
The Effects of Mobile Agent Performance on Mp3
Streaming Applications

Binh Thai1, Aruna Seneviratne2

1 School of Electrical Engineering and Telecommunications,
University of New South Wales, Sydney, Australia

binh@ee.unsw.edu.au
2 School of Electrical Engineering and Telecommunications,

University of New South Wales, Sydney, Australia
a.seneviratne@unsw.edu.au

Abstract. This paper considers the use of software mobile agents as proxy
agents, to provide seamless mobility and cater for heterogeneous devices and
network characteristics. We specifically consider the use of mobile agents
within the Mobile Aware ARCHitecture (MARCH) framework [8]. We show
how a mobile proxy agent can be used within the March Framework and we
try to evaluate the impact of agent migration when it is used as a relay proxy
for an mpeg layer 3 audio streaming application. We first try to isolate the
agent migration contribution to the audio loss and we propose a possible so-
lution to minimise this audio loss.

1 Introduction

Mobile Agents are an increasingly popular technology in many research areas such
as information retrieval, distributed computing, and network management. This
increase of interest could be due the basic characteristics of mobile agents –
autonomous and mobile. Studies that exploit such characteristics include De Meer et
al’s QoS management [3] and Krulwich’s user surrogates [11]. In this paper, we
propose to use mobile agents in Internet environments, as content transcoding prox-
ies. We show how a mobile proxy agent can be used in a proxy based network ar-
chitecture such as March [8], and we try to evaluate the migration cost when used in
a mp3 audio streaming application scenario.

The March framework addresses the problems associated with client and access
network heterogeneity, and the static nature of most content available on the Inter-
net. While the trend is to have all content format (eg. html, real media, mp3) avail-
able on all devices types (eg. desktop, PDA, mobile phones), there still exists many
unresolved issues. Indeed not only the media presentation capabilities of these ter-
minals differs widely, but also the network access technologies have various capaci-
ties. We believe that maintaining several copies of the media at the server to cater

for each situation is impractical. The March framework attempt to address this issue
by using proxy agents dynamically placed in the network.

We believe using mobile agents as the code mobility foundation in the context of
the march framework has many advantages: first, mobile agents could perform re-
sources management functions by deciding autonomously to move from one ma-
chine to another, when resources (CPU, network) requires it to. Another is to pro-
vide local mobility: when a mobile node moves from one network to another, the
first-hop proxy can help the mobility by providing content-caching and follow the
movement of the mobile host. In this paper, we do not describe the mechanisms
mobile proxy uses to decide when to and where to move. We rather try to evaluate
the limitations of using agent technologies, in the context of an audio streaming
application.

To investigate this cost, we devised two experiments, both mirrors the situation at
which the client is changing its network access point while receiving a mp3 stream
from the content server. The first experiment involved using one mobile proxy
agent, the second experiment involved using a technique of agent cloning to handle
the migration process. We show that the quality of the audio only degrades slightly
during the migration period.

The paper is organised as follows: Section 2 briefly introduces the March frame-
work. Section 3 reviews related work which measures the performance of various
mobile agent platforms, and Section 4 describes our experiment and presents our
findings. Section 5 presents our conclusion and describes our future work.

2 The March Framework

Clients today can have different devices with different capabilities. They can also
have access to different type of network access, which have different characteristics.
It is difficult for a content provider to provide contents that can cater for all the
clients on the network. The March framework address this issue by using applica-
tion-level proxies that performs functions such as caching, protocol conversion, and
content adaptation. There are various studies which utilise such an architecture, Fox
et al’s work on quality transcoding [4] and De Silva et al's TOMTEN [5] are just
two examples.

A benefit of using network proxies is that they permit clients or servers, or both, to
remain unchanged or to be changed very little when placed in new network envi-
ronments. The proxy should look like a server to the client and as a client to the
server. This makes a proxy solution far easier to deploy than a solution requiring
changes to clients, server or routers. Proxies are likely to be found near the edges of
the network, close to performance discontinuities such as the entrance to a wireless
link. Then they could provide additional functionality for the wireless hop. The

viability of proxy based solutions has been demonstrated by commercial products
such as Web-on-Air [12].

The classical proxy based solution requires that clients are configured manually or
at installation time, and it is static. The solution is client centric, i.e. the client (a)
makes the decision about which proxies to use, (b) installs and (c) configures them.
The server, at best is semi active, dealing with changes in coding and/or rate. How-
ever, especially in the client/server architecture, the server has significantly more
knowledge about the application and the operational environment than the client.

Thus the objective of our MARCH project framework is to investigate the possibil-
ity of using information available at the server to make more informed choices
about customisation of proxies and to automate the process. More importantly, the
classical proxy solution introduces serious end-to-end security problems, which
MARCH avoids.

Many proposals in the active network area such as [1], [7] amongst others, investi-
gate dynamic proxy placements systems for content distillation or protocol en-
hancement. However, MARCH differs as it is the only proposal that uses knowledge
at the server to make the decisions as to what functionality should be used for a
particular situation, and where the proxies should be placed.

Our framework is illustrated in Fig. 1.

Network C

Network B

Network AContent
Server

Client

Proxy
Repository

Compute
Server 1

Client

Compute
Server 2

Compute
Server 3

Compute
Server 4

Compute
Server 5

Mobile
Aware
Server

Fig. 1. The Mobile Aware ARCHitecture.

The Mobile Aware Server (MAS) is the entity in which performs most of the deci-
sions. The client devices incorporate a Mobile Client Entity (MCE), which is re-
sponsible for transmitting the client device capabilities, user’s preferences and net-

work type to the MAS. In some cases, the MCE could be optional or located else-
where, e.g. if the client is a WAP device, the terminal characteristics could be ob-
tained at the WAP gateway. Another example is to use the user-agent feature of
common web-browser to gather more information about the client’s capabilities.

Before a session is being initiated by the MAS there has to be a client-server inter-
action to obtain information about the performance status of the network, the client
terminal characteristics and to collect user preferences. The MCE will provide de-
tails about the terminal, where to find user preferences and the characteristics of the
access network the client device is attached. MAS will use this information together
with the information it has about intermediate network domains and its knowledge
about the application to choose the proxy functionality to be used along the data
path and decide where these proxies should be installed.

MAS then need to signal the compute servers that will house the proxies to retrieve,
to install and to configure them.

The MAS will request the chosen compute servers to obtain the required proxies
modules from the Proxy Repositories (PREP). Proxies at the server and the client
will be installed by the MAS. The concatenation of all proxies between server and
the client will form the enhanced session, customised to fit the characteristics of
interconnecting networks, the client type, and the requirements of the user.

In case of a secure session, e.g. a banking application, the PREPs and compute serv-
ers may be situated at bank branches in order to create "secure enclaves". At these
enclaves, secure data can be decrypted, transformed to another format and encrypted
for further delivery to the client or server.

Different technologies could be used to implement the dynamic proxy placement
function of the MARCH framework. One of them is to use mobile agents. Using
mobile agents allow extended functionalities and optimisations. For example once
the session is established, if the network conditions degrades, or the CPU resources
on the compute server become scarce, a mobile agent could autonomously take the
decision to move to a different nearby compute server. This also brings more ro-
bustness in the system as it delegates the responsibility for local issues, to the prox-
ies themselves.

3 Related Work

There are various studies that concentrate on the performance of mobile agent plat-
forms, and experiments were devised to measure such quality. Silva et al. [17] ex-
tensively tested 8 different mobile agent platforms and compared the performance
and robustness of each one: Aglets, Concordia, Voyager, Odyssey, Jumping Beans,
Grasshopper, Swarm and James. 12 experiments were performed on the above men-

tioned mobile agent platforms. The experiments include the measuring execution
time of a sample application with varying agent size, the caching capabilities, and
the amount of network traffic generated during agent migration.

Silva el al. discovered that Concordia, Voyager and Jumping Beans have problems
in relation to stability. They also showed that James provided the highest perform-
ance, as the authors suggested that this particular mobile agent platform was de-
signed with various optimisation mechanisms.

From our perspective, we can use this study as a guideline on which mobile agent
platform has the best performance. However, we cannot use this study to decide the
viability of the use of mobile agents in our framework, because the scenarios used in
their experiments do not bound to any particular frameworks.

Less extensive performance experiments were performed by Narasimhan [13], [14],
[15]. The author concentrated specifically on the migration performance of IBM
Aglets. She suggested that there are three factors that can affect the time that an
aglet requires to migrate from one host to another: network congestion, geographical
location of servers and the size of the aglet.

The first experiment Narasimhan performed was measuring the round trip time of an
aglet with various sizes. The second experiment was measuring the round trip time
of aglet as it travels around the world via 4 different hosts located in USA, Italy and
Japan. Both experiments reflect a typical scenario of which a mobile agent travels
around the world to gather data for the user. The results of the experiments can be
found in [15] and [14].

Due to Narasimhan’s assumptions, and the methods the experiments were con-
ducted, the results obtained from the experiments cannot provide us with any insight
on the real migration performance of IBM aglets.

Moreover, the study of Silva et al and Narasimhan. were aimed at measuring the
performance of mobile agents without considering the specific application of the
technology. Therefore the results they presented are only the performance of the
mobile agent in a general case. How this performance affects a streaming applica-
tion when a mobile agent is acting as a proxy remains unknown.

A more analytical approach of investigating the performance of mobile agents was
performed by Kotz et al [10]. They developed a mathematical model based on dif-
ferent data streams arriving to a common gateway, which are then transmitted to the
mobile devices via a wireless channel. Kotz et al proposed the use of mobile agents,
originating from the client’s device, to migrate from the device to the common
gateway. The mobile agent then performs data filtering at gateway as the data
streams arrive from the Internet. This proposal was compared against the technique
of performing data filtering at the mobile device.

4 Mp3 Streaming Experiment

Two experiments were devised to determine how the migration of the mobile proxy
agent affects a mp3 streaming audio session. The equipment we used for the ex-
periments are as follows:

• 5 Pentium II 400 PC’s. Each with 128Mb of RAM, running Linux 2.2.x. These
PC’s are connected together on a 10Mbps Ethernet.

• IBM aglet version 1.0.3b [9] was used as our mobile agent platform.
• Blackdown Java Linux port JDK 1.1.7b ver 3 [2] was used as our JVM. All the

PC’s had the software installed in exactly the same way.

One PC was chosen as the mp3-streaming server over RTP. The software we used to
perform the streaming was Obsequieum version 2.1.7 [16]; however, we had to
modify the original source code to cater for our prototype, since Obsequieum was
designed to perform non-stop multicasting over the Internet.

Another PC was assigned as the client. The client software we used to listen to the
mp3 stream was freeamp version 2.0.7 [6]. We chose this particular server-client
application because unlike other streaming mp3 applications, which use TCP as
their streaming protocol, Obsequieum streams mp3 audio using RTP.

The remaining 3 PC’s are assigned as follows: one was assigned as the proxy re-
pository. This is where the mobile proxy agent resides. The other 2 PC’s are as-
signed as compute server 1 and 2 respectively. All of these nodes use Tahiti as the
aglet server. This is the default aglet server.

The complete system is illustrated in Fig. 2.

Content
Server

Proxy
Repository

Compute
Server 1

Client

Compute
Server 2

Fig. 2. The prototype framework used for the experiment.

A mobile proxy agent was developed using IBM aglet. The proxy function is to pass
the received UDP packets from the mp3 streaming server, extract the timestamp
from the RTP packet header, display it on the screen, and then relay this packet to
the client. The extractions of the time stamp from the RTP packet header enables us
to determine the amount of audio is loss during the migration of the mobile proxy.

In term of the size of the mobile proxy agent, the mobile proxy agent consists of 3
classes – a class which extends aglet, a class which extends thread and a class de-
rived by ourselves to handle all the signalling of the system. The size of the byte-
code for this mobile proxy agent totals to 10207 bytes.

The system is completed with various middleware at the server and client sides to
allow for the migration of the mobile proxy agent. We did not modify the applica-
tion itself to suit our framework, as it contradicts the philosophy behind any proxy
based network architectures.

The quality of mp3 audio we used was 44.1kHz music streaming at 128kbits/s.
Higher bit rate was possible; however, 128kbits/s is a common bit rate at the mo-
ment. Since there are no transcoding of audio involved in our experiment, we de-
fined the degradation of Quality of Service (QoS) as the loss of audio. As mentioned
previously, the proxy agent is designed to display the timestamp of each RTP packet
it receives. The amount of audio loss during its migration is calculated by taking the
difference between the first timestamp after migration and last timestamp before
migration. This time loss includes the aglet’s suspension of execution, object seriali-
sation, bytecode transfer across the network, object deserialisation, resumption of
the aglet, and the signalling to the server’s middleware to redirect the mp3 stream to
a different compute server.

Since freeamp also has the capability of buffering streams, we also investigated the
affect of different buffer size at the client application.

4.1 Experiment 1: Simple Mobile Agent Migration

With this first experiment, we tested the amount of audio loss with the most primi-
tive approach. As the session begins, a mobile proxy agent resides in compute server
1. After a period of 20 seconds, the proxy agent migrates to compute server 2. The
process continues back and forth between the two compute servers for a total of 200
times.

Initially the amount of buffering of the stream at the client was set to 3 seconds –
this is the default value for freeamp. We repeated the experiment with buffering set
to 0 seconds, ie. no buffering. The results are presented in Table 1.

Table 1. The results of Experiment 1.

freeamp
buffering

av. RTP
packets
dropped

s.d. RTP
packets
dropped

av. audio
loss

s.d. audio
loss

3 sec 3.89 1.22 248.78ms 78.21ms

0 sec 3.71 0.82 237.53ms 52.63ms

From the results shown in Table 1, it appears that the amount of buffering has no
significant effect on the amount of audio loss as the mobile proxy agent migrates
from one compute server to another. Indeed, since the amount of audio loss we
could measure is the amount of audio loss on the network. In terms of the degrada-
tion of quality, this loss equates to a very short skip of audio.

With buffering turned on, as the mobile agent proxy migrates from one compute
server to another, the buffer is emptied due to the loss of audio on the network –
about 250ms worth. If the buffer is not empty, the audio loss is translated to a short
skip. However, if the buffer becomes empty, the application stops playing the audio
altogether, and refills its buffer before it continues. When this situation occurs, the
user experiences a silence of 3 seconds. Compared to the 250ms of audio interrup-
tion as mentioned previously, this 3 seconds silence is less acceptable from the
user’s perspective.

4.2 Experiment 2: Mobile Agent Migration Using a Cloning Scheme

In the second experiment, we introduce a handover mechanism using the mobile
agents cloning ability, to reduce the audio loss when migration occurs. Instead of
migrating a single agent between two compute servers, the mobile proxy agent
clones itself while maintaining the data stream to the client. The clone migrates to
another compute server, and signals to the server’s middleware to change its data
stream. The original proxy agent then destroys itself.

Once again, different buffering sizes were tested – 3 seconds and 0 seconds. The
results of this experiment are presented in Table 2.

Table 2. The results of Experiment 2.

freeamp
buffering

av. RTP
packets
dropped

s.d. RTP
packets
dropped

av. audio
loss

s.d. audio
loss

3 sec 1.27 0.45 81.38ms 28.56ms

0 sec 1.24 0.51 79.26ms 32.81ms

From the results shown in Table 2, we can see that with the use of the cloning tech-
nique, the number of RTP packets dropped is significantly reduced compared to the
results obtained from experiment 1. Since the amount audio loss is so small, the
effect of buffering was not noticeable – freeamp did not have to refill its buffer at all
throughout the entire experiment.

5 Conclusions and Future Investigations

In this paper, we have reviewed the concept of our MARCH framework, which
provides dynamic application-level dynamic proxy placement into various compute
servers on the network. Since the server has more knowledge about the characteris-
tics of the content, our framework places the intelligence at the server, with the
server making the decisions on the customisation for proxies and automating the
processes.

We considered the concept of mobile agents as one of the possible solutions to im-
plement the dynamic proxy placement function of the MARCH framework. Being
autonomous and mobile, the introduction of mobile agents in our framework allows
the network conditions and the CPU resources of the computer servers to be evenly
distributed. This is possible as a mobile agent can automatically detect the condition
of the compute server’s CPU resource, or the network condition around the compute
server, and then autonomously make a decision on whether it should migrate to a
nearby compute server.

To investigate the viability of mobile agents in our framework, we performed two
experiments that mirror a typical mp3-streaming session. The results showed that
with different migration policies, the resulting QoS could vary.

The viability of using mobile agents as dynamic proxies in the MARCH framework
is still in the early stages, and there are a number of issues we have yet to address:
• The placement of proxy – The mobile aware server requires to select a compute

server in the network to place a proxy agent. The location of this compute server
must be such so that it can provide the user with the optimum performance. The

algorithm of which the mobile aware server uses to make such a decision is not
yet developed.

• The mobile proxy agent migration criteria – We showed in this paper that the
migration of a mobile agent proxy does not affect greatly to the quality of audio
in a mp3 streaming session; however, the criteria of which when should migration
occurs is yet to be investigated. Since there are several conditions that migration
is required, for example, CPU of the compute server is over utilised, a mobile
proxy agent should be able to detect the change in its surrounding environment
and make a decision on the next compute server of which it should migrate itself
to.

Acknowledgments

The authors would like to acknowledge Ericsson Radio Systems AB, Sweden and
Ericsson Australia for their financial support.

References

1. Amir E, McCanne S, Katz R, “An Active Service Framework and its Application
to Real-time Multimedia Transcoding”, ACM Computer Communication Re-
view, vol. 28, no. 4, pp.178-189, Sep. 1998

2. Blackdown Java-Linux homepage, http://www.blackdown.org
3. De Meer H et al, “Programmable Agents for Flexible QoS Management in IP Networks”,

IEEE Journal on Selected Aeras In Communication, Vol. 18, February YEAR, p.256-267.
4. De Silva R, Landfeldt B, Ardon S, Seneviratne A, “Total Management of Transmissions

for the End-User, A Framework for User Control of Application behaviour”, HIP-
PARCH, London, 1998.

5. Fox A, Gribble S, Chawathe Y and Gribble E, “Adapting to Network and Client
Variations using Infrastructional Proxies: Lessons and Perspective”, IEEE Per-
sonal Communications, August , 1998.

6. Freeamp homepage, http://www.freeamp.org
7. Fry M and Gosh A, “Application Level Active Networking”, Fourth Interna-

tional Workshop on High Performance Protocol Architectures (HIPPARCH ’98),
June 98

8. Gunninberg, P. and Seneviratne A. “Services and Architectures in the next gen-
eration Internet using dynamic proxies”, FTF99, Bejing China, December 1999.

9. IBM Aglets homepage, http://www.trl.ibm.com/aglets
10. Kotz D et al, “Performance Analysis of Mobile Agents for Filtering Data

Streams on Wireless Networks”, to appear in MSWiM 2000, Boston USA, 2000.
11. Krulwich B, “Automating The Internet: Agents as User Surrogates”, IEEE Internet Com-

puting, July/August 1997, p.34-38.
12. Ludwig R, Niebert N, Quinet R, “Radio Webs – Support Architecture for Mobile

Web Access”, International Conference Distributed Multimedia

13. Narasinhan N, “Experiments To Evaluate Aglet Latency”,
http://alpha.ece.ucsb.edu/~nita/agletsExpt/index.html

14. Narasinhan N, “Latency for Aglet Travel Around The World”,
http://alpha.ece.ucsb.edu/~nita/agletExpt/agletsExpt2.html

15. Narasinhan N, “Variation in Aglet Latency with Aglet Size”,
http://alpha.ece.ucsb.edu/~nita/agletExpt/agletsExpt1.html

16. Obsequieum, homepage, http://obs.freeeamp.org
17. Silva L M et al, “Comparing the performance of mobile agent system: a study of

benchmarking”, Elsevier Computer Communications, Issue 23, p.769-778
18. Thai B, Senevirante A, “The Use Software Agents as Proxies”, Proceedings of

ISCC 2000, p.546-551

