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Abstract tems (e.g., [9]) provide mechanisms for utilizing such power
modes to save energy.

With the increased use of embedded/portable devices suchthe effectiveness of power mode control schemes de-
as smart cellular phones, pagers, PDAs, hand-held compygengs critically on the memory access patterns and data al-
ers, and CD players, improving energy efficiency is becomingation strategies in these memories. In particular, a poor
acritical issue. To develop a truly energy-efficient system, eRyat4 allocation strategy can lead to large energy loss by keep-
ergy constraints should be taken into account early in the dgpg |arge number of modules active most of the time. An
sign process; i.e., at the source level in software compilatiogtimization strategy should try to cluster data with temporal
and behavioral level in hardware compilation. Source—leve}iﬁinity in a small set of memory modules and turn off the
optimizations are particularly important in data-dominatedemaining modules to save energy. In this paper, we focus
media applications that have become pervasive in energyi improving the effectiveness of these low-power operat-
constrained mobile environments. ing modes through a data space (array layout) optimization

This paper focuses on improving the effectiveness of epamework. More specifically, we propose an array inter-
ergy savings from using multiple low-power operating modefaying mechanism that clusters the data elements of mul-
provided in current memory modules. We propose a sourCple arrays accessed simultaneously into a single common
level data space transformation technique called array interyata space so that fewer memory modules need to be active
leaving that colocates simultaneously used array elements if} 5 given time. This mechanism is particularly useful in em-

a small set of memory modules. We validate the effectivenassyded signal and video processing environments that use
of this transformation using a set of array-dominated benchyray structures extensively. Given an application, the pro-
marks and observe significant savings in memory energy. posed mechanism automatically determines the arrays to be
interleaved, and also transforms the code accordingly by re-
placing the original array references and declarations with
1 Introduction their transformed equivalents.

The proposed mechanism has been evaluated using a set of

Data-dominated media applications have become pervarray-based applications. We have utilized a cycle-accurate
sive in energy-constrained mobile environments. Systengmulator developed in-house to model the energy and per-
running such applications have been found to consume a sitprmance behavior of a memory architecture with low-power
nificant portion of their energy budget in the memory hi-operating modes. The simulator models three different mode
erarchy [1, 11]. Significant strides made in the low-powegontrol mechanisms with varying degrees of sophistication.
memory design encompassing circuit and architectural teckur preliminary results indicate significant savings in mem-
niques have helped to partially alleviate this problem. Onery energy. Based on these results, we conclude that array
such technique is the provision of multiple low-power operatinterleaving is very beneficial from an energy viewpoint and
ing modes through partial shutdown of the memory moduleshould be supported by compilers targeting multi-bank mem-
when they are not in active use. Many current memory sy$'y systems.

*This work was supported in part by Grants from GSRC and NSF CA- The remaaner of the paper Is orgamzed as fOI!OWS. The
REER Awards 0093082 and 0093085 next section discusses the memory system architecture we
tComputation Department, UMIST, Manchester M60 1QD, UK. considered and the low-power operating modes we used.




c E”eftgy | Re'TS_Y”ChFO”IiZa“O” For the purposes of this paper, we assume five different

: onsumption (n)) ime (cycles) operating modes: an active mode (the only mode during

Active 3.570 0 . . ..

Standby 0.830 2 which the memory read or write activity can occur) and four
Napping 0.320 30 low-power modes, namely, standby, napping, power-down,
Power-Down 0.005 9,000 and disabled. Current DRAMs [9] support up to six en-
Disabled 0.000 NA ergy modes of operation with a few of them supporting only
two modes. We collapse the read, write, and active with-

Figure 1. Energy consumption and re- out reaq or write m'odes ir!to a single mode (called active
synchronization times for different operating mode) in our experimentation. However, one may choose
modes. to vary the number of modes based on the target DRAM ar-

chitecture and specification. The energy consumptions and

re-synchronization times (to bring the module back to active

mode) for these operating modes are given in Figure 1. The
Section 3 gives a description of array interleaving. Our enenergy values shown in this figure have been obtained from
ergy optimization strategy (based on array interleaving) is ethe measured current values associated with memory mod-
plained in Section 4. The experimental results are presentgfhs documented in memory data sheets (for a 3.3V, 2.5ns
in Section 5. Fina”y, we summarize the contributions of thl%yde time, 8SMB memory) [8] The re_synchronization times

work in Section 6. are also obtained from data sheets. Based on trends gleaned
from data sheets, the energy values are increased by 30%

Typically, several of the DRAM modules are controlled by

The target system for our approach is a memory sy memory con.troller which interfaces w_ith the memory bus.
tem that contains a number of modules organized into bankd1€ interface is used not only for latching the data and ad-
(rows) and columns. We refer to such banked architectures 4&SSes, but is also used to control the configuration and op-
partitioned-memory (or banked-memory) architectures. Acgration of the individual memory modules as well as their op-
cessing a word of data would require activating the correerating modes. The cqntroller; contain some prediction hard-
sponding bank and columns of the shown architecture. Thel¥re to estimate the time until the next access to a memory
are several ways of saving energy in such a memory Orgg]odule and. qrcwtry tp gsk the memory controller to mmate
nization. The approach adopted in this paper is to put tH&ode transmpns. A limited ampunt of such self-monitored
unused memory banks into a low-power operating mode. power-down is already present in current memory controllers

In all our experiments, we use one module in a bank an{f-g-, Intel 82443BX and Intel 820 Chip Set). In this paper,

hence, use the terms bank and module interchangeably. N(?Y@ utilize three such predictors: constant threshold predictor

that we are assuming a RAMBUS style of memory [8] whicH CTF?, adaptive threshold predictoATP), and history-based
obviates the need for conventional interleaving. Each banr&redlctor HBP.

operates independently, and when not in active use, it can be TheCTPmechanism is similar to the mechanisms used in
placed into a low-power operating mode to conserve energgurrent memory controllers. After 10 cycles of idleness, the
This paper considers only dynamic energy consumption armbrresponding module is put in standby mode. Subsequently,
does not account for leakage current. In addition to the ofif the module is not referenced for another 100 cycles, it
timization proposed in this paper, it is also possible to aps transitioned into the napping mode. Finally, if the mod-
ply leakage energy reduction techniques to unused memauie is not referenced for a further 1,000,000 cycles, it is put
modules. Each operating mode works by activating specifiato power-down mode. We do not utilize the disabled state
portions of the memory circuitry such as column decodershat shuts off the refresh circuitry to avoid loss of data in the
row decoders, clock synchronization circuitry and refresh cimemory modules. Whenever the module is referenced, it is
cuitry [8], and can be described using two related metricdirought back into the active mode incurring the correspond-
energy consumpticandre-synchronization timeThe energy ing re-synchronization costs (based on what mode it was in).
consumption is the amount of energy consumed per cycle iFhe other two schemes are enhancements t€ifemech-

a given operating mode. The re-synchronization time is thenism. TheATP scheme dynamically adapts the thresholds
time (in cycles) it takes to bring a bank from a low-powerto adjust for any mispredictions it may have made. HiBP
mode to the active (fully-operational) mode. Typically, lessescheme maintains a history of the operating mode changes
the energy consumption, higher the re-synchronization timéo predict the future mode transitions more accurately. These
Consequently, the selection of low-power operating mode hashemes are adapted from [2], and their details are beyond the
both energy and performance impacts and usually involvesszope of this paper. In addition, to keep the issue tractable,
tradeoff between them. this paper bases the experimental results on a single program



environment and does not consider the virtual memory sys- ® (if)
tem (i.e., we assume that the compiler directly deals with Y
physical addresses). Note that many embedded environments
[4] operate without any virtual memory support. The mode
control capabilities in the DRAM have also been explored
recently for developing novel power-aware page allocation
policies [6].

cCeceoe

3 Array Interleaving

Array interleaving is a data space (array layout) transfor- -
mation technique that takes multiple arrays, and maps them
into a single array. This mapping should be one-to-one (i.e.,
each array element should be mapped into a unique place,
and no two array elements should be mapped into the same
place inthe new array) and, after the mapping, the array refer-
ences in the program and array declarations should be mod-
ified (re-written) accordingly. Consider the following loop
nest that accesses two one-dimensional arrays using the sam& his transformation can be viewed as converting Nxd\
subscript function. arrays to a singlé&x2N array. Figure 2(ii) illustrates this
mapping. For the sake of clarity, in this figure, only the inter-
leaving of the elements in the first rows are shown explicitly;
the remaining rows are interleaved in a similar manner.

Figure 2. (i) Interleaving two one-dimensional
arrays; (ii) Interleaving two two-dimensional
arrays.

Example 1:
for( i=1; i <N;i++)
b+ = Uri] + Uafi];

We consider the following mapping of arrays andU> 3.1 Energy Savings due to Interleaving
to the common data space (array)
Interleaving can reduce the energy consumption in the off-

Uhli] — X[2i — 1] andU;[i] — X12i], chip partitioned memory by increasing the effectiveness of

in which case we can re-write the loop nest as follows: low-power operating modes. As mentioned earlier, in the
partitioned-memory architecture, only those memory mod-

for(" i=1; i <N;i++) ules containing the parts of the arrays currently being ac-

b+ = X[2i — 1] + X[2i]; cessed need to be active. If we use the array interleaving

A pictorial representation of this mapping is given in Fig_strategy, it would colocate portions of different arrays which

ure 2(i). Note that, in this new (transformed) nest above, foi"€ @ccessed at the same time in a smaller number of mod-
a given loop iteration, two references access two consecutiieS: This can provide an opportunity for transitioning more
array elements whereas the original code accesses two ngpedules into a low-power mode, and in most cases, keeping
consecutive elements (each from a different array) for a giveid€M in & low-power operating mode for a longer period of
iteration execution. The same transformation can be appli gne.

to multidimensional arrays as well. As an example, consider ) ]
the following two-level nested loop: 3.2 Energy Savings due to Improved Locality

Example 2 ) Interleaving can also reduce the number of accesses to
for( Z:_li ¢ §N; Z+f) the off-chip memory modules by enhancing spatial locality
for(* j=1; j <N;j++) (cache locality) and can increase the inter-arrival times of
et = Ur[i][j] + Ua[i][5]; off-chip memory accesses. This gives the compiler/hardware
If we use the data transformations more opportunities for exploiting deeper sleep modes (more
energy-saving operating modes) and/or keeping modules in
Ur[i][j] — X[d][25 — 1] andUs[i][j] — XT[i][25], low-power operating modes for longer periods of time.

Let us consider Example 1. In this example, if considered
individually, each of the references has perfect spatial local-
for( i=1; i <N;i++) ity as successive iterations of thidoop access consecutive

for( j=1; j <N;j++) elements from each array. However, if, for example, the base
c+ = X[i][25 — 1] + X[i][2]]; addresses of these arrays happen to cause a conflict in the

we obtain the following nest:



Benchmark ‘ Dataset ‘ Number of ‘ graph (ATG). In a given ATGV, E), V represents the set

Size Arrays ;! . .

biguad n_sections (biauad) —NE = of array variables gsed in t'he program, and therg is an edge
convolution (conv) 8MB two e = (v1,v2) € E with a weight ofw(e) if and only if there
fir 8 MB two L. h
Ims 8 MB wo arew(e) transitions between the arrays represented and
n-cor?plexd-updates I(complex) gmg ;our ve. A transition betweemw; andv, corresponds to the case

i | t . . . .
preal updates (real) 7 VB four when the array variable representedhbys touched immedi-
eflux 7MB eight ately after the array variable representedbyor vice versa.

Once the ATG has been built, our approach discovers the
paths it contains, and interleaves the arrays that belong to the
same path. The details of the algorithm to build an ATG and
determine paths can be found elsewhere [5].

Once the arrays to be interleaved have been selected, they
may still not be amenable to array interleaving transforma-
cache, the performance of this nest can degrade dramaticalipn. This could be due to one of the following reasons:

The characteristic that leads to this potential degradation is

that between two successive accesses to dfrajere is an e The arrays are not accessed with the same frequency
intervening access froiii,, and vice versa (which can distort in the innermost loop. Interleaving two arrays will be
locality). On the other hand, after interleaving, for a given ~ Most useful when they are traversed within the inner-
loop iteration, two references (in a given iteration) access two ~ Most loop at the same speed. If, however, the subscript

Figure 3. Benchmark codes used in our exper-
iments and their important characteristics.

consecutive array elements (much better locality). functions of two arrays do not contain exactly the same
set of loop indices, one of them will be traversed faster

3.3 Other Impacts of Interleaving tr;fan ;[he other rendering interleaving difficult and not as
effective.

In addition to those listed above, array interleaving can o The arrays in question are of different dimensionality.
have other benefits as well. Since itimproves spatial locality,  although, in principle, it is possible to interleave these
it helps to reduce the number of cache write-backs which, in arrays (e.g., by replicating the smaller array), this can
turn, can reduce the energy spent in the cache memory itself. bring about subtle coherence problems between replicas
Improved spatial locality also has a positive impact on per-  \yhen the original array is updated.
formance. It should be noted, however, that array interleav-
ing makes array subscript calculations (address calculation@ur current framework can interleave arrays with the same
more complex; this may, in turn, depending on the capabiliaccess frequency and dimensionality even if they differ in one
ties of the back-end compiler, cause an increase in datapathmore different dimension sizes (extents). In such cases,
(core) energy consumption. Also, in cases where one (orthe framework first determines the smallest rectilinear por-
small group) of interleaved arrays are accessed in a separti®s (from each array) that capture the simultaneously ac-
nest, the cache performance (and energy behavior) can sufterssed array elements, and then interleaves only those por-

due to large strides. tions. Having pruned the set of arrays to be interleaved, for
the remaining arrays in each path, we use data transforma-
4 Optimization Framework tions to interleave them [5].

We focus on array-dominated codes used extensively @ EXperiments
image and video processing application domains. A com-
mon characteristic of these codes is that they manipulate ar- In this section, we evaluate the proposed interleaving
rays of signals using multiple nested loops, with array subeptimization from energy as well as performance perspec-
script expressions and loop bounds being affine (linear plues using eight array-dominated codes. Six of these codes
a constant term) functions of the enclosing loop indices angbiquad , conv, fir , Ims, complex , andreal ) are
loop-independent variables. To interleave arrays in a giveinom the DSPstone benchmark suite [3ft is a two-
program, two subproblems need to be addressed. First, wWénensional Fast Fourier Transform code agftux is
need to identify the arrays to be interleaved. Second, we nead array-dominated benchmark code from the Perfect Club
to transform the program by replacing the original array adsenchmarks. The important characteristics of these codes are
cesses and declarations with their interleaved (transformegiven in Figure 3. Unless stated otherwise, our default bank
counterparts. (module) configuration is 4 2MB, i.e., four memory banks,

We formulate the problem of selecting the arrays to beach with a capacity of 2 megabytes. Further, all energy con-
interleaved on an undirected graph called array transitiosumption values are those consumed in the DRAM memory
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Figure 4. Energy impact of mode control (the Figure 5. Comparison of different mode control
CTPscheme) over a strategy in which all mem- mechanisms (cacheless system).
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modules and do not include the (negligible amount of) en-
ergy consumed by the predictors that are part of the memory
controller.

We first evaluate the energy benefits due to operating
mode control only. Figure 4 gives the energy consumption in

Energy Consumption
ocooo
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Joules (J) for two different versions of each code: (i) without ) N

. . . ($ ’bb ‘& 6\9 \0+ 00 ’& 0+
mode control; that is, all memory modules are in active mode € & &t &
during the entire execution; and (ii) with mode control using ©
the CTP strategy (without any cache memory). The energy |[ECTP mCTP Opt CIHBP [JHBP Opt|

consumption varies for each benchmark based on the num-

ber of memory operations executed. Further, we observe that Figure 6. Comparison of CTPand HBP (with a
using mode control is beneficial from energy perspective for 32KB, 4-way set associative cache).

all codes in our suite (an average of 24.6% saving in energy).

Figure 5 compares our three prediction mechanisms with
and without array interleaving (again, for a cacheless sys-
tem). In this graphCTP, ATP, andHBP denote the cases  Figure 6 shows the energy consumption resulting from
where only the respective mode control mechanism (predi& TP and HBP with and without array interleaving for a 4
tor) is activated. On the other han@TP Opt, ATP Opt, X 2MB memory configuration with a 4-way data cache of
and HBP Opt denote the corresponding versions with ar32KB. We see that, as compared to a cacheless system, the
ray interleaving. We observe that array interleaving makegffectiveness of array interleaving here is reduced. On the
a large impact on energy behavior of all three mode corfverage, array interleaving improves the energy consumption
trol mechanisms. The average percentage reduction brougtver mode control by 15.3%. The largest improvement oc-
about by interleaving is 54.2% for the different configuracurs withfft , which is more than 80% faCTP. The reason
tions. Also, as far as the versions without array interleavinépr this reduced effectiveness is the fact that the existence of a
are concerned, theBPversion outperforms the rest. How- cache memory reduces the number of accesses to the memory
ever, except for a few cases, using array interleaving withanks, allowing more memory banks to be placed into a low
CTPor ATP results in better energy consumption than obpower mode, and for longer periods of time. This increased
tained througlHBPwithout array interleaving. Considering effectiveness of mode control diminishes the additional im-
that theHBPrequires a more complex hardware mechanisngrovements due to array interleaving. We also observe that
we can tradeoff this complexity using a less sophisticatedrray interleaving causes an increase in energy consumption
hardware and array interleaving. In the rest of the paper, w&ith conv as the miss rate of this code slightly increases
consider onlyHBPand CTP schemes as they represent twoafter array interleaving.
extremes in sophistication. We also investigated the impact of using mode control
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on performance. Figure 7 shows the performance penalty
(increased percentage of cycles due to transition from low{11]
power mode to active mode) when usi@gPwith different
cache sizes. It must be noted that for the experimented set of
benchmarks, the miss rate reduction due to interleaving was
not significant enough to overcome the mode control perforil2l
mance penalty.

. 13
6 Conclusions =

This paper presents an automatic mechanism for array in-
terleaving to save energy in partitioned (multi-banked) mem-
ory architectures with power control features. This automatic
mechanism is developed on top of a mathematical framework
in which array access patterns of an application are captured
using a graph-based representation (ATG), and transformed
using linear one-to-one data transformation matrices. We
validate the effectiveness of this transformation mechanism
using a set of DSP benchmarks, and observe energy sav-
ings across different memory configurations and mode con-
trol mechanisms.
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