
Venti:
a new approach to archival data storage

Sean Quinlan
Sean Dorward

Bell Labs
Lucent Technologies

why archival storage?

• disaster recovery
– necessary but rarely used

• history of changes
– many uses if available
– experience with Plan 9 file system

• storage is plentiful
– infinite if capacity increases faster than consumption
– why delete anything?

tape backup

• backup
– copy data from file system to tape

• restore
– copy from tape to file system
– often painful

• tapes are streaming devices
– tension between full and incremental backup

file system
tape

file system snapshots

• a consistent read-only view of the file system
• access with standard tools

– ls, cat, cp, grep, diff
– retain file system permissions

• looks like a full backup
• implementation resembles an incremental back-up
• fast random access

– use in place
– share blocks

read-only active

Venti

• block-level network storage system
– back end storage for multiple clients

• write-once
– once data is stored, can not be deleted
– simplifies administration and security

• data stored on magnetic disks
– impressive technology curve
– high performance random access

• blocks are identified by a hash of their contents
– write(data) not write(block, data)

– read(H(data)) → data not read(block) → data

interesting properties

• no way to overwrite a block
– different blocks have different hashes

• blocks can be shared
– multiple writes of the same data will be coalesced

• multiple clients can share a server
– the hash function is a universal name space

• a secure hash authenticates data
– server can not lie

• simple to replicate/cache/load balance

sha1: secure hash algorithm 1

• proposed by NIST
– US National Institute for Standards and Technology

• hash value is 160 bits → 20 bytes → venti
• no known collisions
• believed to be secure

– difficult to generate data
with a given hash value

• reasonably fast software implementations
– ~60 Mbytes/sec on 700Mhz Pentium 3

is 160 bits enough?

• 2160 ~ 1048 hash values
• suppose 1014 8KB block (~ 1 exabyte)
• less than 1 in 1020 chance of collision

– assert no collisions
– although we do check

• possible to move to sha256 in the future

storing more than a block

• blocks can contain hashes of other blocks
– build up more complex data structures

vac: a zip like application

• vac files ...
– produces a tree of blocks corresponding to specified files
– similar to zip
– output is a single hash

• compress any amount of data to 20 bytes!
• Venti will coalesce multiple copies of data

– using vac multiple times will not consume extra storage
– using vac on slightly changed data should only consume

storage proportional to the delta (assuming block alignment)

• unvac
• vacfs

block-level (physical) backup

• copy raw disk blocks
– avoid interpreting and walking file system
– potentially much higher throughput

• block-level backup to Venti
– coalesces duplicate blocks based on data
– space advantages of incremental backup

• random access
– directly mount
– lazy restores

new plan 9 file system

• build a file system directly on top of Venti
– primary location for active data

• use a small amount of read/write storage
– smaller than active file system
– accumulates changes to the file system
– snapshot flushes changes to Venti

• permanently retain all snapshots

FS VentiOS

read-write

write-once

Venti implementation

• network service accessed via a simple protocol
– supports multiple clients
– variable sized blocks

• combines a data log, index, and caches

hardware

• server
– 2 processor x86 box with 2GB of memory

• index
– 8x 10,000rpm 9Gb scsi disks

• data
– raid array with 8 7200rpm 75GB ide disks
– total of 500GB using RAID 5

• cost ~$14K in 4Q 2000

data log

• append only log
– avoids many

software errors
– stored on RAID array

• blocks are densely
packed
– no fragmentation
– compression
– no duplicates

• format is designed to be robust
– hashes act as checksums
– two copies of block header

index

• maps 160 bit hash to location in log
• implemented as a disk-resident hash table

– hash the hash
– one disk access

• index can be rebuilt from log
• multiple index disks provided improved throughput

memory caches

• block cache
– avoid any disk I/O
– ~100,000 entries in 0.5 Gbyte

• index cache
– cache hash → log mapping
– avoids I/O to index disks
– ~10,000,000 entries in 0.5 Gbyte

• caches improve
– reads
– duplicate writes

• caches do not improve
– virgin writes

read & write performance

Sequential
Reads

Random
Reads

Virgin
Writes

Duplicate
Writes

Uncached 0.9 0.4 3.7 5.6
Index Cache 4.2 0.7 - 6.2
Block Cache 6.8 - - 6.5
Raw Raid 14.8 1.0 12.4 12.4

• initial results
• uncached sequential reads need work

– limited by latency of index disks

• uncached writes benefit from multiple index disks

8Kbyte blocks in Mbyte/sec

Plan 9 historical data

• two Plan 9 file servers spanning 1990 - 2001
• daily snapshots

– stored on optical WORM
– ~ 650 Gbytes of data

• 522 user accounts
– 50 - 100 active users at any time

• many software development projects
• several large data sets
• traces are available on the web

http://www.cs.bell-labs.com/~seanq/p9trace.html

bootes: 1990 - 1997

emelie: 1997 - 2001

sources of compression

bootes emelie
Elimination of duplicates 27.8% 31.3%
Elimination of fragments 10.2% 25.4%
Data Compression 33.8% 54.1%
Total Reduction 59.7% 76.5%

reliability & recovery

• tools that run on the server
– check index
– check log
– rebuild index
– copy section of log to removable media

• RAID 5 provides some protection for log
• would like offsite mirror

– simple to implement

• would like write-once disks
– protection against a buggy or compromised server

• currently backup log to tape
– append only structure of the log makes this easier

more work

• load balancing
– divide work based on hash
– add proxies to hide from client
– scalable performance

• replication/caching
– background exchange of write operations
– forward failed read operations
– no coherency problems!

• access control
– currently authenticate user
– hash is a weak form of capability

conclusions

• hashes as block addresses
– simple model with attractive properties

• write-once
– easy to share data
– simplifies implementation
– simplifies administration
– improves security
– practicable

• magnetic disks for archival storage
– amazing technology curve
– high performance random access

