is not necessary to construct
any result binary relation physically. In our prototype implementation [31] Σ_rel_union goes
only through the immediate relationships of those binary relations which have been
expressed in its argument. Related to our sample expression, we can interpret this kind of
processing as follows: in the processing of the graph of Fig. 2d we omit irrelevant nodes from
the view point of the user i.e.  nodes related purely to Munich. From the efficency point of
view it is important that we can process a relevant subgraph instead of the whole graph. If we
want to process the whole sample graph in Fig. 2d or the whole sample ERP-base in Fig 1 we
can do it by the expression Σ_rel_union({Munich,Stuttgart,Berlin}).

4.2. Node-oriented Operations.

In general, the idea of the node-oriented operations is to offer for the user expressions at a
high abstraction level in terms of which he can get those elements which have certain
properties or which are in a certain relations with some other elements. Because each element
in an ERP-base corresponds to one node in its graphical counterpart we call these operations
node-oriented operations. Typically the operations, which are used to get elements with
certain properties in an ERP-base, are defined non-recursively, whereas operations intended
for producing elements, which are in a certain transitive relation with given elements, are
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usually defined recursively. In Chapter 5 we will define a functional language which consists
of these operations. In other words this language has the capability of recursive processing.

We defined above informally that the top nodes are those elements in an ERP-relation which
have no immediate or indirect predecessors. It is obvious that any collection of ERP-relations
has also its own top nodes. Next we define the top_nodes operation which obtains the top
nodes in a given collection of ERP-relations.

Operation 2:

top_nodes: P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
  top_nodes(ERP-rels) = {x|<x,y> Σ_rel_union(ERP-rels) 3 
  ¬ ∃ c:c Nodes 3<c,x> Σ_rel_union(ERP-rels)}

Because each ERP-relation is finite it means that any collection of ERP-relations is also
finite. Graphically this  means that a collection of ERP-relations defines a subgraph with
respect to the graph corresponding to the ERP-base at hand. In this subgraph there are nodes
which have no outgoing edges. These nodes are just top nodes. From the view point of the
user, top nodes are often very interesting in the semantic sense.

Let us assume, for example, that the user is interested in end products made in Munich and
Stuttgart. The operations top_nodes({Munich}) and top_nodes({Stuttgart}) give these end
products for the user. These operations yield the node sets {p5,p6} and {p14}, respectively.
If the user is interested in end products of the production process which consists of the
products made in Munich or Stuttgart he can express this with the operation
top_nodes({Munich,Stuttgart}). In this case the operation yields the node set {p5,p6}. It is
worth noting that the product p14 is not in a top node position in the subgraph of the sample
ERP-base restricted by the set of ERP-relations {Munich,Stuttgart}.

Above we defined that the bottom nodes in an ERP-relation are those elements which have
no immediate and thus nor indirect successors. Analogously with the top nodes, any
collection of ERP-relations has also its own bottom nodes. Next we define the bottom_nodes
operation which obtains the bottom nodes in a given collection of ERP-relations.

Operation 3:
bottom_nodes: P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
  bottom_nodes(ERP-rels) = {y|<x,y>  Σ_rel_union(ERP-rels) 3 
  ¬ ∃ c:c Nodes 3<y,c>  Σ_rel_union(ERP-rels)}

We can interpret bottom nodes in the graphical visualization as follows. Bottom nodes in the
subgraph defined by a collection of ERP-relations have no incoming edges. Let us assume,
for example, that the user is interested in starting products only from the view point of
Stuttgart. He can get these starting products with the operation bottom_nodes({Stuttgart})
which yields the node set {p1,p8,p15}. If the user is interested in starting products of
Stuttgart or Berlin, he can get these products by the operation bottom_nodes({Stuttgart,
Berlin}) which obtains the node set {p1,p15,p16,p17,p18,p19}.

The content of an ERP-relation or a collection of ERP-relations is often very interesting from
the view point of the user. This is due to the fact that the grouping principle used in
constructing ERP-relations has essential meaning  in the semantic sense. Intuitively each
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value belonging to content of an ERP-relation or a collection of ERP-relations corresponds to
one node in its graphical visualization. The content of a collection of ERP-relations is defined
by the function nodes as follows.

Operation 4:
nodes: P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
  nodes(ERP-rels) = {x|<x,y>  Σ_rel_union(ERP-rels)} ≈
  {y|<x,y>  Σ_rel_union(ERP-rels)}

Related to our example the operations nodes({Stuttgart}) and nodes({Stuttgart,Berlin}) give
the node sets {p7,p14,p1,p8,p15} and {p7,p14,p1,p8,p15,p9,p16,p17,p18,p19}, respectively.

Predecessors and successors among elements in any collection of ERP-relations play an
important role in the semantic sense. These concepts have usually a direct interpretation in
the real world from the view point of the user. Therefore our goal is to offer for the user a set
of predecessors and successors-based operations in terms of which the user is able to express
complex queries flexibly. For example, if we have two elements x and y in our sample ERP-
base so that y is a predecessor of x it means that the product x is included in the product y -
maybe indirectly. In general, the predecessors of x in a given collection of sample ERP-
relations contain all those products in the construction of which the product x is needed in
some way. If the element y is a predecessor of the element x it means that x is a successor of
the element y. Related to our example, the successors of the element y in a given collection
of ERP-relations are those elements which are needed in the construction of the product y in
a way or another.

The  immediate environment of an element in an ERP-base is often in a special position with
respect to the element at hand. In order to manipulate the immediate environment of an
element we define the operations im_successors and im_predecessors, which in a collection
of ERP-relations give the immediate successors or predecessors of the element, respectively. 

Operation 5:
im_successors: Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
  im_successors(Element,ERP-rels) = 
{y|<Element,y>  Σ_rel_union(ERP-rels)}

Related to our sample ERP-base im_successors(p14,{Munich}) = {} and
im_successors(p14,{Munich,Stuttgart}) = {p7,p15}

Operation 6:
im_predecessors: Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
  im_predecessors(Element,ERP-rels)=
{x|<x,Element>  Σ_rel_union(ERP-rels)}

Related to our sample ERP-base im_predecessors(p1,{Munich}) = {p4,p3,p2} and
im_predecessors(p1,{Munich,Stuttgart}) = {p4,p3,p2,p7}. The operation
im_predecessors(p1, {Munich,Stuttgart}) produces the answer for the following question:
'What products, which are made in Munich or Stuttgart, need immediately the product p1'. It
is obvious that the im_successors and im_predecessors operations are approriate only if the
condition Element nodes(ERP-rels) holds between their arguments.
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The operations successors and predecessors are used to search all successors and
predecessors of an element in a given collection of ERP-relations, respectively. This means
that we have to find indirect relationships among elements, too. In turn this means that
recursion is a natural way to define these operations. Next we define these operations.
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Operation 7:
successors: Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
  successors(Element,ERP-rels) =
  A ≈ ≈i Asuccessors(i,ERP-rels)
     where A= im_successors(Element,ERP-rels)

, if A ≠ 
  , if A = 

If related to our example the user wants to get those products in Munich which are necessary
immediately or indirectly for constructing the product p3 he can use the operation
successor(p3,{Munich}) for this purpose. This operation yields the node set
{p1,p10,p11,p14,p12}. If we want to consider the production process of the product p3 from
the view point of the whole company we can do it by the operation successor(p3,
{Munich,Stuttgart,Berlin}). In this case the node set {p1,p10,p11,p14,p12,
p7,p15,p8,p17,p19} is obtained. 

Operation 8:
predecessors: Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
predecessors(Element,ERP-rels) =
  A ≈ ≈i Apredecessors(i,ERP-rels)
     where A= im_predecessors(Element,ERP-rels)

, if A ≠ 
  , if A = 

Let us assume that the user in the context of our sample ERP-base wants to  know which
products made in Berlin or Stuttgart need the starting product p17 in some way. The
operation for this is predecessors(p17,{Berlin,Stuttgart}) which yields the node set
{p9,p8,p7,p14}. The operation predecessors(p17,{Berlin,Stuttgart,Munich}) defines those
products in the whole company which need the starting product p17 immediately or
indirectly. In this case the node set {p9,p8,p7,p14,p3,p5,p6} is given.

In many cases it would be desirable to know successors or predecessors related to a set of
elements (nodes) instead of one element. Let us imagine the following practical situation in
our example company. One of the suppliers of the company is not able to deliver its products
to the company, i.e. these products are starting products from the view point of the company.
Now it would be very nice to find all those products in the production process on which this
change has an immediate or indirect effect. Next we define the operations
union_of_successors and union_of_predecessors to give successors and predecessors related
to a node set in a given collection of ERP-relations.

Operation 9:
union_of_successors: P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
union_of_successors(Node-set,ERP-rels) =
   ≈i Node-setsuccessors(i,ERP-rels)

In our sample ERP-base those products which are needed immediately or indirectly in
constructing the products p4 or p3 can be defined by the operation
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union_of_successors({p4,p3}, {Munich,Stuttgart,Berlin}). The result of this operation is the
node set {p1,p2,p10,p11,p14, p12,p13,p7,p8,p17,p19}.

Operation 10:
union_of_predecessors: P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
union_of_predecessors(Node-set,ERP-rels) =
   ≈i Node-setpredecessors(i,ERP-rels)

In our sample ERP-base those products which need the starting products p17 or p18 or p19 in
their production processes immediately or indirectly can be defined by the operation
union_of_predecessors({p17,p18,p19}, {Munich,Stuttgart,Berlin}). In this case the result
{p9,p8,p7,p14,p3,p5,p6} is produced.

The user is also very often interested in the common successors or predecessors of the given
node set. For these purposes we define the operations intersection_of_successors and
intersection_of_predecessors.

Operation 11:
intersection_of_successors: P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
intersection_of_successors(Node-set,ERP-rels) =

   ↔i Node-setsuccessors(i,ERP-rels)

The product p14 has been made in Stuttgart and the product p4 in Munich. If we want to
know all common component products included in both products we can get these products
with the operation intersection_of_successors({p14,p4},{Munich,Stuttgart,Berlin}) which
gives the node set {p1,p10,p11,p12}.

Operation 12:
intersection_of_predecessors: P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
intersection_of_predecessors(Node-set,ERP-rels) =

   ↔i Node-setpredecessors(i,ERP-rels)

The products p13 and p10 are starting products in Munich and the product p17 is a starting
product in Berlin. If we want to find all those products of the company which contain the
starting components p13, p10 and p17 we can do it by the operation
intersection_of_predecessors({p13, p10,p17}, {Munich,Stuttgart,Berlin}). The operation
yields the node set {p5,p6}.

The operations difference_of_predecessors and difference_of_successors are used to find
those predecessors or successors of a given node set which are not predecessors or successors
of another node set. As above these operations are defined in a collection of ERP-relations.
Next we define these operations.

Operation 13:
difference_of_successors: P(Nodes) ∞ P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
difference_of_successors(Node-set1,Node-set2,ERP-rels) =

{x|x union_of_successors(Node-set1,ERP-rels)3  x union_
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Let us assume that the user wants to know those products in the company the construction of
which is necessary from the view point of the production of the product p5 but which do not
be necessary from the view point of the production of the product p6. We can use the
operation
difference_of_successors({p5},{p6},{Munich,Stuttgart,Berlin}) for this. The  result of the
operation is the node set {p4,p2}.

Operation 14:
difference_of_predecessors:P(Nodes) ∞ P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
difference_of_predecessors(Node-set1,Node-set2,ERP-rels) =

{x|x union_of_predecessors(Node-set1,ERP-rels)3  x union_

If the user wants to know those products in the company which need immediately or
indirectly one or  more from the starting products {p10,p11,p12} in Munich but none of the
starting products {p16,p17,p18,p19} in Berlin he can give the operation
difference_of_predecessors({p10, p11,p12},{p16,p17,p18,p19},{Munich, Stuttgart,Berlin})
for this. This operation yields the node set {p1,p2,p4}.
 
The common feature for all node-oriented operations, i.e. the operations operation2, ...
,operation14, is that the range sets of the signatures of these operation are P(Node). This just
means that these operations yield sets consisting of elements of an ERP-base. In the graphical
visualization the elements correspond to nodes.

4.3. Path-oriented operations.

It is typical of node-oriented operations that no order among nodes included in their results is
not defined. Very often the user is also interested in the chain of those nodes which is needed
to connect the given nodes with each other in an ERP-base. For this we define path-oriented
operations.  In other words the order among nodes is essential in all path-oriented operations.
This means that we can use tuples in the mathematical sense to represent paths. Formally, a
path from the node node1 to the node noden is presented by a tuple <node1,node2, ...
,noden>, where the immediate relationship between nodei and nodei+1 (i {1, ... ,n-1}) exists.
In the formal sense, a path in an ERP-base belongs to the set T(Nodes) and a collection of
paths to the set P(T(Nodes)) (see Chapter 2).

In order to be a path between two elements or nodes in an ERP-base it means that the
elements of the path have the transitive relationship with each other i.e. the one is a successor
of the other. Therefore we mention explicitly what kind of relation we assume among
arguments of path-oriented operations to hold. With the operation path_set(NodeA,NodeB,
ERP-rels) we find all paths which are possible to construct between nodes NodeA and NodeB
in a given collection of ERP-relations. We assume that the node NodeB is a successor of the
NodeA, i.e. NodeB successors(NodeA), or the node NodeA is a predecessor of the node
NodeB.

Operation 15:
path_set: Nodes ∞ Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(T(Nodes))
path_set(NodeA,NodeB,ERP-rels) =
{<node1,node2, ... ,noden>| <node1,node2, ... ,noden>  T(Nodes):node1=NodeA 3
noden=NodeB 3 ∀i {1, ... ,n-1}:<nodei,nodei+1> Rel 3 Rel ERP-rels}
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In spite of the above functional definition it is obvious that the construction of paths is a
typical recursive operation (compare e.g. our prototype definition in [31]). Let us assume
that, in the sample case, the user wants to know all paths from the product p5 to the product
p1 provided the whole production process happens in Munich. For this he can use the
operation path_set(p5,p1,{Munich}) which yields the tuple set
{<p5,p4,p1>,<p5,p4,p2,p1>,<p5,p3,p1>}. If we have the same problem but the production
process is permitted to happen both in Munich and Stuttgart we can in this case use the
operation path_set(p5,p1,{Munich,Stuttgart}). Now the result
{<p5,p4,p1>,<p5,p4,p2,p1>,<p5,p3,p1>,<p5,p3,p14,p7,p1>} is obtained.

Sometimes the user is interested in some particular subsets of the set constructed by path_set
above. He can be interested in those paths in which the number of the nodes is minimal (i.e.
the shortest paths) or maximal (i.e. the longest paths) or which consist of the certain number
of nodes (i.e. the first and the last node of the paths are in a given distance from each other).
For these purposes we define the operation min_length_path_set(NodeA,NodeB,ERP-rels),
max_length_path_set(NodeA,NodeB,ERP-rels) and dist_length(NodeA,NodeB,ERP-
rels,Dist),  respectively. As in the operation 15 we assume that the node NodeB is a successor
of the NodeA or the node NodeA is a predecessor of the node NodeB.

Operation 16:
min_length_path_set: Nodes ∞ Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(T(Nodes))
min_length_path_set(NodeA,NodeB,ERP-rels) =
{tuple|tuple path_set(NodeA,NodeB,ERP-rels)3
∀tuple1(≠tuple) path_set(NodeA,NodeB,ERP-rels):length(tuple1)≥ length(tuple)}
/*See the notational convention 4 in Chapter 2*/

Let us assume that the user wants related to our example to find the shortest paths from the
product p5 to the product p1 provided the  production process can happen both in Munich
and Stuttgart. For this he can use the operation
min_length_path_set(p5,p1,{Munich,Stuttgart}) which gives the tuple set
{<p5,p4,p1>,<p5,p3,p1>}.

Operation 17:
max_length_path_set: Nodes ∞ Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(T(Nodes))
max_length_path_set(NodeA,NodeB,ERP-rels) =
{tuple|tuple path_set(NodeA,NodeB,ERP-rels)3
∀tuple1(≠tuple) path_set(NodeA,NodeB,ERP-rels):length(tuple1)≤length(tuple)}

Let us continue the same example for the operation 16 but now look for the longest paths.
This can be done by the operation max_length_path_set(p5,p1,{Munich,Stuttgart}) which
gives the tuple set {<p5,p3,p14,p7,p1>}.

Operation 18:
dist_length: Nodes ∞ Nodes ∞ P(P(Nodes ∞ Nodes)) ∞ I+ ∅ P(T(Nodes))
dist_length(NodeA,NodeB,ERP-rels,Distance) =
{tuple|tuple path_set(NodeA,NodeB,ERP-rels):length(tuple)=Distance} 

Let us continue the same example for the operation 16 but now look for the paths which
consist of four elements i.e. three edges is needed in the graphical visualization from the node
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p5 to the node p1. For this task we need the operation dist_length(p5,p1,
{Munich,Stuttgart},4) which gives the tuple set {<p5,p4,p2,p1>}. 

So far all operations intended for processing paths have been based on paths between two
nodes. From the view point of the user it would be often useful if he could get paths which
exist between two node sets. Next we define the operation
paths_between_nodesets(NodeSet1,NodeSet2, ERP-rels) which constructs all possible paths
from the nodes in NodeSet1 to the nodes in NodeSet2 in a given collection of ERP-relations.
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Operation 19:
paths_between_nodesets: P(Nodes) ∞ P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(T(Nodes))
paths_between_nodesets(NodeSet1,NodeSet2, ERP-rels) = ≈ps S ps
  where S = {path_set(i,j,ERP-rels)|i NodeSet1 3 j NodeSet2} 

It is worth noting that the set S above is a value in the set P(P(T(Nodes))) whereas the
expression ≈ps Sps is a value in the set P(T(Nodes)). Let us assume that the user wants to
construct all possible paths from the end products p5 and p6 of the company to the products
p1 and p8. This can be done by the operation paths_between_nodesets({p5,p6},{p1,p8},
{Munich,Stuttgart, Berlin}), which gives the tuple set
{<p5,p4,p1>,<p5,p4,p2,p1>,<p5,p3,p1>,
<p5,p3,p14,p7,p1>,<p5,p3,p14,p7,p8>,<p6,p3,p1>,<p6,p3,p14,p7,p1>,<p6,p3,p14,p7,p8>}.

All operations defined in this chapter can be characterized as ERP-based operations because
they are based only on information available in the ERP-base. In fact we have two kinds of
operations: those which involve transitive computation and those which do not. The former
can be called transitive ERP-based operations and the latter non-transitive ERP-based
operations. Conceptually, transitive ERP-based operations need recursion whereas non-
transitive ERP-based operations do not. The only relation-oriented operation or the ∑_union-
operation and the operations top_nodes, bottom_nodes, nodes, im_successors and
im_predecessors from the node-oriented operations are non-transitive ERP-based operations.
All other operations are transitive ERP-based operations. In Chapter 5 we give a functional
language in which we can intermix transitive ERP-based operations and non-transitive ERP-
based operations with each other.

Because several set operations are included in our language we consider different roles of
these operations. The ∑_union-operation is the only operation which the user does not use
explicitly. However all other operations contain implicitly this operation because it defines
the scope in which computation of the operation is performed. As we have seen the argument
containing ERP-relations activates the ∑_union-operation in the context of other operations.
In fact the ∑_union-operation gives always some subset of immediate relationships in the
ERP-base. In the formal sense it is defined by generalizing the union operation of the
relational algebra, i.e. this operation is relation-oriented.

The operations from 9 to 14 are defined in terms of the operations successors, predecessors
and conventional set operations. Because we allow in our functional language (Chapter 5)
also conventional set operations it is obvious that these operations do not belong to the
minimal set of operations of our language. These operations have been included for user
convenience, because they appear as natural primitives in many query formulations (see
sample queries below). It is also typical that the set operations included in these operations
have to be defined among a finite number of sets. It is obvious that without these operations
many query formulations would be essentially larger, and more effort to write and read them
would be required. In other words, the definition of these operations is related to the classical
trade-off between the minimal set of operations and the useful set of operations.
Analogously, for example, the relational algebra could be defined without the join operation
because it can always be expressed with a product operation followed by a selection
operation. However, the join operation is convinient to use  and thus it has an obvious
practical value.
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It is very easy to note that all operations except for ∑_union-operation return either a node
set or a tuple set as their value. From the view point of the user the expressive power can be
extended considerably if the traditional set operations can be applied between the results of
these operations. In practice it is important that we can perform conventional set operations
between the results of the operations included in our language e.g. between the results of
transitive and non-transitive ERP-based operations. Our aim is to offer this possibility for the
user in our recursive query language defined in Chapter 5. Therefore we assume that the
usual set operations are available i.e. the operations set_union(Set1,Set2),
set_difference(Set1,Set2) and set_intersection(Set1,Set2). The signatures of these operations
are Set ∞ Set ∅ Set and they mean usual union, difference and intersection operations
between two sets. The nature of these operations is, of course, non-recursive.

5. Functional definition of an 
operation-based recursive query language

Our aim is to offer for the user a recursive query language in terms of which he can make
complex queries by combining the operations in Chapter 4. The most operations in Chapter 4
require recursive processing and therefore the language consisting of these operations is also
recursive in nature. The alternative approach would be that the user would define recursive
rules. From the view point of the user this approach would mean that he should master
recursion conceptually, for example he should define how to transfer between recursion
levels what is the exit rule and so on. He should describe these rules on the basis of logic and
in addition in many cases he should know how these rules are processed e.g. in order to
guarantee the termination of the processing. We think that it is the duty of the logic
programmer to take into account these kinds of aspects - it is not the duty of the user. In our
approach all recursive processing is hidden behind operations and the user can model his
queries in one operation-oriented way. In Chapter 6 we will demonstrate this feature by
virtue of several examples.

Next we define how operations of Chapter4 can be combined with each other. In fact we
define all sequences of operations which the user can  use for expressing his queries. Because
we have defined exactly the semantics of the operations in Chapter 4 it means that the
semantics of  any legal operation sequence achieved by combining them is also exactly
defined. Operation sequences constructed by combining operations in Chapter4 are called
nested operation expressions. Next we define this concept recursively.

Definition12:
The string f(expr1,expr2, ... ,exprn) is a nested operation expression if f is an operation in
Chapter 4 with the signature f:D1∞ D2 ∞  ... ∞ Dn∅R and each expri (i {1, ... ,n}) is either
(1) a value belonging to the set Di or
(2) it is an expression g(sub-expr1, ... ,sub-exprm) such that g is an operation of Chapter 4
with the signature g: Dom1∞  ... ∞ Domm∅Di and furthermore each sub-expri i {1, ... ,m} is
a nested operation expression.

Our operation-based query language intended for recursive processing consists of
expressions defined in definition 12. For instance, related to our example the expression
union_of_successors(im_predecessors(p1, {Munich}),{Munich,Stuttgart}) is an expression
generated by our language. This is due to the following facts.
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• im_predecessors(p1, {Munich}) is a nested operation expression because im_predecessors
is an operator in Chapter4 whose signature is Nodes ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes)
and p1  Nodes and {Munich} P(P(Nodes ∞ Nodes)). On the basis (1) it is a nested
expression.
• The first argument in union_of_successors(im_predecessors(p1,
{Munich}),{Munich,Stuttgart}) is a nested operation expression as we have shown above
and the range set of this operation is P(Nodes). On the other hand the signature of the
operation union_of_successors is P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅ P(Nodes) which
means that the value yielded by im_predecessors(p1, {Munich}) is compatible with the first
argument of the union_of_successors operation. In other words the condition specified by (2)
holds. In addition, it is true that {Munich,Stuttgart} P(P(Nodes ∞ Nodes)).

It follows from these considerations that the expression
union_of_successors(im_predecessors(p1, {Munich}),{Munich,Stuttgart}) is an expression
accepted by our functional language.

The expression union_of_predecessors(path_set(p5,p1,{Munich,Stuttgart}),
{Munich,Stuttgart}) is not accepted by our language although the operations
union_of_predecessors and path_set have been defined in Chapter 4. This is because the
signature of the operation union_of_predecessors is P(Nodes) ∞ P(P(Nodes ∞ Nodes)) ∅
P(Nodes) and the signature of the operation path_set is Nodes ∞ Nodes ∞ P(P(Nodes ∞
Nodes)) ∅ P(T(Nodes)), i.e. the value yielded by the operation
path_set(p5,p1,{Munich,Stuttgart}) belongs to the set P(T(Nodes)) which is not compatible
with the set P(Nodes).

6. Sample Queries

In Chapters 4 and 5 we have defined formally the expressive power related to our recursive
query language. In Chapter 4 we gave several sample operations associated with our sample
ERP-base. Now we consider how the user can in terms of the functional language defined in
Chapter 5 express his queries in an operation-oriented way. From the view point of the user
expressing queries in this language resembles expressing queries on the basis of the relational
algebra. In both cases it is possible to combine different operations so that the arguments of
the operations can be other operations.

Many of the operations in Chapter 4 are recursive in nature and these operations can also be
implemented recursively in a straightforward way (see our prototype implementation [31]).
However there are combinations of some few operations which do not contain any recursive
operation. Due to our way to model information intended for recursive processing these
operation combinations can also be very interesting from the view point of the user. Our
sample queries 1 and 2 represent this kind of operation combinations. Our sample queries are
related to the sample ERP-base above. We demonstrate that our operation-based approach
offers a compact and flexible way for the user to make queries also in those cases which in
the rule-based approach would require complex recursive definitions from the user. In our
approach the recursive processing is invisible from the view point of the user and he can
describe his queries on the basis of concepts which have natural correspondences in the
universe of discourse at hand.

Sample query 1:
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Let us assume that the user wants to get all products made in Munich. The user can make his
query for this purpose e.g. based on the following thinking. All products in Munich can be
expressed by the operation nodes({Munich}). Those products which are in Munich but which
have not made in Munich can be expressed by the operation bottom_nodes({Munich}). If we
take the usual set difference between these sets we get those products which have made in
Munich. In other words the whole query is expressed as follows.

Expression for the sample query 1:
set_difference(nodes({Munich}),bottom_nodes({Munich}))

The result of the sample query 1 is the set {p5, p6, p4, p3, p2, p1}.

Sample query 2:
Assume next that the user wants to get those products made in Munich which are necessary
for the production process of Stuttgart i.e. the products must be transferred from Munich to
Stuttgart. From the view point of the user the sample query1 can be used to refer to all
products made in Munich and the operation bottom_nodes({Stuttgart}) to refer to those
products in Stuttgart which are not made there. By taking the set intersection between these
sets the desired result is achieved. 

Expression for the sample query 2:
  set_intersection(  

set_difference(nodes({Munich}),bottom_nodes({Munich})), 
bottom_nodes({Stuttgart}))

The result of the sample query 2 is the set {p1}.

Sample query 3:
We have the following problem: Give those products of Munich which do not need the
product p7 in any way and when we only consider that part of the production process which
happens either in Munich or Stuttgart. All products in Munich or Stuttgart which need the
product p7 in a way or another can be expressed with the operation predecessors(p7,
{Munich,Stuttgart}). The operation nodes({Munich}) gives all products in Munich. In other
words from the view point of the user the query for our problem can be given as follows.

Expression for the sample query 3:
set_difference(nodes({Munich}), predecessors(p7,{Stuttgart, Munich}))

The result of the sample query3 is the set {p4,p2,p13,p1,p10,p11,p12}.

Sample query 4:
Let us assume that the user is interested in those products of the company which are needed
in the construction of the end products of Munich but which are not needed in the
construction of the end products of Stuttgart. The end products of Munich and Stuttgart are
defined by the operations top_nodes({Munich}) and top_nodes({Stuttgart}). The successors
of these products express those products which are needed in their construction. The
difference_of_successors operation can be used to define those successors of one node set
which are not successors of another node set. Because the user is interested in all products of
the company the successors must be searched among the set of all ERP-relations i.e. in the set
{Munich,Stuttgart,Berlin}. This means that the functional expression 4  can be used for our
original purpose.
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Expression for the sample query 4:
difference_of_successors(top_nodes({Munich]),top_nodes({Stuttgart}),{Munich,Berlin,
Stuttgart})

The result of the sample query 4 is the set {p4,p2,p13,p3,p14}. It is worth noting that the end
product p14 of Stuttgart is one element in the result.

Sample query 5:
Next we consider only the production process which happens in Munich and Stuttgart. Now
we want to get those components of the products p3 and p4 which have been made in Munich
or Stuttgart. We can use the operation union_of_successors({p4,p3},{Munich,Stuttgart}) to
refer to all those components which the product p4 or the product p3 can have in Munich or
Stuttgart. The products which have not been made in Munich or Stuttgart can be expressed
by the operation bottom_nodes({Munich,Stuttgart}). It is important to understand that
bottom_nodes({Munich,
Stuttgart})≠set_union(bottom_nodes({Munich}),bottom_nodes({Stuttgart})). In other words
the query for our problem can be formulated by using the sample query expression 5.

Expression for the sample query 5:
set_difference(union_of_successors({p4,p3},{Munich,Stuttgart}), bottom_n

The result of the sample query 5 is the set {p2,p14,p7,p1}.

Sample query 6:
Let us assume that the user wants to get those products in Munich or Stuttgart which have
been used in the construction of the product p3 and which in turn contain as components the
product p17 or the product p19 (starting products of Berlin). All immediate or indirect
component products of the product p3 in Munich or Stuttgart can be obtained by the
operation successors(p3, {Munich,Stuttgart}). In other words the result of the operation
contains in addition of the products made in Munich or Stuttgart also products transferred
from Berlin where they may have been made. On the other hand the operation
union_of_predecessors({p17, p19}, {Munich, Stuttgart, Berlin}) gives all those products in
the company which contain the product p17 or the product p19 or both of them in some way.
This means that the common elements of the results of the operations successors(p3,
{Munich,Stuttgart}) and union_of_predecessors( {p17, p19},{Munich, Stuttgart, Berlin}) is
just what the user wants i.e. he can describe his query with the following expression.

Expression for the sample query 6:
set_intersection(successors(p3,{Munich,Stuttgart}),
union_of_predecessors({p17,p19},{Munich,Stuttgart,Berlin}))

The result of the sample expression 6 is the set {p14,p7,p8}.

Sample query 7:
In our next example the user wants to get those products made in Stuttgart which are needed
in the construction of the product p6 in some way. All products which are needed
immediately or indirectly in the construction of the product p6 from the view point of the
whole company can be expressed by the operation successors(p6,{Munich,Stuttgart, Berlin}).
Analogously with the sample query 1 the expression
set_difference(nodes({Stuttgart}),bottom_nodes({Stuttgart})) gives the products made in
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Stuttgart. Now we have to select only the part indicated by this expression from the result of
the operation successors(p6, {Munich,Stuttgart, Berlin}), i.e. we need the following
formulation for our example. 

Expression for the sample query 7:
set_intersection(successors(p6,{Munich,Stuttgart,Berlin}),
set_difference(nodes({Stuttgart}),bottom_nodes({Stuttgart})))

The result of this query is the set {p14,p7}.

Sample query 8:
Let us assume that the user wants to find all possible paths which can exist between the end
products of Munich and the starting products of Berlin. The results of the operations
top_nodes({Munich}) and bottom_nodes({Berlin}) contain the corresponding end and
starting products. The operation paths_between_nodesets can be used to construct paths
between these elements. The production system has to be considered from the view point of
the whole company, i.e. in the set {Berlin, Stuttgart,Munich}. This means that our example
can be described with the query expression 8.

Expression for the sample query 8:
paths_between_nodesets(top_nodes({Munich}),bottom_nodes({Berlin}),
{Berlin,Stuttgart,Munich})

The result of the sample query 8 is the set {<p5,p3,p14,p7,p8,p17>,<p5,p3,
p14,p7,p8,p19>,<p6,p3,p14,p7,p8,p17>,<p6,p3,p14,p7,p8,p19>}.

Sample query 9:
We construct all possible paths among the products of the company from the end products
made in Munich to those products made in Munich which are necessary for the production in
Berlin or Stuttgart. Analogously with the expression 2 we find those products made in
Munich which are necessary for the production in Berlin or Stuttgart i.e. we need the
expression set_intersection(set_difference(nodes({Munich}),bottom_nodes({Munich})),
bottom_nodes({Berlin,Stuttgart})). By using the operation paths_between_nodesets to
construct the paths from the nodes in the result of the operation top_nodes({Munich}) to the
nodes in the result of the above expression we get the query expression 9 for our original
problem. 

The expression for sample query 9:
paths_between_nodesets(top_nodes({Munich}),

set_intersection(set_difference(nodes({Munich}),bottom_nodes({Munich})),bottom_nodes({
Berlin,Stuttgart})),{Munich,Stuttgart,Berlin})
The result of the sample query 9 is the set {<p5,p4,p1>,<p5,p4,p2,p1>,<p5,
p3,p1>,<p5,p3,p14,p7,p1>,<p6,p3,p1>,<p6,p3,p14,p7,p1>}.

Of course we could give several further sample queries based on our functional language
defined in Chapter 5 but we believe that these are enough to demonstrate how to express
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queries from the view point of the user. More sample queries based on our language can be
found in [37], [38].

In order to compare our operation-oriented approach with the standard rule-based approach
we consider as an example how the subexpression predecessors(p7,{Stuttgart,Munich}) in
sample query 3 would be specified in terms of Horn clauses. Let us image that our sample
ERP-base (see Fig. 1.) is represented as facts munich(p1,p10), ... ,stuttgart(p7,p1), ...
,berlin(p9,p16), ... , berlin(p3,p19). On the basis of these facts we can define the predicate
transitive_relationship(Pred_Node, Node) where Pred_Node is a predecessor node of a node
Node in the scope restricted by stuttgart and munich. The predicate is defined by the rules 1-
4.

(1) immediate_relationship(Pred_Node,Node) ♦ stuttgart(Pred_Node,Node).
(2) immediate_relationship(Pred_Node,Node) ♦ munich(Pred_Node,Node).
(3) transitive_relationship(Pred_Node,Node) ♦ 
      immediate_relationship(Pred_Node,Node).
(4) transitive_relationship(Pred_Node,Node) ♦
      immediate_relationship(Node1,Node), 
      transitive_relationship(Pred_Node,Node1).

If the user has specified these rules then he can make the query transitive_relationship(X,p7)
?. The solutions of X are predecessors nodes of p7. Generally taken the above definition can
produce the same solutions many times. This is due to the fact a certain node can be proven a
predecessor node of a given node in several ways. If the user wants his answer as a set
consisting of different predecessor nodes then the above definition must be extended
considerably. Even now the number of the characters the user must enter is essentially greater
than in the corresponding operational expression. It is also typical of the above definition that
it has been bound to the sample scope (stuttgart, munich) and it cannot be applied in other
scopes. In order to avoid these problems the above definition should be extended by similar
techniques applied in the implementation of the operation predecessor (see Part II). 

We think that the operation-oriented approach is more suitable to the end user than the rule-
based approach. Next we consider those factors related to the rule-based approach which are
cumbersome from the view point of an ordinary end user. We can use the above rule-based
definition, in spite of its relative simplicity, to identify factors which the user has to master in
his rule definition.

• First he must be able to formulate his rules in terms of logic. In addition he must understand
the pattern matching mechanism within rules and between a query and rules. The non-
professional user is not familiar with this kind of way of modelling whereas he has practiced
combination of available high-level operations.

• In the context of recursive queries the user has to master recursive definition (see the above
definition) conceptually well, i.e. he has to be able to formulate generally rules for
transferring from one level of recursion to another and in addition he must know how
recursion is terminated by some exit rule. It is obvious that in practice the construction of
recursive rules, at least in complex cases, is too heavy for non-professional users. In our
approach the recursive definitions have been embedded into operations i.e. the user does not
need to be aware of this definition level. This means that the user in our approach utilizes
recursively defined operations (see Part II) but he does not need to define these operations.
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• It is typical of a rule-based approach that a specification for a query consists of many layers
of definitions on different abstraction levels. Thus the user must formulate all definition
levels which in the context of complex queries means large specifications. For example, the
rule-based definitions corresponding to our sample queries 3-9 would be much larger than
our concise expressions above. Part II, in which we give a rule-based prototype
implementation for our operation-oriented language, shows also clearly how much larger
specifications are needed in a rule-based approach than in our operation-oriented approach.

• Unfortunately in rule-based deductive systems it is not sufficient for the user only to master
query formulation based on Horn clauses but the user has also to master completely the
underlying processing mechanism. For example, the user can define the above specification
in the logical sense correctly as follows. First he changes the order of the goals
immediate_relationship and transitive_relationship in the body of the rule (4) and second he
reorders rules so that the new rule (4) appears before the rule (3). If we in this case would use
e.g. Prolog as our evaluation strategy then the computation would never terminate. Similar
problems can occur, for example, also in the processing of Datalog-programs if rules create
infinite relations from finite ones [5].

We think that the end user has to be able to express his recursive queries without knowing
aspects related to the evaluation strategy. In our approach all operations have been
implemented (see Part II) so that the user can combine them safely with each other and he
does not need to know anything about the underlying evaluation strategy.

The operations of our language are on the same conceptual level as relational operations.  It
was recognized early in the development of query languages for relational databases that
relational algebra as such is not really an end-user query language.  Thus structured query
languages (e.g. SQL, QUEL) and graphical interfaces (e.g. QBE) have been developed.  In
spite of this it is obvious that our operations are considerably more user friendly than Horn
clauses as the interface.  This does not, of course, preclude eventual development of even
better interfaces to deductive databases.  Our operations provide a sound basis and suitable
primitives for e.g. graphical interfaces with an expressive power exceeding the one achieved
by present approaches.

Above we have analyzed several aspects related to query formulation in rule-based deductive
systems. In our opinion these aspects require skills which belong rather to a logic
programmer than to a non-professional user. Therefore we apply in Part II the rule-based
approach to implement our recursive operation-oriented query language defined here.

7. The Role of the Operation-oriented Recursive Query Language in
    Deductive Databases

It is important to note that the language defined in this paper produces only a part of
intensional information in deductive databases. We can call this intensional information
ERP-based information because all operations of our operation-oriented language manipulate
only the ERP-base. Our approach to deductive databases contains two kinds of extensional
information: the ERP-base and the Extensional Database (briefly EDB). The ERP-base
contains the identifiers of objects, among which transitive relationships are computed,
whereas the EDB contains the properties of these objects. It is typical of the EDB that it has
been organized according to conventional data models (e.g. relational, hierarchical, network
etc.).
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The EDB has its own operations in terms of which data are manipulated. We call these
operations EDB-based operations. Thus, in our approach a lot of intensional information is
also produced by combining ERP-based operations with EDB-based operations. This means
that the expressive power of the deductive database depends also on the expressive power
related to the EDB. The language consisting of the ERP-based operations is needed for
computing transitive relationships whereas other computing is performed by the EDB-based
operations. It is important that the reader does not confuse ERP-based operations with EDB-
based operations.

The clear separation of the ERP-base and the EDB affords the possibility of organizing them
on the basis of different data models.   We believe that in the integration of ERP-based
operations and EDB-based operations we can use some EDB-based operation(s) tailored for
this purpose. In Part II we show how expressions generated by our operation-oriented
language can be integrated with relational expressions by using a restriction operation (see
Section 5.2 in Part II). If the EDB is based on a data model other than the relational model
then we have of course to use some operation(s) of that data model for integration. Also in
this case we believe that this operation-oriented integration principle and techniques
introduced in Part II are valid although the details are different. The work for integrating our
operation-oriented language with other data models is in progress. In Part II we also discuss
how this integration way can be used for implementing deductive databases on the basis of
both the homogeneous and heterogeneous approach.

Aggregation related to computation of transitive relationships is also an important form of
intensional information. Therefore advanced approaches to recursive queries offer some
aggregation mechanism. For example, in the traversal recursion approach [20] two types of
recursion are distinquished: enumeration recursion and aggregation recursion. Enumeration
recursion does not contain any aggregator operator and all possible paths to connect two
nodes are included in the result. In the aggregation recursion aggregator operators select one
path from many alternative paths to connect two nodes. Also in terms of Agrawal's α-
operation [19] it is possible to construct aggregation information in the context of transitive
computation. Aggregation in this case is based on the so-called additional attribute ∆ which
contains the derivation history used in transitive computation. The attribute ∆ is in fact a
relation and it cannot be used outside the α-operation.

In our approach to deductive databases we need information both from the ERP-base and the
EDB when constructing aggregation information associated with transitive computation. This
means that also in this case we utilize both ERP-based and EDB-based operations. In our
approach aggregation is associated with path-oriented expressions. Although paths in our
approach and the attribute ∆ in Agrawal's approach are represented in a different way they
have an analogous function in both approaches.

We have only one generalized operation for aggregation. Because aggregation needs
information from the EDB this generalized operation contains also some EDB-dependent
aspects. In Part II (see Section 5.1) we give a rule-based prototype implementation for this
operation in the case that the EDB has been organized according to the relational model. If
the EDB would be based on some other data model (e.g. hierarchical or network) then the
EDB-dependent aspects of the generalized aggregation operation would be defined in a
different way. However the principle of aggregation remains similar.

In order to compute any aggregation we need all different nodes included in the result of a
path-oriented expression. In addition, we need a function which associates values being
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aggregated with these nodes. In the construction of this function we have to manipulate also
EDB-dependent aspects because the values being aggregated are in the EDB. The role of this
function in aggregation is essential because it brings together information from the ERP-base
and the EDB. This is also a motivation for a map object (see Section 2.2. in Part II) in our
prototype implementation. In the construction of this function we can use EDB-dependent
operations, e.g. in Part II (Section 5.2.) we show how relational operations are used in the
construction of this function when the EDB is based on the relational model.

The construction of the above function is the only task which contains EDB-dependent
aspect. Next we consider the part of the definition of the generalized aggregation operation
which is independent of the EDB, i.e. we assume that the above function is available. A
function can be represented on the basis of a binary relation. Namely, a binary relation f on
A∞B or explicitly f={<a1,b1>, ... , <an,bn>} where a1, ... ,an  A and b1, ... ,bn  B, is a
function if for each a  A there is exactly one b  B such that <a,b>  f. Symbolically we
usually denote f: A ∅ B and instead of <a,b>   f we write f(a)=b.

Here we refer to the EDB-independent part of the generalized aggregation operation by
common_aggr and it is defined as follows when the following notational conventions are
used.
• DOM(Aggr_attr) denotes the domain of the aggregation attribute Aggr_attr.
• Map is the available function which connects the ERP-based and EDB-based information in
the way described above. Thus Map is formally a binary relation such that Nodes ∞
DOM(Aggr_attr)  Map.
• Exprp denotes those path-oriented expressions which can be generated by our operation-
oriented recursive query language.
• eval(Expr) denotes the result of the evaluation of a path-oriented expression Expr, i.e. Expr
 Exprp and eval(Expr)  P(T(Nodes)).

• Aggr_type_set = {min, max, sum}. Of course, other ways of aggregation could be allowed
in the definition but they would be handled in an analogous way.

common_aggr:
Exprp∞Aggr_type_set∞P(Nodes∞DOM(Aggr_attr))∅P(T(Nodes)∞DOM(Aggr_attr))
common_aggr(Expr,Aggr_indicator,Map) =

{(path,i)|path eval(Expr) 3 i,j(≠i)   path: Map(i) ≥ Map(j)}
if Aggr_indicator = max

{(path,i)|path eval(Expr) 3 i,j(≠i)   path: Map(i) ≤ Map(j)}
if Aggr_indicator = min

{(path,Sum)|path eval(Expr) 3 Sum =Σ i  pathMap(i)}
if Aggr_indicator = sum

Consider the above aggregation principle in the context of the following  sample case. Let us
assume that the user wants to know all product chains from the product p5 to the product p1
provided that the whole production process happens in Munich. In addition, he wants to
know the total durations related to these product chains, i.e. aggregation is needed. In this
sample case the following common_aggr expression would be constructed
common_aggr(path_set(p5,p1,{Munich}),sum,{f(p1,duration1),f(p2,duration2),
f(p3,duration3), f(p4,duration4), f(p5,duration5)}). 
The domain elements in the third argument (or the function which connects ERP-based and
EDB-based information) are all different products appearing in the result of
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eval(path_set(p5,p1,{Munich})). This evaluation in the context of our sample ERP-base
produces the set {<p5,p4,p1>, <p5,p4,p2,p1>, <p5,p3,p1>}. The values duration1, ... ,
duration5 are imaginary values, which express production durations related to these products,
and they have been obtained from the EDB. The result of the above common_aggr is the set
{(<p5,p4,p1>,total_duration1), (<p5,p4,p2,p1>,total_duration2),
(<p5,p3,p1>,total_duration3)} where total_duration1, ... , total_duration3 have been summed
from the production durations of the products belonging to these paths. In Section 5.2 of Part
II we give a prototype implementation for the generalized aggregation operation in the
context of the relational model. This implementation contains both the EDB-dependent and
EDB- independent parts.

8. Conclusions

The problems related to recursive queries have been considered mainly from the view point
of efficient processing and at this moment there are many efficient algorithms for different
recursive query types. In this paper we consider recursive queries from the view point of the
non-professional user, i.e. how we can make the formulation of his recursive queries easier -
also in complex cases. The conventional rule-based way to formulate complex recursive
queries is too hard and cumbersome for ordinary users because it presupposes that the users
are capable of strong recursive thinking. Often the user has also to know the underlying
mechanism in terms of which rules are processed.

In this paper we propose an operation-oriented approach for users. We demonstrate on the
basis of this approach how the user can in a flexible and compact way formulate his queries
so that recursive processing is invisible from the view point of the user. He can formulate his
recursive queries in terms of operations which have obvious counterparts in the real world.
We specified the operations and a functional language precisely in this paper. For different
needs of the user the language contains node-oriented and path-oriented operations. The
relation-oriented operation is used in the definition of the scope in these operations.

In our approach data, to which the need of recursive processing is directed, is modelled as a
set consisting of union-compatible binary relations. On the basis of this modelling principle
we can express in the semantical sense essential information not provided by approaches
based on only one binary relation. On the other hand this means that we had to define our
operations so that they are able to manipulate transitive relationships among any finite
number of binary relations. In [31] we give a prototype implementation for the language
defined in this paper and consider how it can be integrated with relational databases. In
addition we consider how the integration principles intoduced in this paper are realized in the
case that our functional language is integrated with the extensional database based on the
relational data model.
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