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Abstract – The current status of the Haplosporidia is reviewed as well as recent information on Haplosporidium nel-
soni, the causative agent of MSX disease in oysters. Recent molecular phylogenetic analyses with greatly increased
taxon sampling support monophyly of the Haplosporidia and hypothesize placement of the group as sister taxon to the
phylum Cercozoa. Oyster pathogens in the genus Bonamia should be considered haplosporidians based on molecular
sequence data. Thus, the group contains 4 genera: Uropsoridium, Haplosporidium, Bonamia and Minchinia. Molecular
phylogenetic analyses support monophyly of Urosporidium, Bonamia and Minchinia, but Haplosporidium forms a pa-
raphyletic clade. Reports of haplosporidia worldwide are reviewed. Molecular detection assays have greatly increased
our ability to rapidly and specifically diagnose important pathogens in the phylum and have also improved our under-
standing of the distribution and biology of H. nelsoni and H. costale. Much of the data available for H. nelsoni has been
integrated into a mathematical model of host/parasite/environment interactions. Model simulations support hypotheses
that recent H. nelsoni outbreaks in the NE United States are related to increased winter temperatures, and that a host
other than oysters is involved in the life cycle. Evidence is presented that natural resistance to H. nelsoni has developed
in oysters in Delaware Bay, USA. However, in Chesapeake Bay, USA H. nelsoni has intensified in historically low
salinity areas where salinities have increased because of recent drought conditions. Efforts to mitigate the impact of
H. nelsoni involve selective breeding programs for disease resistance and the evaluation of disease resistant non-native
oysters.
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1 Introduction

The Haplosporidia constitute a small group of endopara-
sites, mostly of marine invertebrates (Perkins 2000), although
one species is known from freshwater invertebrates. At present
there are 36 recognized species in the phylum; however, nu-
merous others have been reported, but not specifically identi-
fied, from many different invertebrate hosts. Several species
have been associated with epizootic mortalities of commer-
cially important molluscs. The most well-studied member of
the group is Haplosporidium nelsoni, which causes MSX dis-
ease in the eastern oyster, Crassostrea virginica, on the east
coast of North America. This parasite, along with a closely
related species, H. costale, which causes SSO disease, also
in the eastern oyster, were covered in a 1996 review (Ford
and Tripp 1996) that considered history and distribution, life
stages, infection and disease processes; epizootiology and en-
vironmental influences; and control/management measures,
including selective breeding for disease resistance. General re-
views of the phylum Haplosporidia include contributions by
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Perkins (1990, 1991, 2000) as well as an earlier review by
Sprague (1979).

The present review will emphasize recent developments,
which include research on H. nelsoni that has occurred since
the 1996 publication. They include: 1) progress in charac-
terizing, phylogenetically, the Haplosporidia; 2) reports of
new species of Haplosporidia and new hosts; 3) development
and implementation of molecular detection assays; 4) numer-
ical modeling of H. nelsoni; and 5) changes in the distribu-
tion of H. nelsoni epizootics, including prevalence decline in
Delaware Bay, and intensification of disease-caused oyster
mortalities in Chesapeake Bay that have led to the testing of
non native oysters and selectively-bred native oysters.

2 Phylogenetic position of the Haplosporidia

2.1 Historical perspective

Since the discovery of the first species in the late
1800s, the Haplosporidia have been a troublesome group for
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taxonomists and phylogeneticists, and there have been nu-
merous classification schemes proposed for placement of
the group within the protists. Early workers placed species
in the order Haplosporida, class Sporozoa of the phylum
Protozoa. With the advent of electron microscopy in the
1950s, the tremendous morphological diversity of single-
celled organisms became apparent and many groups of pro-
tists were elevated to phylum rank. Sprague (1979) sepa-
rated the Haplosporida and Paramyxea from other Sporozoa
by including both groups in the new phylum Ascetospora.
The phylum Ascetospora was subsequently abandoned and the
Haplosporidia and Paramyxea were each elevated to phylum
rank (Desportes and Perkins 1990; Perkins 1990, 1991, 2000).
However, recently Cavalier-Smith and Chao (2003b) resur-
rected Ascetospora as a class in the phylum Cercozoa, subphy-
lum Endomyxa. In their scheme class Ascetospora includes
three orders – Haplosporida, Paramyxida and Claustrosporida
(but see Sect. 2.2). The Haplosporidia were most recently char-
acterized morphologically as a group of parasitic protists hav-
ing multinucleate plasmodia and ovoid, walled spores lacking
polar filaments or polar tubes, and with an orifice at one pole.
The orifice is covered either externally by a hinged lid or in-
ternally by a flap of wall material (Perkins 2000). The place-
ment of the genus Bonamia in the Haplosporidia (see Sect. 3.2)
muddles this definition of the group because no spore stage has
been observed in Bonamia. If a spore stage is truly lacking in
Bonamia spp. it is unclear at present what morphological char-
acters define Haplosporidia.

2.2 Molecular phylogenetic analyses

First attempts to determine the relationship of the
Haplosporidia to other Eukaryota using molecular sequence
data hypothesized placement of the group within the parvking-
dom Alveolata (see Cavalier-Smith 1993) as a taxon of equal
rank with the other alveolate phyla – Ciliophora, Apicomplexa
and Dinoflagellata (Siddall et al. 1995; Flores et al. 1996). A
molecular phylogenetic analysis by Berthe et al. (2000) placed
the Haplosporidia as sister taxon to the Dictyosteliida and
also provided molecular phylogenetic support for separation
of the phylum Haplosporidia and phylum Paramyxea. Recent
molecular phylogenetic analyses using rRNA gene sequences
(Cavalier-Smith and Chao 2003a,b), and combined rRNA
and actin gene sequences (Reece et al. 2004) included much
more sequence data available for a variety of eukaryote taxa.
These studies documented monophyly of Hapolsporidia and
hypothesized a relationship between the Haplosporidia and the
Cercozoa, a relationship not previously recognized. Cavalier-
Smith and Chao (2003b) placed the Haplosporidia as an order
within the phylum Cercozoa (Fig. 1), but with weak support
(bootstrap = 20 or 60 depending on sequences included). They
state that “Cercozoa comprise four major distinctly separate
subclades” – Ascetospora (actually just Haplosporidia in the
analyses), the gromiid testate amoebae, the Phytomyxea, and
a very large group of classical Cercozoa including zooflagel-
lates, filose testate amoebae and chlorarachnean algae. Each
of these clades could, and perhaps should, be considered a
separate phylum as they are of equal rank in the phyloge-
netic analyses. Cavalier-Smith and Chao (2003a,b) include the

Haplosporidia within the Cercozoa, rather than as a separate
phylum, primarily because they share with classical Cercozoa
an “almost unique” single nucleotide deletion – a justification
requiring further support in our opinion.

Cavalier-Smith and Chao (2003b) resurrect Ascetospora
to include three groups – Haplosporidia, Paramyxea and
Claustrosporidium. The molecular phylogenetic analysis by
Cavalier-Smith and Chao (2003a) places Marteilia refrin-
gens (Paramyxea) “well within Haplosporidia” and sister
to Haplosporidium costale. Nonetheless, Cavalier-Smith and
Chao (2003a) state, inexplicably, that Haplosporida and
Paramyxida are separate orders in the phylum Cercozoa. How-
ever, if M. refringens is a haplosporidian, as their analyses
indicate, then Paramyxea has no basis. Other molecular phy-
logenetic analyses have not hypothesized a close relation-
ship between the Haplosporidia and the Paramyxea (Berthe
et al. 2000; Reece et al. 2004). Claustrosporidium is placed in
Ascetospora on the basis of organelles called haplosporosomes
in the sporoplasm (Cavalier-Smith and Chao 2003b), although
these organelles also occur in vegetative stages of Myxozoa
(Morris et al. 2000). Unfortunately no molecular data are
available for Claustrosporidium with which to evaluate this
proposed relationship (and see Sect. 3.3).

The molecular phylogenetic analysis by Reece et al.
(2004) using both rRNA and actin gene sequences supports
Haplosporidia as a monophyletic clade and places the group
as sister taxon to Cercozoa (Fig. 2) with moderate support
(jackknife = 74), suggesting that if Cercozoa is recognized
as a phylum, then Haplosporidia should be recognized as a
phylum as well. Reece et al. (2004) found no support for
inclusion of the paramyxean Marteilia refringens within the
Haplosporidia.

3 Taxa within the phylum Haplosporidia

3.1 Urosporidium, Haplosporidium, Minchinia

The phylum Haplosporidia has long been recognized to
contain only three genera, Urosporidiuim, Haplosporidium
and Minchinia, and about 33 species (Perkins 2000).
Urosporidium is characterized by species with an internal flap
of wall material covering the spore orifice. Minchinia and
Haplosporidium both have an external, hinged lid that cov-
ers the spore orifice, and the characters that distinguish these
two genera have been much debated. It is now generally rec-
ognized that spore ornamentation as observed with transmis-
sion and scanning electron microscopy is the best character
for distinguishing species and for separating Minchinia and
Haplosporidium. Unfortunately, the spore ornamentation for
the type species of Haplosporidium, H. scolopli, is unknown
and the species has not been reported since its original de-
scription. Two attempts by the first author to find H. scolopli,
by examining hundreds of type hosts from the type locality
in France, failed. Uncertainty about the spore morphology of
the type species has hindered characterization of the genus
Haplosporidium and the identification of characters that sep-
arate it from the genus Minchinia. Ormières (1980) proposed
that species with spore ornamentation composed of epispore
cytoplasm be placed in Minchinia, and species with spore
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Fig. 1. Maximum likelihood tree of 50 rhizarian 18S rRNAs using 1638 positions (Γ + I model: α = 0.55084; i = 0.26839). This tree had
the highest log likelihood (−25 487.62) of those yielded by 11 independent random additions of taxa. New sequences in bold. The figures
are bootstrap percentages (bold if 80% or more) using the same maximum likelihood model. From Cavalier-Smith and Chao (2003b), with
permission of Urban & Fischer Verlag.

ornamentation composed of spore wall material be placed
in Haplosporidium. Most recent workers have accepted this
convention (McGovern and Burreson 1990; Hine and Thorne
1998, 2002; Azevedo et al. 1999; Azevedo 2001; Burreson
2001). However, Perkins (2000) based generic assignment
solely on whether spore ornamentation is visible with a light
microscope, without regard for ontogenetic origin of the or-
namentation. Thus, Perkins (2000) proposed that Minchinia
includes species in which the ornamentation is visible with
a light microscope and Haplosporidium includes species in
which ornamentation is not visible with a light microscope.

The recent molecular phylogenetic analysis by Reece et al.
(2004) supports the importance of ontogenetic origin of spore
ornamentation. In their analysis (Fig. 3) the genus Minchinia
formed a monophyletic clade, and all species of Minchinia
have ornamentation composed of epispore cytoplasm. The
genus Haplosporidium, however, formed a paraphyletic clade
(Fig. 3), suggesting that more genera are necessary to encom-
pass the morphological diversity of species with ornamenta-
tion derived from the spore wall. Unfortunately, new generic
assignments cannot be made at the present time because of
the lack of knowledge on ornamentation of the type species
of Haplosporidium, H. scolopli, and of many other species
presently assigned to Haplosporidium.

3.2 Bonamia

Perhaps the most interesting new finding is molecular phy-
logenetic support for inclusion of the genus Bonamia in the
phylum Haplosporidia (Carnegie et al. 2000; Reece and Stokes
2003; Reece et al. 2004). Bonamia has long been suspected
to be a haplosporidian because of the presence of organelles
called haplosporosomes (Perkins 2000), but no spore stage
has been observed, so the genus had previously not been as-
signed with certainty to any group. In a recent molecular phy-
logenetic analysis (Reece et al. 2004), species of Bonamia
formed a monophyletic clade nested within the traditional hap-
losporidian taxa, as sister taxa to Minchinia spp., not as a
basal clade (Fig. 3). This alignment as sister taxon to a spore-
forming genus suggests that Bonamia does form spores, so
perhaps the stages observed to date are intermediate life cy-
cle stages and spores are formed in some other, as yet uniden-
tified, organism. Alternatively, it is possible that spores have
been lost in the Bonamia lineage. Loss of spores is sup-
ported by the observation that Bonamia ostreae can be trans-
mitted directly between oyster hosts in the laboratory via co-
habitation (Elston et al. 1986) or by inoculation of purified
intrahemocyte stages (Hervio et al. 1995). With the possible
exception of H. pickfordi (Barrow 1961), direct transmission
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Fig. 2. Strict jackknife consensus of 4 equal length trees resulting from parsimony analysis with SSU rDNA and actin amino acid data set.
Analysis was done on the complete taxonomic data set with 798 poorly aligned nucleotide position in the SSU rDNA removed. Jackknife
support values are given at the nodes. Dashed lines indicate clades that did not have jackknife support values above 50. From Reece et al.
(2004), with permission of the American Society of Parasitologists.

experiments with spore-forming haplosporidans have been
unsuccessful (Ford and Tripp 1996), and it is widely believed
that an intermediate host is a necessary component of the
life cycle in those species that form spores (Andrews 1984;
Haskin and Andrews 1988; Powell et al. 1999). If Bonamia
spp. truly lack spores, it makes morphological definition of the
Haplosporidia problematic because the group can no longer be

defined as organisms that contain spores with an orifice at one
pole.

Molecular sequence analyses (Fig. 3) and ultrastructure
data also suggest that another “microcell” parasite, Mikrocytos
roughleyi, is a species of Bonamia (Cochennec-Laureau et al.
2003; Reece et al. 2004). Mikrocytos roughleyi is a par-
asite of the Sydney rock oyster Saccostrea glomerata in
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Fig. 3. Strict jackknife consensus tree of parsimony analysis of
SSU rDNA sequence data to examine relationships within the
Haplosporidia. Tree statistics: length (L) = 3838 nucleotide changes,
consistency index (CI) = 0.600, retention index (RI) = 0.658.
Jackknife support values are given at the nodes. From Reece et al.
(2004) with permission of the American Society of Parasitologists.

Australia (Farley et al. 1988). Mikrocytos roughleyi parasitizes
oyster hemocytes, as do Bonamia species, and it is sister
taxon to Bonamia spp. in molecular phylogenetic analyses
(Cochennec-Laureau et al. 2003; Reece et al. 2004). A second
species of Mikrocytos, M. mackini, which parasitizes vesic-
ular connective tissue cells in Crassostrea gigas in British
Columbia, Canada (Farley et al. 1988) and Washington, USA,
apparently is not related to Bonamia and it is not a member of
the Haplosporidia (Hine et al. 2001a; Carnegie et al. 2003).

3.3 Claustrosporidium

Larsson (1987) established the genus Claustrosporid-
ium and included two species, C. gammari and C. aselli,
both of which had originally been placed in Haplosporid-
ium. He also erected the family Claustrosporidiidae con-
taining the single genus Claustrosporidium and included it
in the Haplosporidia. The sporoplasm of Claustrosporidium
gammari does contain haplosporosomes, but the spore does
not have an orifice at one pole and spore wall forma-
tion is not the same as in the typical haplosporidians. For
these reasons, Perkins (2000), in a thorough discussion, did
not accept the placement of Claustrosporidium spp. in the
Haplosporidia. Unfortunately, no molecular sequence data are
available for Claustrosporidium spp., so phylogenetic analy-
ses that include the genus have not been possible. Although

Claustrosporidium was not included in their phylogenetic
analyses, Cavalier-Smith and Chao (2003b), because of the
presence of haplosporosomes, include it in a separate order
Claustrosporida within the class Ascetospora equal in rank to
the order Haplosporida.

3.4 Currently recognized Haplosporidia

The 36 recognized species in the Haplosporidia are listed
in Table 1. Many species listed have not been reported since
the original, often brief, description, and all may not be valid
species. For example, it seems unlikely that the five species of
Haplosporidium reported from polychaetes in northern France
(Caullery and Mesnil 1905; Mercier and Poisson 1922) are all
distinct species. Also, the spore ornamentation is unknown for
many species of Haplosporidium listed in Table 1 and some
of them may be transferred to Minchinia or synonymized with
other species when more is known about their morphology.

The unnamed haplosporidians listed in Table 2 all seem
to be correctly assigned to the phylum Haplosporidia. The
species from Ostrea angasi in NW France is probably
H. armoricanum, but there is not enough information available
for the other species listed to assign them to existing species
or to describe them as new species.

4 Recent reports of Haplosporidia

Haplosporidia continue to be discovered in new hosts
and habitats. Only one species is known from freshwater,
Haplosporidium pickfordi from snails in USA lakes (Burreson
2001), but two other infections in freshwater hosts recently
have been reported. Amphipods of the genus Diporeia are
infected with a haplosporidian in Lake Michigan and Lake
Huron in the USA (Messick and Nalepa 2002), and zebra
mussels, Dreissena polymorpha, have been observed to harbor
haplosporidian infections in Europe (D. P. Molloy, personal
communication).

Haplosporidians have also recently been reported in new
marine hosts. Mussels, Mytilus edulis, were found infected
with spores of an unidentified haplosporidian in Maine, USA
(Figueras et al. 1991) and also during a long-term monitor-
ing program in Atlantic Canada (Stephenson et al. 2002).
Mytilus galloprovincialis was found infected with Minchinia
sp. in the Mediterranean Sea off France (Comps and Tigé
1997). Another unidentified haplosporidian was found in cul-
tured bay scallops, Argopecten irradians, in China (Chu et al.
1996). Spores of a haplosporidian parasite were observed in
the cockle Cerastoderma edule in Spain (Carballal et al. 2001),
and the parasite recently was described as Haplosporidium ed-
ule by Azevedo et al. (2003). Plasmodial stages of an uniden-
tified haplosporidian were implicated in high mortality of cul-
tured abalone in New Zealand during the austral summer of
2000 and 2001 (Diggles et al. 2002; Hine et al. 2002). Heavy
systemic infections of plasmodia were observed in moribund
animals, but no spores were present. The parasite has not been
observed in wild abalone of the same species. This parasite
groups with the Haplosporidia in molecular phylogenetic anal-
yses (Reece and Stokes 2003; Reece et al. 2004).
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Table 1. Accepted species in the Haplosporidia. Host names are those reported in the original description.

Species 
 

Host  Location Comments*/References 

Urosporidium 
 

   

U. fuliginosum  
Caullery and Mesnil 1905  

Polychaete  Syllis gracilis  English Channel, 
France 

Type species of 
Urosporidium.  
No EM.  
Caullery  and Mesnil  (1905) 

U. pelseneeri  (Caullery  
and Chappellier 1906) 

Trematode sporocysts in  
clams Donax vittatus, 
Barnea candida 

English Channel, 
France 

No EM.   
Caullery  and Chappellier 
(1906); Dollfus  (1925) 

U. crescens   
DeTurk 1940 

Trematode metacercariae  
of Spelotrema nicolli in  
the blue crab Callinectes sapidus 

East coast of USA TEM, SEM, DNA.   
DeTurk (1940);  
Perkins (1971) 

U.  fauricum   
Zaika and Dolgikh 1963 

Trematode in the mollusk Rissoa 
splandida 

Ukraine No EM.  
Zaika  and Dolgikh (1963) 

U. constantae  
Howell 1967 

Trematode sporocysts of 
Bucephalus longicornutus  
in the oyster Ostrea lutaria 

New Zealand No EM.  Howell  (1967) 

U. jiroveci  
Ormières  et al. 1973 

Trematode sporocysts of 
Gymnophallus nereicola  
In the clam Abra ovata 

Mediterranean Sea, 
France 

TEM.  Ormières et al. (1973) 

U. spisuli  
Perkins et al. 1975 

Nematode in surf clam  
Spisula solidissima 

East coast of USA TEM, SEM.   
Perkins  et al. (1975); 
Perkins  et al. (1977) 

U. cannoni 
 Anderson et al. 1993 

Polyclad flatworm  
Stylochus sp. 

Moreton Bay,  
QLD, Australia 

TEM, SEM.   
Anderson  et al. (1993) 

Haplosporidium 
 

   

H. scolopli  
Caullery and Mesnil 1899  

Polychaete Scoloplos 
mülleri. 

Cap de la Hague, 
France 

Type species of 
Haplosporidium.  No EM.   
Caullery  and Mesnil (1899) 

H. heterocirri  
Caullery and Mesnil 1899 

Polychaete Heterocirrus 
viridis 

Cap de la Hague, 
France 

No EM.   
Caullery  and Mesnil  (1899) 

H. marchouxi  
Caullery and Mesnil 1905 

Polychaete  Salmacina 
dysteri 

Cap de la Hague, 
France 

No EM.   
Caullery  and Mesnil  (1905) 

H. potamillae  
Caullery and Mesnil 1905 

Polychaete Potamilla 
torelli 

Cap de la Hague, 
France 

No EM.   
Caullery  and Mesnil (1905) 

H. vejdovskii  
Caullery and Mesnil 1905 

FW oligochaete  
Mesenchytraeus flaviduus 

Czech Republic No EM.   
Caullery and Mesnil  (1905) 

H. limnodrili 
Granata 1913 

FW oligochaete  
Limnodrilus udekemianus 

Florence, Italy No EM.  Granata (1913) 

H. nemertis  
Debaisieux 1920  

Nemertean  Lineus 
bilineatus   

Plymouth, UK  No EM.  
Debaisieux (1920) 

H. caulleryi  
Mercier and Poisson 1922 

Polychaete Nereilepas 
 fucata 

Luc-sur-Mer, 
Calvados, France 

No EM.  
Mercier and Poisson (1922) 

H. ascidiarum   
Duboscq and Harant 1923 

Tunicates Sydnium 
 elegans, Ciona 
 intestinalis 

Mediterranean Sea TEM.   
Duboscq and Harant (1923);  
Ormières and  de Puytorac 
(1968); Ciancio et al. (1999) 

H. cernosvitovi  
Jírovic 1936 

FW oligochaete,  
Opistocysta flagellum 

Misiones Province, 
Argentina 

No EM.  Jírovec (1936) 

H. pickfordi  
Barrow 1961 

FW snails Physella parkeri, 
Lymnaea stagnalis, Heliosoma 
companulatum 

Michigan, USA TEM, SEM, DNA.   
Barrow (1961); 
Burreson (2001) 

H. costale   
Wood and Andrews 1962 

Oyster  
Crassostrea virginica 

East coast of North 
America 

TEM, DNA.   
Wood and Andrews (1962); 
Perkins (1969) 

H. Louisiana  
(Sprague 1963) 

Mudcrab Panopeus berbstii East and Gulf of 
Mexico coasts of 
USA 

TEM, SEM., DNA.   
Sprague (1963);  
Perkins (1975) 
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Table 1. Continued.

H. tumefacientis  
Taylor 1966 

Mussel  
Mytilus californianus 

California, USA No EM.  Taylor (1966) 

H. armoricanum   
(van Banning 1977) 

Oysters Ostrea edulis, Ostrea 
angasi 

Europe TEM, SEM.   
Van Banning  (1977); 
Azevedo et al. (1999) 

H. cadomensis  
(Marchand and Sprague 1979) 

Mudcrab  
Rhithropanopeus harrisii 

Caen, Calvados, 
France 

TEM.  Similar to  
H. Louisiana.  Marchand 
and Sprague (1979) 

H. parisi   
Ormières  1980 

Polychaete  
Serpula vermicularis 

Mediterranean Sea, 
France 

TEM.  Ormières (1980) 

H. lusitanicum   
Azevedo 1984 

Limpet Helcion pellucidus France, NW Spain, 
Portugal 

TEM, SEM, DNA. Azevedo 
(1984) 

H. comatulae   
La Haye  et al. 1984 

Crinoid  
Oligometra serripinna 

Lizard Island, QLD, 
Australia 

TEM.  La Haye et al. (1984) 

H. edule    
Azevedo et al. 2003 

Cockle,  
Cerastoderma edule 

NW Spain TEM, SEM.  Azevedo  
et al. (2003) 

Bonamia 
 

   

B. ostreae  
Pichot et al. 1979 

Oyster  
Ostrea edulis 

California, Maine, 
USA; Europe 

Type species of Bonamia.  
TEM, DNA.  Pichot et al. 
(1979) 

B. exitiosa  
Hine et al. 2001 

Oyster  
Ostrea chilensis 

New Zealand TEM, DNA.   
Hine  et al. (2001) 

B. roughleyi  
(Farley et al. 1988) 

Oyster 
Saccostrea commercialis 

NSW, Australia TEM, DNA.  Farley  et al.  
(1988);  Cochennec-Laureau  
et al. (2003) 

Minchinia
 

   

M. chitonis  
(Lankester 1885) 

Chiton  
Lepidochitona cinereus 

English Channel, UK 
and France 

Type species of Minchinia.  
TEM, SEM, DNA.  
Lankester (1885);   
Ball (1980) 

M. dentali 
(Arvy 1949) 

Scaphopod  
Dentalium entale 

Mediterranean Sea, 
France 

TEM.  Arvy (1949); 
Desportes and Nashed, 
(1983) 

M. tapetis 
(Vilela 1951) 

Clam  
Ruditapes decussatus 

Portugal, NW Spain TEM, SEM, DNA.  Vilela 
(1950); Azevedo (2001) 

M. teredinis 
Hillman et al. 1990 

Shipworms  
Teredo spp. 

East Coast of USA TEM, SEM, DNA.  Hillman 
et al. (1990), McGovern and 
Burreson (1990) 

*No EM = no electron microscopy performed; TEM = transmission electron microscopy performed, SEM = scanning electron  
microscopy performed; DNA = some DNA sequence information available. 

Species Host Location Comments*/References 

H. nelsoni  
(Haskin et al. 1966) 

Oyster 
Crassostrea virginica, 
C. gigas 

East coast of North 
America,;California, 
USA; Japan; Korea; 

TEM, DNA.  Haskin  
et al. (1966); Perkins (1968) 

In addition to reports of new or unidentified species,
known species have been confirmed in other hosts or loca-
tions by DNA-based assays (see Sect. 5). Haplosporidium nel-
soni has been confirmed in the oyster Crassostrea gigas in
California, USA; Korea; Japan and France (Burreson et al.
2000; Renault et al. 2000; Kamaishi and Yoshinaga 2002),
and in the oyster Crassostrea virginica in Atlantic Canada
(Stephenson et al. 2003). Haplosporidium costale has been

reported in the oyster Crassostrea virginica from Long Island
Sound, New York, USA (Sunila et al. 2002).

The lists of named species or recent reports of haplosporid-
ians in Tables 1 and 2 suggest that haplosporidians are widely
distributed around the world in both marine and freshwater
environments. Unfortunately, the prevalence of infection
is often extremely low and spores are often not present in
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Table 2. Reports of unnamed haplosporidians.

infected hosts, making it difficult to obtain sufficient material
for species descriptions.

5 Development and implementation
of molecular detection assays

5.1 General considerations

Molecular detection assays for aquatic pathogens are be-
ing developed at an increasingly rapid rate. Unfortunately,
the assays often have not been validated against traditional
techniques, and most of these assays have not been thor-
oughly tested for inclusivity (Do they detect all strains of the
pathogen?) or specificity (Do they cross react with any other

organism?). The basic problem is that molecular detection as-
says too often are developed from a few sequences from a lim-
ited geographic range of the pathogen without a good under-
standing of the overall sequence variability within the species,
and they are often not sufficiently tested for specificity. Thus,
assays may not detect all genetic strains of the species through-
out its range or they may cross react with other species. In ad-
dition, it is important to realize that the polymerase chain reac-
tion (PCR) detects DNA and not necessarily a viable pathogen.
To confirm the presence of a viable pathogen, PCR should
be used in conjunction with other methods that allow visual-
ization of the pathogen in tissue, such as histology or in situ
hybridization with DNA probes.

Nonetheless, the development of sensitive and specific
molecular detection assays has greatly increased our ability to
rapidly and specifically diagnose important pathogens in the
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phylum Haplosporidia. The use of the assays has significantly
improved our understanding of the distribution and biology of
pathogenic members of the phylum.

5.2 Specific assays

As might be expected, the first molecular assays were de-
veloped for Haplosporidium nelsoni, the causative agent of
MSX disease in oysters along the east coast of North America.
The assays target variable regions of the small subunit rRNA
gene. A DNA probe sequence for H. nelsoni was identified
by Fong et al. (1993), and it was tested on H. nelsoni cells in
hemolymph smears. PCR primers (Stokes et al. 1995a) and a
DNA probe (Stokes and Burreson 1995) for H. nelsoni were
tested for sensitivity and specificity and have been used by
various researchers to identify H. nelsoni in oysters. The pres-
ence of H. nelsoni in Crassostrea gigas was verified using
these molecular detection assays (see Sect. 4). These molec-
ular diagnostic tools have more recently been used to ver-
ify H. nelsoni as the cause of epizootic oyster mortality in
Nova Scotia, Canada (Stephenson et al. 2003). In addition, the
primer sequences identified by Stokes et al. (1995a) have been
used by others to develop a competitive, quantitative PCR as-
say for H. nelsoni (Day et al. 2000) and a multiplex PCR assay
(Penna et al. 2001; Russell et al. 2004) that detects H. nelsoni,
H. costale and Perkinsus marinus.

DNA-based diagnostic assays have also been developed
for other haplosporidians. Specific PCR primers and a DNA
probe have been developed for Minchinia teredinis, a para-
site of shipworms, Teredo spp. along the east coast of North
America (Stokes et al. 1995b). Molecular diagnostic assays
have also been developed for Bonamia spp. These are dis-
cussed in detail in the paper by Carnegie and Cochennec-
Laureau in this issue of Aquatic Living Resources entitled:
Microcell parasites of oysters: recent insights and future
trends.

5.3 Discrimination of H. nelsoni and H. costale

Haplosporidian species are very difficult to identify in his-
tological sections if only plasmodia are present. Host and loca-
tion can be a good guide, but host and geographic range often
overlap among species. Identification of the oyster pathogens
Haplosporidium nelsoni and H. costale has been particularly
problematic in the absence of spores. These two species par-
asitize oysters along the east coast of North America and
they overlap in areas where salinity is consistently greater
than about 25 ppt. The plasmodia stages of these two species
cannot be reliably distinguished in histological sections. The
SSU rRNA gene for H. costale was first characterized by Ko
et al. (1995), who identified, but did not test, potential PCR
primer sequences. More recently, PCR primers that target a re-
gion of the SSU rRNA gene different from that of Ko et al.
have been identified and tested (Stokes and Burreson 2001).
These assays have been used in conjunction with molecu-
lar assays for H. nelsoni to differentially diagnose the two
species (Fig. 4). Interestingly, the use of DNA probes for both
species on the same oyster sample revealed mixed infections

Fig. 4. In situ hybridization (ISH) of consecutive histological sec-
tions of an oyster, Crassostrea virginica, with a mixed infection of
Haplosporidian nelsoni and H. costale. A. Hematoxylin and eosin
stain; two of the many obvious plasmodia in connective tissue indi-
cated by arrows. Scale bar = 100 µm and applies to all figures. B. ISH
with H. costale DNA probe of same area shown in A. Note H. costale
plasmodia in connective tissue (two indicated by arrows), but not in
epithelium. C. ISH with H. nelsoni DNA probe of same area shown
in A and B. Note H. nelsoni plasmodia in epithelium (two indicated
by arrows), but not in connective tissue. From Stokes and Burreson
(2001), with permission of Journal of Shellfish Research.

of H. nelsoni and H. costale that were not detected using his-
tology (Stokes and Burreson 2001). In addition, the molecu-
lar tools have been used to verify the presence of H. costale
in Long Island Sound, New York (Sunila et al. 2002). The
molecular tools were also used to identify plasmodia in oys-
ters sampled in October in Virginia and Long Island sound.
Because of the seasonal timing of the infection, the parasite
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Fig. 5. Conceptual model of Haplosporidium nelsoni – Crassostrea virginica interactions showing elements of its three principal components.

was thought to be H. nelsoni. However, DNA probes revealed
that the plasmodia were H. costale (Stokes and Burreson 2001;
Sunila et al. 2002). The presence of H. costale plas-
modia in October is unprecedented and challenges historical
criteria for the seasonality and epizootiology of this pathogen.
Earlier studies on the epizootiology of H. costale had estab-
lished the annual cycle as very predictable with clinical plas-
modial infections appearing in spring, and sporulation in May
and June. New infections occur before August 1st, but remain
subclinical and undetectable until the following spring (Couch
and Rosenfield 1968; Andrews and Castagna 1978). Numerous
samples of oysters from coastal Virginia collected from sum-
mer through winter over many years revealed no H. costale
infections (Andrews and Castagna 1978). It is unclear whether
this apparent change in seasonality is real or simply the result
of improved diagnostic sensitivity.

6 Numerical modeling of Haplosporidium
nelsoni

6.1 Overview

The review of H. nelsoni-caused MSX disease in 1996
(Ford and Tripp 1996) presented a large body of informa-
tion concerning infection cycles, the influence of environment
on prevalence and intensity, and the disease process. Many
of these data have since been integrated into a mathematical
model of host-parasite-environment interactions (Ford et al.
1999a; Paraso et al. 1999; Powell et al. 1999). The model is
based on one developed earlier for the other major eastern
oyster pathogen, Perkinsus marinus (cause of Dermo disease)
(Hofmann et al. 1995; Powell et al. 1996). Both models simu-
late infection cycles within the oyster and in oyster populations
under different environmental conditions, and forecast condi-
tions that can initiate and end epizootics in oyster populations.

The H. nelsoni model, like that of P. marinus, has three
components (Fig. 5). The core consists of a body of “govern-
ing equations” developed from observational and experimental
data: for instance the relationship of body size or temperature
to oyster respiration rates, the effect of salinity on parasite dou-
bling times, or the effect of parasite burden on oyster filtration

rates. Input data, or “forcing functions,” consisting of environ-
mental time series are then inserted into the equations. The
forcing functions for the oyster-parasite models are tempera-
ture, salinity, food, and turbidity. The model then generates a
series of simulations, based on the environmental time series,
which depict annual and multi-year prevalence and intensity
cycles of the parasites, and cumulative oyster growth and mor-
tality. The simulations are compared with the same parameters
actually observed under those conditions. The model can be
considered to be “validated” if the simulations generated using
input data independent from those used to construct the equa-
tions can reproduce the pattern and general levels observed in
the field. It should be noted that construction of the model
required that numerous assumptions be made about biolog-
ical relationships when direct experimental or observational
data were unavailable. Some assumptions were made based
on other biological systems or on general physiological prin-
ciples; others may be proxies for the real mechanism, which
provide the same answer simply by chance or because they
operate by a similar mechanism.

6.2 Temperature and salinity effects

Model simulations using a temperature and salinity time
series from lower Delaware Bay (where salinity is always high
enough to favor H. nelsoni activity) reproduced the observed
annual infection cycle at that location, indicating that under fa-
vorable salinity regime, the annual temperature cycle is the pri-
mary influence on seasonal prevalence patterns (Fig. 6) (Ford
et al. 1999a). One exception to this finding was that simulated
H. nelsoni doubling rates did not diminish in the autumn to the
same degree as was observed in the field. Thus, a “crowding
factor” was required to limit H. nelsoni doubling after a cer-
tain parasite density was reached. Interestingly, the P. marinus
model required a similar modification. In both cases, the mod-
ification was rationalized by supposing that at some point the
resources provided by the host to the parasites would become
limiting – as occurs in in vitro culture.

Although temperature was the dominate controlling fac-
tor in model runs under high salinity conditions, salinity be-
came an increasingly important factor when simulations were
made with data from a region that encompassed varied salinity
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Fig. 6. Typical observed annual cycle of Haplosporidium nelsoni
infection prevalence (A) and model simulation of the annual cy-
cle (B). Roman numerals designate increasingly advanced infection
categories: I – Epithelial infections; II – Subepithelial, local infec-
tions; III – Systemic infections.

regimes (Paraso et al. 1999). Simulations using time series col-
lected along the salinity gradient in Delaware Bay reproduced
the observed increased and decreased H. nelsoni infection lev-
els under low and high freshwater runoff conditions, respec-
tively. It has long been known that spring freshwater runoff is
an important control on H. nelsoni infection levels in many ar-
eas (Andrews 1964; Haskin and Ford 1982; Andrews 1983).
Thus, it was of interest to simulate hypothetical shifts in tim-
ing of the runoff. In Delaware Bay, a shift from March to either
February or May affected the mid-Bay only, where salinity re-
mained between 13 and 19 ppt (Paraso et al. 1999). A February
runoff reduced the spring prevalence peak and caused a com-
plete loss of systemic infections. In contrast, a May discharge
occurred too late to affect parasite proliferation in the spring.
In the upper Bay, the spring runoff eliminated the spring peak,
and in the lower Bay, it had almost no effect at all. Shifting the
timing of the runoffmade no difference in these regions.

The model was constructed to reflect year-to-year fluctu-
ation in H. nelsoni prevalence, associated with winter tem-
peratures, that have been documented in Delaware Bay (Ford
and Haskin 1982). This permitted simulations to be run under
various long-term climate change scenarios (Hofmann et al.
2001). One such set of simulations was run for a site in upper
Chesapeake Bay. The environmental time series from this site
was experimentally modified to simulate short and long peri-
ods of the highest and lowest recorded temperatures. Model
runs indicated that at sites where the parasite is already preva-
lent, relatively short periods of high temperature resulted in

only minor deviations from the average pattern because aver-
age temperatures are already high enough to support parasite
development. In contrast, the measured low temperature con-
ditions, applied for a single year, caused a dramatic reduction
in prevalence, which extended over a two-year period. Sim-
ulations using progressive cooling or warming conditions in-
dicated that winter temperatures consistently lower than the
3 ◦C could limit the long-term development of H. nelsoni in-
fections. These simulations support the hypothesis that recent
outbreaks of MSX disease in the northeastern United States
(Barber et al. 1997; Sunila et al. 1999) and eastern Canada
(Stephenson et al. 2003) may be related to the trend towards
warmer winters recorded over the last decade and a half (Cook
et al. 1998).

6.3 Spores and transmission

One of the intriguing aspects of the H. nelsoni model was
the need to simulate the production of two life forms – the
plasmodial stage, which is most prevalent, and the spore stage,
which develops almost exclusively in juvenile oysters (Barber
et al. 1991; Burreson 1994). Spore formation was modeled by
hypothesizing that plasmodia produce spores only when cer-
tain required factors are present in the environment within the
host oyster. This element of “environmental quality” was mod-
eled as function of a third parameter, oyster food availabil-
ity. Spore production was related to a threshold environmen-
tal quality, which occurs only in small oysters because of their
high growth efficiency. Whether relative growth efficiency has
anything to do with spore formation in juvenile oysters and its
rarity in adults is purely speculative. An alternative argument,
that some type of chemical or physical signal triggers sporula-
tion, could equally well be made. Nevertheless, as pointed out
by Ford et al. (1999a) “the concept of a threshold of some fac-
tor or factors remains a biologically defensible generalization
for the fact that H. nelsoni can complete its life cycle in small
oysters, but rarely in large ones”.

The model was also used to investigate transmission
(Powell et al. 1999). The actual mode of transmission is un-
known, as is the infective stage of H. nelsoni, and the model
does not assume that the spores produced in juvenile oysters
are directly infective to other oysters. Nevertheless, it provides
certain insights into likely characteristics of transmission be-
cause of the manner in which it had to be constructed to fit
field observations. For example, simulations based on in vitro,
salinity-caused mortality of H. nelsoni plasmodia (Ford and
Haskin 1988) resulted in prevalences in low salinity sites that
were greater than field observations (Paraso et al. 1999). Since
this suggested that mortality of plasmodia within infected oys-
ters was not sufficient to explain the observed relationship be-
tween infection levels and salinity in the field, an “infectiv-
ity” terms was added to the model, which made the infection
decrease with decreasing salinity such that at 15 ppt, the “ef-
ficiency of infection” is about 40% of that at 25 ppt. The need
for this element may truly reflect the fact that, at low salin-
ity, fewer successful infections result from contacts between
infective particles and the oyster. It might equally reflect a re-
duced density of infective stages with lowered salinity.
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Simulations also needed to replicate the observation that
changes in H. nelsoni prevalence occur rapidly and over large
areas of estuaries and that these changes occur independently
of local salinity. To reproduce this observation, the model em-
ploys bay-wide oscillations in infective particle availability
that are tied to multi-year salinity fluctuations. Simulations
mirrored long-term prevalence time series in both Delaware
and Chesapeake Bays (Powell et al. 1999). Since the model
does not connect oyster infection levels with subsequent trans-
mission, the linking of infective particle availability to long-
term salinity change suggests that a non oyster reservoir for
infective stages itself is influenced by salinity, or that salin-
ity is a surrogate for some other parameter such as river flow,
water residence time, or dilution.

Because attempts to demonstrate direct transmission of
H. nelsoni between oysters have consistently failed, specula-
tion has persisted that another host exists, acting either as a
reservoir for infective stages or as an intermediate host for
transmission (Burreson 1988; Haskin and Andrews 1988; Ford
and Tripp 1996). The modeling exercise highlighted the char-
acteristics of a potential host: 1) it must be capable of releasing
large number of infective particles rapidly and continuously
during the warm months; 2) normal temperature and salinity
variation cannot affect it; 3) it must be affected by cold win-
ters, but capable of recovery within a year or two; 4) it must
produce infective particles independently of H. nelsoni levels
in the oyster population; and 5) it must exist at relatively high
salinity (Powell et al. 1999). These characteristics are similar
to those proposed by Haskin and Andrews (1988) based on
field data.

6.4 Comparisons between H. nelsoni and P. marinus

The data used to construct the P. marinus and H. nelsoni
models, as well as the models themselves, provide interesting
comparisons between the two parasites. Both models operate
by causing parasites to multiply or to die in vivo and thus re-
quire quantitative data on parasite abundance rather than the
semiquantitative staging systems routinely used to assess in-
fection intensity of both parasites. A conversion between the
P. marinus infection stages and parasite abundance was devel-
oped using a process that frees the parasites from host tissues
so their densities can be determined (Choi et al. 1989). Be-
cause H. nelsoni plasmodia are more fragile and would not
survive a similar treatment, densities of this parasite were esti-
mated by counting parasites in a known volume (area counted
x section thickness) of representative tissue sections and ex-
trapolating those concentrations to the density of plasmodia
per unit weight (Ford et al. 1999a). On the other hand, both
parasites can be obtained in hemolymph samples and their
concentrations determined directly (Burreson et al. 1988; Ford
and Kanaley 1988). For both parasites, average maximum
densities in the hemolymph are in the range of 5 × 105 to
106 ml−1 and those estimated for the soft tissue are on the
order of 106 parasites g−1 wet weight, which also seems to be
the lethal level as higher densities are rarely found in living
oysters. As mentioned earlier, models for both parasites re-
quire a “crowding factor”, which slows the replication rate
when parasite densities become high. The parasite density at

which crowding begins to influence P. marinus growth, ob-
tained from field and experimental data (Saunders et al. 1993;
Ford et al. 1999b), is similar to that estimated for H. nelsoni by
fitting model simulation to disease prevalence and intensity: 1
to 7×105 parasites g−1 wet weight. The resemblance of thresh-
old values suggests fundamental similarities in the per-parasite
use of nutrients from, and the damage caused to, the host oys-
ter by each parasite. Interestingly, the limit of consistently re-
liable detection for P. marinus, using the standard Ray/Mackin
method of incubating tissues in Fluid Thioglycollate Medium,
is estimated to be 103 to 104 parasites g−1 wet weight (Choi
et al. 1989; Bushek et al. 1994), which is similar to that calcu-
lated for H. nelsoni, using tissue section histology (Ford et al.
1999a).

In the model itself, the in vivo proliferation rate of
H. nelsoni is based on a Q10 of 3.2. This value was required
to match proliferation rates at elevated temperature, inferred
from prevalence increases. It is unusually high and implies
that H. nelsoni is very sensitive to temperature change. By
comparison, a more typical Q10 of 2 provided adequate dou-
bling in P. marinus simulations (Hofmann et al. 1995). Thus,
under condition of rising temperature, H. nelsoni proliferation
rates should increase faster than those of P. marinus and under
falling temperatures, they should decrease faster. When super-
imposed, however, the modeled doubling times for the two par-
asites indicate that H. nelsoni has the higher proliferation rate
across the entire temperature range over which both co-exist,
approximately 0 to 35 ◦C. These comparisons are consistent
with field observations showing that when oysters are exposed
to both parasites in the field, H. nelsoni typically begins killing
before P. marinus does (Andrews 1967; Chintala et al. 1994).
A similar observation would result from a relatively higher
dose of H. nelsoni, and although densities of P. marinus have
been measured in the water and dose-response curves gener-
ated (Ragone Calvo et al. 2003), comparable information is
unavailable for H. nelsoni.

7 Recent changes in the distribution
and intensity of MSX disease outbreaks

7.1 History of MSX disease outbreaks

The first recorded disease outbreak caused by H. nelsoni in
eastern oysters occurred in the spring of 1957 in Delaware Bay,
New Jersey, USA (Haskin et al. 1966). In 1959, H. nelsoni be-
gan causing mortalities in Mobjack Bay, a subestuary of lower
Chesapeake Bay, and the parasite subsequently spread upes-
tuary during a drought in the mid 1960s (Andrews and Wood
1967; Farley 1975). The parasite was found in oysters along
the Atlantic coasts of New Jersey, Maryland, and Virginia in
1958 and 1959, and in 1960 it was reported on the Connecticut
shore of Long Island Sound (Haskin and Andrews 1988). In
1965, it was found in Great South Bay on the south shore of
Long Island, New York (Andrews and Wood 1967; Haskin
and Andrews 1988) and in 1967 in Wellfleet Harbor, on the
north side of Cape Cod, Massachusetts (Krantz et al. 1972).
In the 1980s, the reported range of the parasite was extended
along the entire east coast of the United States, from Maine to
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Florida (Haskin and Andrews 1988; Hillman et al. 1988; Kern
1988; Lewis et al. 1992). More importantly, epizootics with
severe mortality occurred in Oyster Bay on the north shore
of Long Island, New York and in Southern Massachusetts
during this decade (Haskin and Andrews 1988; Matthiessen
et al. 1990). Between 1984 and 1987, oyster production from
the Connecticut shore of Long Island Sound dropped from
244 000 bushels to 70 000, suggesting that the Long Island area
epizootic may not have been localized to Oyster Bay (Sunila
et al. 1999). At the same time, H. nelsoni infections spread
and intensified in Chesapeake and Delaware Bays (Haskin and
Ford 1986; Burreson and Andrews 1988). In the 1990s, further
epizootics with heavy mortalities occurred in southern Maine
(Barber et al. 1997) and Long Island Sound (Sunila et al.
1999), and in 2002 H. nelsoni caused localized heavy mortal-
ities in the Bras d’Or Lakes region of Nova Scotia, Canada
(Stephenson et al. 2003). In Chesapeake Bay, the decade of
the 1990s has seen continued spread of both H. nelsoni and
P. marinus into regions of the upper Bay and tributaries where
they have infected susceptible oysters and caused heavy mor-
talities (Tarnowski 2002; Ragone Calvo and Burreson 2003)

The demonstration by molecular detection that H. nelsoni
is present in the Pacific oyster, C. gigas in Asia and the
western United States (Burreson et al. 2000; Kamaishi and
Yoshinaga 2002) indicates that H. nelsoni was introduced from
the Pacific; however, neither the mechanism nor the timing
is known. It is usually inferred that the parasite entered the
United States in shipments of infected C. gigas made by oys-
ter growers or scientists. Deliberate introductions might well
have been the source, but other possibilities must be consid-
ered. Particularly noteworthy is the great increase in ship tran-
sit between Pacific and Atlantic ports that occurred during and
after World War II. Shipping could have introduced H. nelsoni
via infected C. gigas attached to ship’s hulls or via release of
H. nelsoni spores in the discharge of ballast water. The spore
is a thick-walled stage in the life cycle of H. nelsoni. Its role in
transmission is not known, but the spore in other species is typ-
ically a transmission stage that can remain “dormant” for long
periods and that is highly tolerant of environmental extremes.
Further, it is often concluded that H. nelsoni was introduced
into Delaware Bay and then “spread” to Chesapeake Bay and
other areas. However, the time required for an epizootic to oc-
cur after an introduction has taken place is unknown and the
finding of H. nelsoni from Long Island Sound to Chesapeake
Bay within the space of 3 years, makes it difficult to ascertain
where the “first” introduction occurred, or even if there was
a single introduction only. Certainly, the parasite must have
been present for some time before it caused epizootics. In fact,
it was not until the mid 1980s, more than 20 years after it was
first detected in Long Island Sound, that epizootic mortalities
were recorded in the region.

7.2 Climate-related intensification and spread of MSX
disease outbreaks

Changes in climate are sometimes linked to disease out-
breaks (Harvell et al. 1999; Harvell et al. 2002), including the
range extension of Dermo disease epizootics into the north-
eastern United States (Ford 1996). Given the known sensitivity

of H. nelsoni to salinity and temperature, it is reasonable to ex-
amine the role of these parameters in the apparent northward
“spread” of MSX disease outbreaks of the 1980s and 1990s,
as well as the intensification of the disease in Chesapeake Bay.
In the Chesapeake Bay and its tributaries, salinity gradients
are strong and large areas were formerly protected from high
H. nelsoni infection levels by freshwater runoff that kept salin-
ities low (Andrews 1968). Since the early 1980s, however, a
series of extreme, multi-year droughts has increased salinities
and permitted the spread of H. nelsoni, as well as P. marinus,
into new areas of the estuary (Burreson and Andrews 1988;
Smith and Jordan 1993; Burreson and Ragone Calvo 1996;
Tarnowski 2002; Ragone Calvo and Burreson 2003). The re-
sult has been widespread and heavy oyster mortalities, and
a severe loss of production of this commercially important
species. In Delaware Bay, too, H. nelsoni also spread upbay
during a severe drought in the mid-1980s (Haskin and Ford
1986), but with apparently different consequences (see below).
In most of the other oyster-growing waters of the northeast,
salinities are at least 20 ppt, so that low salinity should not
have been a factor limiting H. nelsoni proliferation, although
drought-associated lack of flushing during recent periods of
low river flow might allow concentration of infective stages.

Alternatively, a change in temperature regime might ex-
plain the northern MSX disease outbreaks, as suggested by the
mathematical modeling exercise described above (Hofmann
et al. 2001). Clearly, temperatures have been increasing in this
area over the past two decades and it is particularly notice-
able in higher winter temperatures (Karl et al. 1996; IPCC
2001), which would relax the control that cold winters appear
to have on H. nelsoni. Hofmann et al. (2001), however, pointed
out an inconsistency in the argument that low temperature had
been the mechanism preventing MSX disease outbreaks in the
north. If this were true, why have there been no outbreaks in
the southeastern United States, where the parasite is present,
but at relatively low prevalence and not associated with large-
scale mortalities (Lewis et al. 1992; Bobo et al. 1996). Per-
haps prolonged high temperatures play a role (Ford and Haskin
1982), but there is no evidence that elevated temperature in-
hibits H. nelsoni. Alternatively, some condition other than a
direct temperature effect is unfavorable or perhaps a second
host is scarce in this region.

7.3 Decline in MSX disease prevalence in Delaware
Bay associated with natural resistance

The epizootic of 1957-1959 killed about 90−95% of all
oysters in lower Delaware Bay, where salinities are nearly
always favorable for H. nelsoni, and mortalities were esti-
mated to be 50−60% in the lower-salinity beds (Haskin et al.
1966). This tremendous selective mortality resulted in mea-
surably increased survival of the native Delaware Bay oyster
population, which was comparable to that after one generation
of selective breeding (Haskin and Ford 1979). After the initial
improvement, however, no further change was documented for
nearly 30 years because little or no additional selective mortal-
ity occurred on the upbay beds where most of the oysters were
located. In the mid 1980s, drought allowed H. nelsoni to pene-
trate far upbay. Prevalences reached up to 80%, the highest on
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Fig. 7. Mean autumn prevalence of Haplosporidium nelsoni (considered to be a measure of the infection pressure experienced by oysters over
the summer) in lower Delaware Bay and mean winter (December – March) air temperature at nearby Millville, New Jersey, USA. Note the
persistence of prevalences of 30% or less since 1988, despite high temperatures.

record. Annual mortalities over most of the upper Bay for the
two-year period of 1985-86 were two or more times that of the
preceding years and the heaviest since the initial mortalities in
1957-59 (Haskin and Ford 1986).

From the onset of the H. nelsoni epizootic in the late
1950s through the late 1980s, H. nelsoni infection pressure,
as measured by autumn infection prevalence in downbay oys-
ters, showed a cyclic pattern in which the years with low-
est prevalence tended to follow cold winters (Fig. 7). During
this period, autumn prevalence ranged from 50 to 90%. After
1989, however, prevalence rarely exceeded 30%, even during
a period of above-average temperatures. An initial hypothe-
sis that this change was linked to the onset of a Dermo dis-
ease epizootic in the oysters in 1990 was weakened by the
knowledge that both parasites were simultaneously heavy in
Chesapeake Bay and Long Island Sound (Sunila et al. 1999;
Ragone Calvo and Burreson 2003; Ragone Calvo et al. 2003).
An alternative explanation, that the heavy mortalities in 1985-
86 further increased resistance to MSX disease in the native
Delaware Bay oysters, is supported by two pieces of evidence:
1) imported susceptible stocks became heavily infected with
H. nelsoni, whereas nearby wild oysters had few infections
and 2) PCR-based molecular detection demonstrated the pres-
ence of H. nelsoni in or on gills (the initial infection site) of
oysters throughout the Bay even though few infections be-
come histologically detectable (Ford 2002). Although these
results are consistent with the argument that native Delaware
Bay oysters have developed a very high degree of resistance
to the proliferation of H. nelsoni (although not necessarily to
infection itself) and consequently to the development of MSX
disease, the data are scattered among various types of studies.
The standardized and consistent testing that documented the
“first” step in the development of resistance (Haskin and Ford
1979) has yet to be done.

7.4 Selective breeding for dual disease
(MSX and Dermo) resistance

The spread and intensification of both MSX and Dermo
disease outbreaks during the past decade, and the finding that
strains selected for resistance to MSX disease (Haskin and
Ford 1979) were not resistant to Dermo disease (Burreson
1991), has driven several, ongoing, programs to develop dual
disease-resistant oysters. The programs have relied on selec-
tive breeding: oysters have been exposed to natural infections
and the survivors used to produce the following generation
(DeBrosse and Allen 1966; Ragone Calvo et al. 2002; Guo
et al. 2003). All of the projects have employed oysters that
had first undergone extensive selection by H. nelsoni-caused
mortality, either as wild stocks or in a selective breeding pro-
gram, and were subsequently exposed to P. marinus infection.
Results indicate that the oysters have become more resistant
to P. marinus, observed mostly as a delay in the development
of advanced infections, while retaining a high degree of resis-
tance to the development of H. nelsoni infections.

7.5 Testing of non native oyster species for resistance
to H. nelsoni infection in Chesapeake Bay

Over the past two decades, intensification of H. nelsoni,
and particularly P. marinus, infection pressure in Chesapeake
Bay has lead to a decline of over 90% in the production of
C. virginica (United States National Marine Fisheries Service
2003). The loss of the native oyster both to the fishery and
for the ecological services it provides (e.g., water filtration and
habitat), has led to interest in the possible introduction of a
non native oyster that could survive in the face of the two dis-
eases. Two species, both from the Asian Pacific, have been
tested in separate trials: C. gigas and C. ariakensis. Both were
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deployed at duplicate low (<15 ppt), medium (15−25 ppt),
and high (>25 ppt) salinity sites in lower Chesapeake Bay and
along the Atlantic coast of Virginia. Growth, survival, and in-
fection levels were compared with those of C. virginica de-
ployed at the same sites (Calvo et al. 1999; Calvo et al. 2001).
To minimize the potential for unintended reproduction, only
triploid non natives, which are largely sterile, were used in the
tests. Crassostrea gigas grew faster and survived better than
C. virginica at the high salinity sites, performed similarly at
the medium salinity sites, and did less well at the low salinity
locations (Calvo et al. 1999). Crassostrea ariakensis outper-
formed the C. virginica at all locations (Calvo et al. 2001).
At high salinity sites in both trials, C. virginica became heav-
ily infected with P. marinus (up to 100%) and to a consider-
ably lesser degree (maximum of 16 to 25%) with H. nelsoni.
Both C. ariakensis and C. gigas also acquired P. marinus in-
fections (up to 60−67%, respectively), but the infections re-
mained mostly light and non lethal. No H. nelsoni infections
were detected in either of the non native oysters. It should be
recalled that H. nelsoni has been detected in C. gigas in the
Pacific region, but always with very large sample sizes to de-
tect prevalences that averaged <1% (Kern 1976; Kang 1980;
Burreson et al. 2000).
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