
A Generic Framework for Environmental

Modeling and Simulation∗

Fabrice Bernardi, Jean-Baptiste Filippi, Jean-François Santucci

University of Corsica, SPE Laboratory, UMR CNRS 6134

B.P. 52, 20250 Corte, France

{bernardi, filippi, santucci}@univ-corse.fr

Abstract – Because of their complexity, natural
systems are often studied using various modeling
paradigms. This paper describes a generic framework
for natural systems studies allowing the modeler to use
all these paradigms in a unique environment. This
framework is composed of a DEVS based modeling and
simulation environment called JDEVS, and a models li-
brary called HMLib. The associated formal framework
ensures that models are reusable and interoperable com-
ponents with well-defined interfaces. Integration is per-
formed using a Web based connector allowing a dis-
tributed work. The coupling between these two tools pro-
vides a powerful framework focusing on models interop-
erability and reusability.

Keywords: Discrete event simulation, natural systems
modeling, modeling and simulation environment, mod-
els library, interoperability, reusability.

1 Introduction

Natural systems are among the most difficult systems
to be modeled and simulated. On the one side, they are
often acting over large spatial scales, long time frames
and heterogeonous units of study. On the other side, ex-
periments can be very complex and very hard to setup.
To face these problems, modelers belonging to a same
team often use different specific modeling paradigms,
thus different specific modeling and simulation environ-
ments that are often pieces of software they themselves
designed. They want also to decompose a given prob-
lem into more understandable sub-problems that can be
solved using reusable models [2, 3].

DEVS (Discrete EVent System specification) is a set-
theoretic formalism that includes a formal representa-
tion capable of mathematical manipulation just as dif-
ferential equations serves this role for continuous sys-
tems. Our major motivation in using DEVS as an
unifier paradigm is that H. Vangheluwe demonstrates
recently in his meta-modeling approach that many
paradigms [16, 15] (Petri-nets, ODE, State Charts,

∗0-7803-7952-7/03/$17.00 c© 2003 IEEE.

Bond Graphs,...) can be easily mapped in a DEVS rep-
resentation. We propose in this article a DEVS (Dis-
crete EVent Specification, [19, 20, 16]) based frame-
work for natural systems modeling and simulation focus-
ing on modeling paradigms interoperability and mod-
els reusability. The whole framework is constituted of
a generic modeling and simulation environment called
JDEVS associated with a hierarchical models library
called HMLib. It is based on the classical DEVS for-
malism and a new paradigm called Feedback-DEVS al-
lowing an empirical modeling of complex systems. We
think that our approach can dramatically simplify the
modelers’ work since they use only one modeling and
simulation environment with its integrated storage ar-
chitecture to perform their complex modeling works.

JDEVS has been developed for over three years and
enables object-oriented, component based, GIS con-
nected, collaborative, visual simulation model develop-
ment and execution. In our framework, it is associated
with a hierarchical models library alllowing reusability
of previously validated models.

2 The JDEVS Theoretical

Foundations
In general systems theory a system is defined by its

inputs, outputs, states, time base and transition func-
tions to provide new states and outputs from inputs.
Like continuous systems, discrete event systems are a
way to express such system. In discrete event systems,
inputs can occur at any time, while in continuous sys-
tems inputs are piecewise continuous function of time.
The discrete event representation of time is more general
than the discrete time steps used continuous systems. It
gives the ability to fix time steps by specifying a given
time for a model to stay in a stable state, an activation
event being generated for the model for every fixed time
step. The simulation is then possible for models working
at different time steps as they will share the same event
list that is sorted chronologically. Having this represen-
tation of the system could also save simulation time. In
discrete event simulation, if the state of the system is
stable, it may not be evaluated until an event arrives,

while the state of a model would be evaluated at every
time step in a discrete time simulation. The interest of
using discrete event simulation is further discussed in
other modeling environments that uses discrete events
such as [14] or SELES [10].

DEVS is well adapted to be implemented in an object
oriented framework, thus creating a component based
modeling and simulation environment. It is also pos-
sible to generate a continuous time simulator out of a
system modeled using the DEVS formalism as all DEVS
models already maps to abstract simulators also defined
in the DEVS framework. DEVS formalism introduces
two kind of models, the basic models from which larger
ones are built, and coupled models (also called network
of models) that connects those models in a hierarchical
fashion. Like in general systems theory, a DEVS model
contains a set of states and transition functions that are
triggered by the simulator [19].

We will not describe in detail the abstract simula-
tors of DEVS models that can be found in [18]. Basi-
cally each basic model has a ”Simulator” attached to it
that trigger the execution of the functions by sending
and receiving messages to a ”Coordinator” in charge
of its coupled model. A ”Coordinator” is attached to
every Coupled Model and dispatch the events to their
destinations. Finally, at the top of the simulation tree
stands the ”Root Coordinator” that has a global event
list where all the input and generated events are stored
and sorted chronologically until they are processed by
a simulator or outputted. All these entities (Root, Co-
ordinators and Simulators) are connected hierarchically
in a simulation tree.

3 The HMLib Models Library
HMLib is a models library structured according to

two paradigms: the application domains and the ab-
straction levels. Its three main characteristics are a
storage independence from the considered application
domain, the management of an inheritance hierarchy
between the stored models, and the management of ab-
straction links between stored models. The genericity
of use is performed through a dissociation of the con-
tents of the model to be stored from its format using
the context notion.

3.1 Context-in and

Context-out Models

A storage architecture and a modeling and simulation
environment perceive a same model in a totally differ-
ent way. In the first case, the model is passive. It can
not handle external entreaties. In the second case, the
model is active since it is placed in a context of use. It
can handle external entreaties arriving on its commu-
nication ports. Building a model storage architecture
appears then as building an architecture allowing the
representation of models out of their context of use.

In order to manage these two points of view, we in-
troduce two notions, context-in and context-out models:
A context-out model is an abstraction of a model. It is
defined or encapsulated in a special format allowing it
to be stored in a library. All the stored models share
this special format.A context-in model is a context-out
model extracted from its library and directly usable in
its modeling and simulation environment. This extrac-
tion is in fact a format conversion.

The context-out format must be able to be adapted to
all the model forms that the library designer could have
to manage. This point implies very precise formal de-
scriptions of the elements able to be stored in a library.
The notion of context is very important in our approach
since it dictates all our design process, allowing us for
instance to introduce different storage elements totally
independent from any modeling and simulation environ-
ment.

3.2 HMLib Concepts

The storage independence of the library is performed
using a Domain Parser [8]. We call Domain Parser an
object able to be used in two distinct modes, and able
to analyze or to create a file that describes a context-
in model. A Domain Parser relies upon a separation
methodology of the extent of the model from its de-
scription format. Thus, the selected approach consists
in defining a separation methodology for each domain in
a library. Using such a methodology, a Domain Parser
allows the user to transform a context-in model to a
context-out one. The main advantage of this approach is
that, never mind the model is, it can be placed context-
out. Our implementation of a Domain Analyzer is based
on the Builder Design Pattern used in order to “separate
the construction of a complex object from its represen-
tation so that the same construction process can create
different representations”. In our implementation, we
use the XML language [17] in order to define context-
out models.

Inside HMLib, the abstraction hierarchy management
is performed using the notion of Abstraction Matrix.
The values of this square matrix are composed by the
difference between the two abstraction levels of two
models. If models are the same, the value is 0, the
same as if they have no “abstraction relationship”. We
provide also the management of transfer functions allow-
ing the modeler to perform automatically the necessary
changings on the model directly in the modeling and
simulation environment.

In order to avoid a properties repetition inside a same
kind of models, a models library must deal with an in-
heritance between the stored models. This inheritance
between a parent model and its children allows to store
these shared properties inside some special models (par-
ent models), dramatically simplifies the children mod-
els, and facilitates the maintenance of the whole library.

Furthermore, this inheritance hierarchy inside a library
provides all the classical benefits of object inheritance:
automatic properties transmission, methods overloading
if components are described using algorithmic functions.
For R.C Rosenberg, “the importance of a good models
library is that the model designer can be supplied with
reasonable alternatives”. The choice between these al-
ternatives can be strongly facilitated if the inheritance
hierarchy is structured in a smart way. In our architec-
ture, the management of inheritance between models is
performed using the characteristics of XML.

4 Implementation of

the Framework
The whole framework has been implemented using an

object-oriented approach and the Java language. The
two parts (JDEVS and HMLib) have been designed sep-
aratly and then coupled using a network based connec-
tor.

4.1 JDEVS Object-Oriented

Implementation

JDEVS is composed of four independent modules
written in Java. A simulation kernel, a graphical block
modeling interface, a connection to a GIS and the sim-
ulation panels. They can interact with other modules
that are already developed and some elements, includ-
ing the Java simulation kernel, might be changed for
better performance. Figure 1 describes the general ar-
chitecture of JDEVS. We can see in this picture how
the models library is integrated in the modeling and
simulation environment. All JDEVS components can
be stored in HMLib. These components can be JDEVS
simulable models or JDEVS graphical components de-
scribed using the XML language.

4.1.1 Modeling and simulation kernel

The modeling and simulation kernel is a Java imple-
mentation of the DEVS formalism. The DEVS seman-
tics is yet mapped to a set of Java instructions until
DEVS become the SISO standard currently developed
by the DEVS standardization group [13]. Basic and
coupled models are described as follow.

4.1.2 Basic DEVS models definition

The DEVS formalism is offering well defined inter-
faces for the description of systems. The concept of
model abstraction permits to use models that are coded
in various object oriented languages. Those models are
then accessed thought a software interface specified in
DEVS with Java Remote Method Invocation (RMI).
Modeling basic models in JDEVS is done directly in
Java. To help the modeler in this task, the GUI gener-
ates a Java skeleton, stores it in the models library and
compiles it.

4.1.3 Coupled models description in JDEVS

If the user wants to interact directly with the simula-
tion engine, the coupling between models can be made
directly in a Java class. However, with the use of the
GUI, it is possible to graphically construct the model
structure that is saved in XML [6].

4.1.4 Hierarchical block modeling

and simulation interface

The graphical user interface is the modeling front-
end of the toolkit and, using this front end, the user
can graphically create, compile, link and store basic and
coupled models, debug the resulting model and perform
the simulation. Distributed modeling is made using the
GUI, if different modelers works on sub-coupled mod-
els and store them in the same library, it is possible
to federate those models in another graphical modeling
client.

4.1.5 GIS interconnection

[9] have detailed various GIS coupling methodologies.
To keep the modular architecture of the toolkit, the con-
nection to the GIS is made through a loose coupling. In
this kind of coupling, the data is exported from the GIS
to the spatial manager, and results are imported back
after the simulation. Input/Output operations are per-
formed via the Java software library that supports the
Arcview, ASCII and GML (Geographic Markup Lan-
guage) formats.

4.1.6 Cellular simulation panels

The cellular simulation panels are the experimental
frames for the cellular models. The panels share the
same simulation engine than the other modules so they
have access to the general input and output ports of the
models loaded in the JDEVS GUI when both the GUI
an the panels are launched. Coupling between ports
of a cellular and a hierarchical block model is defined
in a XML parameter file similar to the coupled model
description file. Yet, the parameter file must be written
in a text editor, but we have planned to simplify the
coupling procedure in the next version of JDEVS.

4.2 JDEVS Models Management in

HMLib

JDEVS and HMLib have been designed separatly, but
they can act together as a single application using a
network based connector. This connector is defined in
the HMLib theoretical specifications as a set of object-
oriented interfaces. The primary goal is to define a pos-
sibility for a modeling and simulation environment to
access the storage engine through a network using a
Java servlet approach [11, 12, 1]. These interfaces have
been implemented in JDEVS, and the whole framework
enables a collaborative and Web based work.

Graphical Diagram Graphical Spatial

Domain Specialist

Model Interface Model Interface

XML File

Simulation Kernel

Modeler

Interactive Simulation & Visualization Interface

HMLib Models Library

JDEVS Component

GIS Interface

Raster/Vector Maps

Programmer

Figure 1: JDEVS toolkit architecture. Diamonds corresponds to human interactions, squares corresponds to the
modules and circles to the interchange formats.

The basic idea of our approach is to follow the clas-
sic three tiers architecture. We use a Java application
server coupled with a Web server, and a set of servlets
[7]. These servlets can be directly accessed by JDEVS
using a network socket.

5 Application:

Fruit-fly Propagation
The section use a study of the geographic distribu-

tion of adult Mediterranean fruit fly, or medfly, to illus-
trate the main advantages of using JDEVS : coupling
and reusability of models in a multi-paradigm frame-
work. The purpose of this application is to illustrate
the new modeling scenarios possible by the use of the
formal framework to couple two different models in na-
ture. With the first model we show an implementa-
tion of a cellular model in JDEVS and give an overview
of the effort needed to implement such model in the
framework. The second model, a hierarchical block of
Feedback-DEVS model, illustrates the integration of a
neural network in a DEVS basic model. One is a model
of spatial organization, the second is a non spatial em-
pirical model. NevesectionApplication, Fruit-fly propa-
gation The section use a study of the geographic distri-
bution of adult Mediterranean fruit fly, or medfly, to il-
lustrate the main advantages of using JDEVS : coupling
and reusability of models in a multi-paradigm frame-
work. The purpose of this application is to illustrate
the new modeling scenarios possible by the use of the
formal framework to couple two different models in na-
ture. With the first model we show an implementa-
tion of a cellular model in JDEVS and give an overview
of the effort needed to implement such model in the

framework. The second model, a hierarchical block of
Feedback-DEVS model, illustrates the integration of a
neural network in a DEVS basic model. One is a model
of spatial organization, the second is a non spatial em-
pirical model. Nevertheless, the last part of this section
shows that the coupling of these models is greatly sim-
plified because the models are sharing the same simula-
tion engine and the same interfaces.

5.1 The Mediterranean fruit fly

The medfly is one of the most serious economic pests
of the fruit and vegetables. If control methods are not
used, medfly can infest 100 percent of susceptible fruit
such as apricots, pomelos and peaches and to a lesser
extent, fruits such as apples and clementines. For sup-
pressing and eradicate population of the medfly, a spe-
cific and environmentally non-polluting method of med-
fly control called SIT (sterile insect technique) is used
increasingly. This technique consists in release a large
number of sterile males over the sufficient period time
at the best location. One of the main objective of the
model is to estimate geographical distribution of adult
medfly. This model is to be used for guidance in imple-
menting eradication procedures and preventing spread
to other locations. The onset of medfly activity is tem-
perature dependent. In southern France (Corsica is-
land) medfly is active in late spring, summer and au-
tumn, when temperatures exceed an average climatic
condition. Medfly can over the winter as adults, as eggs
and larvae (in fruit), or as pupae in the ground. As
temperatures increase in spring, adults begin to emerge
from the ground and flies become active.

5.2 Cellular spread model

To manage potential geographical distribution of the
Mediterranean fruit fly, it is necessary to model the phe-
nomenon that alter those phenomena in order to quan-
tify and qualify them. Figure 1 shows a simulation of
the model developed to quantify medfly population in
specific area. Like any other basic model, this cellu-
lar spread model is described in one file, the atom cell
description file. The behavior is described in program-
ming code. The skeleton for the file is generated by the
GUI, it contains the four functions of the basic model as
well as the following state set : <X{N, S, E, W, in1, in2
},Y{N, S, E, W, out},S{host, ripe, Neggs, Nlarvae, Npu-
pae, Nadults, Aeggs, Alarvae, Apupae, Aadults, Afood
}> where :

N, S, E, W corresponds to the North, South, East and
West ports of their neighborhood ;
in1, out corresponds to the temperature of the day and
to the number of flies exchanged ;
in2 corresponds to values of the population at each stage
of the life cycle (eggs, larvae, pupae, adults) ;
host : the species hosts trees apricots, pomelos,
peaches, apples, clementines, other. other corresponds
to a medfly insensitive cell ;
ripe = false, true depends on the ripening period of the
host tree ;
Neggs, Nlarvae, Npupae, Nadults are values to the pop-
ulation at each stage ;
Aeggs, Alarvae, Apupae, Aadults corresponds to the av-
erage oldest of the population at each stage ;
Afood correspond to the average day of diet for adults
population.

Two specials functions that the specialist (ecologist)
has to implement in order to have his model working
must be define : scattering() and development(). The
first function calculates the number of adults flies waste
by the cell, the second function describe the biological
model of the life cycle corresponding to interactions for
each of the four types of stages. This two functions are
adapted from CLIMEX model [2]. In this model :

• The λ function (output) is sending to the neighbor-
ing cells a quantity of adults flies given by the scat-
tering() function and its Aadults and Afood values.
This function is called by the simulator in case of
activation.

• The δext function (input) receives a number of
adults from the neighboring cells, a temperature
of the day or the values of the population at each
stage and sends an activation message.

• The δint function (internal) is called when the cell
receives an activation. It updates the states ac-
cording to the function development() if the mes-
sage is receives on the in1 port, initialise the Nvalue
if the message is receives on the in2 port. In the

Figure 2: A Generated Cell Model.

other case the values Nadults, Aadults and Afood
or changes taking into account the values received
by the activation message.

• The ta function (time advance) defines the time
to the next self-activation of the cell according to
the number of adults (thus defining the propagation
speed).

Once the behavior of the basic cell model is described,
the only work that has to be done is in the data prepro-
cessing into the GIS (generation of ASCII raster maps
of the initials stages : number of the flies at each stage,
host type of the cell, choice of cell size). The 2d/3d
simulation panel serves as the experimental frame of
the simulation of these phenomena. Java3D library is
used to paint the outputs of 2d or 3d cellular models.
The elevation map exported from the GIS permits to
reconstruct a 3d world. To interact with the model, it
is possible to click on the map during the simulation
run and add flies to a specific cell. Figure 2 present a
generated cell model.

6 Conclusion and Perspectives of

Work
This paper has presented a generic framework for nat-

ural systems studies composed by a modeling and sim-
ulation environment called JDEVS coupled with a hier-
archical models library called HMLib.

Because it is based on a DEVS based formal frame-
work, JDEVS provides a different approach than the
existing tools. In terms of flexibility and genericity of
use, it can provide the high level of a general formal-
ism. In terms of features, abstraction, components and
interfaces, JDEVS provides the advantages of a domain
specific modeling environment. With JDEVS, it is also
possible to couple and simulate different kinds of models
without having to specify how those models should be
simulated.

The HMLib models library is built on the concepts
of context, abstraction hierarchy and genericity of use

[4]. It allows the modeler to perform its model design
very quickly, once models have been introduced stored.
We provide also this user with a set of connectors al-
lowing him to process his models through a Web based
approach [5, 7]. We have two main objectives for this
work. First, we are currently studying how to manage
the abstraction hierarchy to store the various informa-
tion levels used in Geographical Information Systems.
We want to see how we can perform automatic abstrac-
tion transformations between stored models using the
context-out models. Secondly, we are beginning also to
study how this context-out format could allow us to per-
form domain transformations between stored models.
We think that this point would be a great improvment
to our approach since, for example, the transformation
needed to make an a model understandable by JDEVS
would be performed automatically.

References
[1] K.Z. Ahmed and C.E. Umrysh. Developing En-

treprise Java Applications with J2EE and UML.
Addison-Wesley, 2001.

[2] O. Balci, A.I. Bertelrud, C.M. Esterbrook, and
R.E. Nance. Developing a Library of Reusable
Model Components by Using the Visual Simula-
tion Environment. In Proceedings of the SSC’97,
1997. San Diego, CA, USA.

[3] D. Batory and S. O’Malley. The Design and Imple-
mentation of Hierarchical Software Systems with
Reusable Components. ACM Transactions on Soft-
ware Engineering and Methodology, 1992.

[4] F. Bernardi, J.B. Filippi, and J.F. Santucci. XML
Object-Oriented Models Libraries with Web-Based
Access Capacities. In Proceedings of ICSSEA 2001,
2001.

[5] F. Bernardi and J.F. Santucci. Developing a Web-
Based Models Library for a DEVS Modeling and
Simulation Environment. In Proceedings of AIS
2002, 2002.

[6] F. Bernardi and J.F. Santucci. Model design us-
ing hierarchical web-based libraries. In Proceedings
of the 39th conference on Design automation, vol-
ume 1, pages 14–17, 2002. New Orleans, USA.

[7] F. Bernardi and J.F. Santucci. Model Design Using
Hierarchical Web-Based Libraries. In Proceedings
of DAC 2002, 2002.

[8] F. Bernardi and J.F. Santucci. A domain parser for
a generic models library. In Proceedings of ISCA
CATA 2003, volume 1, 2003. Honolulu, Hawäı,
USA.

[9] J.E. Brandmeyer and H.A. Karimi. Coupling
methodologies for environmental models. Envi-
ronmental Modelling and Software, 15(5):479–488,
2000.

[10] A. Fall and J. Fall. A domain specific language
for models of landscape dynamics. Ecological mod-
elling, 141(1-3):1–18, 2002.

[11] K. Moss. Java Servlets, Second Edition. McGraw-
Hill, 1999.

[12] P.Y. Saumont and A. Mirecourt. Servlets et
JavaServerPages, le Guide du Développeur. Osman
Eyrolles Multimedia, 2000.

[13] SISO. Simulation interoperability standards orga-
nization, http://www.sisostds.org/, 2002.

[14] SWARM. Swarm development group,
http://www.swarm.org/, 2002.

[15] H. Vangheluwe, J. de Lara, and P.J. Mosterman.
An Introduction to Multi-Paradigm Modelling and
Simulation. In Proceedings of AIS02, 2002.

[16] H.L. Vangheluwe. DEVS as a Common Denomi-
nator for Multi-Formalism Hybrid Systems Mod-
elling. In Proceedings of ISCACS 2000, 2000.

[17] W3C Consortium. Extensible Markup Language
(XML) 1.0, 1998.

[18] B.P. Zeigler. Multifaceted modelling and Discrete
Event Simulation. Academic Press, 1984. ISBN:
0.12.778450.0.

[19] B.P. Zeigler. Object-Oriented Simulation with Hi-
erarchical, Modular Models. Academic Press, 1990.

[20] B.P. Zeigler, H. Praehofer, and T.G. Kim. Theory
of Modeling and Simulation, Second Edition. Aca-
demic Press, 2000.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1810
	02: 1811
	03: 1812
	04: 1813
	05: 1814
	06: 1815

