
Guide to the Choices Development Environment

Choices Group

January 21, 1992

Abstract

This manual is an introduction to the Choices Development Environment. It is designed to

help the beginning Choices developer become acclimated with the the source, tools, and tech-

niques used to build Choices in a fast and e�cient manner. It covers the Choices source code

layout, techniques for building and modifying Choices kernels and applications, descriptions of

the di�erent Choices subsystems, and instructions on how to boot Choices withing certain lab-

oratory environments within the Department of Computer Science at the University of Illinois.

As with any manual, understanding all of the sections is not necessary.

1

January 21, 1992 { 16 : 35 DRAFT 2

Contents

1 Introduction 4

1.1 Syntax Conventions : 4

1.2 How to �nd help : 4

1.3 How to report bugs : 4

1.4 What is Choices? : 4

2 The Choices Distribution 5

2.1 Source Tree Description : 5

2.2 Creating a Working Environment : 6

3 Building Choices Components 9

3.1 Choices make�les : 9

3.2 Building the GeneralPurpose Libraries : 10

3.3 Building the Kernel : 10

3.4 Building the SystemInterface library : 10

3.5 Building Applications : 10

4 Using Choices 11

4.1 Using Your Kernel and/or Applications : 11

4.2 Choices Kernel Commands : 11

4.3 Choices builtin commands : 11

4.4 Fish, the Choices shell : 12

4.4.1 Mounting �le systems : 12

4.4.2 The kindred command : 12

5 Software Development for Choices 13

5.1 Debugging : 13

5.1.1 Debug Statements : 13

5.1.2 Assertions : 13

5.1.3 RAID Debugging : 13

5.1.4 Usage : 13

5.1.5 Raid Masks : 14

5.1.6 GDB Debugging : 15

5.1.7 CDB Debugging : 16

6 Choices Implementation Overview 17

6.1 Memory : 17

6.2 Processes : 17

6.3 I/O and Devices : 17

6.3.1 Memory Locking and Physical Addressing : 18

6.3.2 DMA/DVMA and Memory : 18

6.3.3 Interrupts : 18

6.3.4 A typical driver sequence : 18

6.4 Reference Counting and Garbage Collection : 19

January 21, 1992 { 16 : 35 DRAFT 3

6.5 First Class Classes : 19

6.6 The SystemInterface : 19

6.6.1 Proxies : 19

6.6.2 Use of Proxies : 19

6.7 System Boot and Initialization Sequence : 20

6.7.1 Machine Dependent Basic Boot Loading : 20

6.7.2 Kernel Initialization : 20

6.7.3 Memory Layout Assumptions : 21

January 21, 1992 { 16 : 35 DRAFT 4

1 Introduction

1.1 Syntax Conventions

� Throughout this report, user include and command names will appear in bold face. System

output will appear in a constant width font. Files, as opposed to directories, will appear

in standard font.

1.2 How to �nd help

� Look through this manual �rst

� Try posting to the newsgroups uiuc.cs.choices or uiuc.cs.choices.bugs.

� Send mail to choices@cs.uiuc.edu

� Bug some of the Choices gurus in the lab

1.3 How to report bugs

� Try posting to the newsgroup uiuc.cs.choices.bugs.

� Send mail to choices@cs.uiuc.edu

1.4 What is Choices?

� Choices is an object-oriented operating system

� Written in C++

� Machine and processor dependent portions are in assembler

� It has an object-oriented system interface

� Operating system entities are objecs

{ Process, Semaphore, CPU

{ MMU, Disk, etc.

January 21, 1992 { 16 : 35 DRAFT 5

2 The Choices Distribution

Choices is distributions are referred to as stables. Each stable contains the source code for the

operating system and applications. Tools sources will be included in future stable releases.

2.1 Source Tree Description

The top level stable directory hierarchy is illustrated in Figure 1. Here is a brief description of the

top level. Each will be covered in more detail later.

� Applications - The Applications directory contains object oriented application sources for

Choices applications. The Examples directory below it contains some basic UNIX like pro-

grams and some test programs. FiSh is a Choices shell. The others are more srg group speci�c

and not addressed here.

� Common - Sources common to the kernel and applications. It contains mostly reference-

counting code (Stars and Refs, covered later).

� Con�gure - Directory for building components of Choices. This is where libraries, kernels,

and applications are built. It is shown in �gure 3

� FileSystems - Filesystem sources

� History - File detailing features and changes

� IODevices - Machine independent device driver sources

� Includes - Directory for ALL header (.h) �les . This directory contains the kernel include

�les. It also has subdirectories for Common, Con�gurationFiles, MachineDependent, Pro-

cessorDependent, Memory, etc. It mirrors the top level hierarchy and is shown in �gure 2.

The Con�gurationFiles directory is machine dependent and contains �les included in other

�les containing things such as #de�ne LOCK SS1Lock, allowing code that uses locks to be

independent of the machine.

� Instrument - Sources for instrumentation code

� Kernel - Kernel sources

� Libraries - Library sources. There is a general purpose library that is portable, and system

interface libraries for each machine that applications link with.

� MachineDependent - Machine speci�c sources, grouped by machine. Machine speci�c device

drivers, boot codes, etc. reside here.

� Memory - Memory management subsystem sources

� Networks - Networking protocol sources

� ProcessorDependent - Processor speci�c sources. These codes do things like context switching,

CPU and MMU operations, etc.

January 21, 1992 { 16 : 35 DRAFT 6

Stable

Applications

Common

Con�gure

FileSystems

History

IODevices

Includes

Instrument

Kernel

Libraries

MachineDependent

Memory

Networks

ProcessorDependent

Schedulers

Tools

UnixCompatibility

Figure 1: The top level of the Choices source tree

� Schedulers - Source for a bunch of schedulers

� Tools - Miscellaneous tools, should contain more

� UnixCompatibility - Source for UNIX compatibility stu�

2.2 Creating a Working Environment

The way to work with a Choices stable is to make a shadow if it. The shadow node contains real

directories, but all the �les within them are symbolic links back to the stable. This saves space and

allows easier identi�cation of changed �les speci�c to your node.

The newnode command is used to create a shadow node. It takes a source node and a destination

name and asks a few questions before setting up the shadow node.

The breaklink command is used when you wish to modify source �les. Given a list of �les, it

replaces the links with �les, copying the original �le with a .O �le extension. With the -n option

the .O �le is still a link back to the original instead of a copy. Breaklink -n is recommended.

January 21, 1992 { 16 : 35 DRAFT 7

Includes

kernel include �les

Con�gurationFiles

FileSystems

IODevices

Libraries

MachineDependent

Networks

ProcessorDependent

Schedulers

UnixCompatibility

Figure 2: The Includes directory hierarchy

Con�gure

Top level make�les

Applications

Libraries

System

Tools

Figure 3: The Includes directory hierarchy

January 21, 1992 { 16 : 35 DRAFT 8

You will need other tools to work with Choices. A C++ compiler, a linker, and assembler for

your platform. The Free Software Foundation gnu tools are a good base to get started with.

January 21, 1992 { 16 : 35 DRAFT 9

3 Building Choices Components

This section describes building the di�erent Choices components from a clean stable. Certain

parts are dependent on others and are presented �rst.

3.1 Choices make�les

: Choices uses a hierarchy of Make�les and depends on features of gnumake. In the top level

Con�gure directory you see �les such as:

� Make�le - The top level make�le. It knows about all the components and how to tell each

component to make itself. If you type make here this make�le will build everything for every

platform and it takes a long time to do so.

� ChoicesCommon.mk - De�nes some targets common to all parts of Choices, such as clean

(make clean removes �les built from other �les), clobber (make clobber adds removal of

dependencies to clean). This �le is included within other make�les.

� <machine>Common.mk - De�nes tools, compilers, compiler
ags common to all Choices com-

ponents, and basic rules for compiling �les. This �le is included by other Make�les.

The Make�les in Con�gure/System de�ne targets and rules for compiling the Choices kernel. It

contains things that are common to every system. A make from this level creates every kernel for

every platform.

Con�gure/System/<machine> has two �les for building the kernel for a particular platform. Make-

�le is the Kernel make�le for that platform. It de�nes all the machine and processor speci�c targets

for that platform and any rules speci�c to the kernel for that platform, such as a link speci�cation.

Con�g.mk in this area is used to turn on and o� di�erent subsystems and options in the kernel.

Things like BSD�le for the BSD �lesystem can be de�ned, causing the BSD �lesystem code to be

compiled in. Certain options in Con�g.mk do not make sense for certain platforms.

If we type make from Con�gure/System/SS1 the make�le includes SS1Common.mk from the top

level, SystemCommon.mk from the Con�gure/System level. In turn SystemCommon.mk includes

the top level ChoicesCommon.mk, CommonSources.mk, FilesystemCommon.mk, etc.

To add a �le to a single kernel a simple addition of that �le in the targets in the Con�g-

ure/System/<machine>/Make�le is all that is necessary. To add a �le to all kernels and addition is

made to SystemCommon.mk which is automatically included in all systems.

The application make�les have a very similar structure. One di�erence is that applications must

be loaded to speci�c speci�cations which come fromCon�gure/Libraries/SystemInterface/LoaderOptions.mk.

January 21, 1992 { 16 : 35 DRAFT 10

3.2 Building the GeneralPurpose Libraries

The general purpose libraries are required by all other parts of Choices so must be built �rst when

modi�ed, cleaned, or clobbered. The library is built fromCon�gure/Libraries/GeneralPurpose/<machine>.

Once in that directory type make.

3.3 Building the Kernel

The SystemInterface library depndends on the kernel, so the kernel must be built next if a make

clean or a make clobber has been done in the Con�gure/System/<machine> directory has been done

or if kernel sources have been modi�ed. A make command in that directory builds the kernel and

libSystem.a, the kernel part of the system interface library.

3.4 Building the SystemInterface library

The SystemInterface library depends on the kernel, so the kernel must be built �rst. Once the

kernel is up to date a make in Con�gure/Libraries/SystemInterface/<machine> builds the system-

interface library for that machine.

3.5 Building Applications

Once you have an up to date general purpose library, kernel, systeminterface library you can

build applications. A make in Con�gure/Applications/<application>/<machine> will build an up

to date application. To build FiSh (the shell) for a Multimax we execute the commands: cd

Con�gure/Applications/FiSh/Multimax; gnumake

January 21, 1992 { 16 : 35 DRAFT 11

4 Using Choices

4.1 Using Your Kernel and/or Applications

Booting your kernel or the kernel your applications are built for is a machine speci�c process. In

general the procedure is something like this:

1. Copy your kernel and applications to the target machine. This can be done while the machine

is running UNIX with ftp, rcp, etc.

2. Obtain exclusive access to the machine. This is organization dependent and is accomplished

by getting exclusive access to the console in our lab.

3. Shut down UNIX cleanly

4. Boot your kernel. This is machine speci�c. Some machines can boot over a network (Sun)

and some must boot form their disk.

5. Bring down Choices

6. Boot UNIX, making sure that a �lesystem check is run properly

7. Release the console

See the instructions for your machine for booting and shutdown details. There is a SRG Choices

environment manual for the srg lab and a Instructional lab environment for these labs at the

University of Illinois.

4.2 Choices Kernel Commands

When Choices boots properly you should see some messages, a copyright notice, any debugging

messages, and then a prompt:

Enter path of binary executable application file:

At this point you can type in the path to your application in the �lesystem to run it.

4.3 Choices builtin commands

While at the enter application prompt you can execute a number of kernel-builtin commands by

typing 3 digit numbers.

The following commands are available:

� 111 - Stop instrumentation gathering

� 123 - Run context switching times benchmark (valid on multiprocessors)

� 321 - Shut down Choices

� 555 - Break to debugger

� 666 - Print kernel heap statistics

January 21, 1992 { 16 : 35 DRAFT 12

� 777 - A basic timing benchmark

� 888 - Print Active Objects

� 999 - Synchronize �lesystem

4.4 Fish, the Choices shell

The current Choices shell is a UNIX-like shell with some object-oriented features. It supports UNIX

shell commands like ls, cd, cp, mv, rm, mount, umount, chmod for the ordinary �le system

operations. It also supports other commands that reveal the Choices object-oriented design and

implementation. In this section I will give a short description of most of these \object-oriented"

commands.

4.4.1 Mounting �le systems

You can mount a MemoryObject that contains a �le systems by giving the name of the Mem-

oryObject you want to mount and the path where you want to be mounted. For example the

command:

FiSh> mount fd0 /diskette0

will open the MemoryObject fd0 which corresponds to the
oppy diskette as a MemoryOb-

jectConatiner and will mount the �le system under the path /diskette0. The �le system can be

unmounted by using the command umount. For example in the earlier example the diskette can be

unmounted by using the command:

FiSh> umount /diskette0

4.4.2 The kindred command

This command lets the user view all the objects of a particular class and of its descendants. The

command members shows only the members of a class. Two examples follow:

FiSh> kindred InputStream

InputDevicesStream[0x263a60]{2}

InputDevicesStream[0x2635a0]{2}(InputStreamOnKeyboard)

InputDevicesStream[0x263960]{3}

InputStream[0x1b9c64]{1}

4 instances.

FiSh> members InputStream

InputStream[0x1b9c64]{1}

1 instances.

FiSh>

January 21, 1992 { 16 : 35 DRAFT 13

5 Software Development for Choices

5.1 Debugging

5.1.1 Debug Statements

A streams console I/O Debugging facility is available and activated on a per �le basis by de�ning

the preprocessor symbol DEBUG and then including OutputStream.h. It is much the same as using

Console() for output. For example:

#define DEBUG

...

#include "OutputStream.h"

...

Debug << "Got here: i(hex) = " << asHex(i) << ": (dec) " << i << "\n" << eor;

The eor symbol
ushes the output. When DEBUG is not de�ned these statements compile

away to nothing.

5.1.2 Assertions

Choices code can contain Assertions. When ASSERT is de�ned in a �le before Assert.h is included

there are two statements that check assertions:

Assert(i == 0); // Fails if i != 0

Assert(i == 0)("i should be zero, it is %d\n", i);

The �rst style prints the kernel line and �le and the condition if it fails. The second is meant

to provide information to applications and prints the printf style message before the rest of the

information. In either case the current process is looked up and if it is an application the process

is killed. If the process is a system process the kernel halts. It is advisable to always run with

Assertions enabled unless you are speci�cally looking for performance numbers.

5.1.3 RAID Debugging

Raid statements inside the Choices kernel code print information when they are enabled in a class

and category basis. Raid de�nes di�erent levels of messages and is dynamically controlled. The

next sections describe how to control Raid statements from FiSh.

5.1.4 Usage

There are two commands for controlling Raid debugging:

1. odb, which turns on debugging for existing objects belonging to a given class, and

2. cdb, which turns on debugging for future objects belonging to a given class.

The formats of the commands are:

January 21, 1992 { 16 : 35 DRAFT 14

FiSh> odb {member|kind} ClassName mask [messageCount]

and:

FiSh> cdb {member|kind} ClassName mask [messageCount [objectCount]]

For both commands, a mask of zero will turn o� debugging. The paragraph below explains the

possible values of the mask.

Examples of these commands follow.

To turn on debugging for the public methods for all currently instantiated members of class

Abstract

Parsley, use the following command:

FiSh> odb member Parsley 8

To turn on all debugging for all currently instantiated members of class

Abstract

Sage and its descendants, but restricted to the �rst 10 messages per object, use the following

command:

FiSh> odb kind Sage 63 10

To turn on constructor and reference count debugging for all future objects instantiated from

class

Abstract

Rosemary, use the following command:

FiSh> cdb member Rosemary 6

To turn on all debugging for the next 3 objects instantiated from class Thyme and its descen-

dants, use the following command:

FiSh> cdb kind Thyme 63 32767 2

5.1.5 Raid Masks

One can turn on six di�erent categories of debugging statements for either existing instances or

future instances of speci�c classes or classes and their children. These debugging categories are

encoded using the six bit masks shown in Figure 4.

When entering masks for odb or cdb statements (see above), one can use the logical sum of the

desired masks. For example, if one wants to see constructors, destructors, and reference counting

methods, use a mask of 6 (RaidConstructorjRaidReference). One can also use mask names as

in "ConstructorjReference". These names must be enclosed in double quotation marks (") and

they should not contain any blanks or tabs. The names may, however, be abbreviated to as little

as a single character.

When using masks in Raid statements (see below), use the name of the mask. Usually a single

Raid statement will have only one mask, while odb and cdb statements can have one or more

masks.

January 21, 1992 { 16 : 35 DRAFT 15

Bit Mask Name Type

0 1 RaidError error conditions (not used much yet)

1 2 RaidConstructor constructor/destructor functions

2 4 RaidReference reference()/unreference()/noRemainingReferences() functions

3 8 RaidMethod public member functions

4 16 RaidProtected protected and private member functions

5 32 RaidDetail detailed information within any type of member function

Figure 4: Raid Debugging Masks

5.1.6 GDB Debugging

The SPARC port of Choices supports remote kernel debugging via gdb, the gnu debugger. The

555 kernel command traps to gdb. If the kernel will not boot up to the point of having a prompt

the
ag debugFromStart can be set with the following adb commands:

adb -W Choices

_debugFromStart?W 1

^D

Where

^

D is control-D. When a debugger trap is taken all kernel activity stops and the the kernel

polls serial port A for gdb I/O. Using another SPARCstation connected to the serial port and using

gdb version 4.2 the following commands connect to the remote kernel

%% gdb Choices

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.2, Copyright 1991 Free Software Foundation, Inc...

(gdb) set p dereference off

(gdb) target remote /dev/ttya

SPARCCPU::debugBreakpoint ()

at ../../../Includes/ProcessorDependent/SPARC/SPARCCPU.h:101

101 inline void debugBreakpoint(){TrapToDebugger();}

Breakpoint 1 at 0x1710c: file

../../../ProcessorDependent/SPARC/SPARCSourceOfZerosMemoryObject.cc, line 42.

Breakpoint 2 at 0x20114: file ../../../Common/ProxiableObject.cc, line 136.

Breakpoint 3 at 0x201a8: file ../../../Common/ProxiableObject.cc, line 143.

(gdb)

By executing the bt command we can see that we are in SPARCCPU::debugBreakpoint:

(gdb) bt

#0 SPARCCPU::debugBreakpoint ()

at ../../../Includes/ProcessorDependent/SPARC/SPARCCPU.h:101

#1 0x2b334 in Kernel::getMemoryObjectOfInitialApplicationProcess (

January 21, 1992 { 16 : 35 DRAFT 16

this=0x124b80) at ../../../Kernel/Kernel.cc:1587

#2 0x2a47c in Kernel::dispatchApplications (this=0x124b80)

at ../../../Kernel/Kernel.cc:1252

#3 0x2930c in Kernel::main (this=0x124b80) at ../../../Kernel/Kernel.cc:1049

#4 0x28c5c in Kernel::setupProcessEntry (k=0x124b80)

at ../../../Kernel/Kernel.cc:927

#5 0x13f00 in SystemProcessReturnLabel ()

(gdb)

See the gdb documentation and the gdb quick reference card for details on available commands.

Since we are debugging a kernel there are places where breakpoints can't be set and places that

can't be single stepped without crashing the kernel. The well known places on the SPARC where

breakpoints should not be set include the lock code, the boot and trap code in boot.s, and the

parts of the context switching code that manipulate register windows.

The set p dereference o� command line tell gdb not to dereference pointers. This is very useful

in operating systems since dereferencing a pointer can cause a page fault, which you may happen

to be debugging.

5.1.7 CDB Debugging

The Att6386 platforms use a kernel debugger called CDB. See the srg lab environment description

for details.

January 21, 1992 { 16 : 35 DRAFT 17

6 Choices Implementation Overview

This section describes brie
y the internals of some of the Choices subsystems. It should be

enough to give you a general view of how Choices works and where in the code to look for details.

6.1 Memory

The �les in the Includes/Memory and Memory directories implement the memory subsystem. The

basic abstractions are:

� Domain - A Virtual memory environment that Processes can run in. The Kernel Domain is

contained within all other Domain so it is always active and accessible although it is protected.

� MemoryObject - An object that can be mapped into Domain for direct access via VM addresses.

Typical MemoryObjects are for text and data sections of programs, shared memory, sections

of the kernel, etc. A MemoryObject can be mapped into multiple Domains multiple times, to

pass arguments to a user Process for example.

� MemoryObjectCache - Implements paging of MemoryObjects. It has a policy module and

communicates with the Store, which manages the physical pages, called PhysicallyAddressable-

Units, in the system.

� AddressTranslation - Implements the data structures that the MMU uses. Each platform

de�nes a subclass of this, or uses a pre-existing one such as TwoLevelPageTable. Each Domain

in the system contains an AddressTranslation and manages the mappings for the translation in

response to faults, etc.

� AddressTranslator - A MMU implementation. Each machine de�nes a subclass, SPARCMMU

for example.

6.2 Processes

In Choices a process is a a simple thread of control running in a Domain. For a multi-threaded

application multiple threads are created for the same domain. An example is in the Applica-

tions/Examples/twoproc.cc. The classes of Process within Choices that you should be concerned

with are:

� SystemProcess

� ApplicationProcess

The class ProcessContainer is a base class for classes which hold Processes. Things such as

Schedulers and CPUs are ProcessContainers. When a Process is put into the CPU the CPU is

made to run that Process.

6.3 I/O and Devices

Choices runs on a number of platforms, each with di�erent requirements for device I/O. For example

the SPARC uses DVMA (DMA with virtual address translation through the MMU), while other

platforms use traditional DMA, or I/O instructions.

January 21, 1992 { 16 : 35 DRAFT 18

6.3.1 Memory Locking and Physical Addressing

The class PhysicalMemoryChain is used to lock down memory during I/O operations. A Physi-

calMemoryChain is created by calling Domain::constructChain with an address and length. The

chain contains structures representing the physical pages it has locked down and paged in (if neces-

sary) from the MemoryObjects in the Domain in that address range. When the block within which

the chain is used exists, the destructor releases the locks on the pages. A PhysicalMemoryChain-

ContiguousBlockIterator is used to iterate over contiguous ranges of physical memory in the chain

for e�cient I/O.

6.3.2 DMA/DVMA and Memory

In order to support both DMA and DVMA the Kernel initialization maps all physical memory in

the machine 1-1 to the same virtual address in the Kernel Domain. This enables the address of a

PhysicallyAddressableUnit (page) to be used by either type of system with the same code.

6.3.3 Interrupts

In Choices an object of class Exception is created that de�nes a basicRaise() method. The Exception

is installed by vector number into the CPU. The processor dependent code calls hardwareInterrup-

tAssist on the CPU, which looks up the Exception and raises it. Since any domain may be active

when the interrupt occurs the processor hardware or processor speci�c assist code makes sure we

are running on a stack in the kernel domain (each ProcessorContext de�nes a kernel and user stack

for application processes). Ideally drivers should be structured so that there is a SystemProcess

that loops doing P() on a Semaphore and the basicRaise method does a V() on the Semaphore to

signal that an interrupt occurs. This keeps the low level driver running on a borrowed system stack

to a minimum. The basicRaise can handle the interrupt directly, but if there is an error in the

driver (say an Assertion failure) the current Process will be looked up and killed even though it was

not really at fault. With a separate SystemProcess an unlucky application is not killed, although

the Kernel may halt anyway.

6.3.4 A typical driver sequence

� Lock down memory by creating a chain.

� On DVMA systems mirror the VM mappings for the virtual address in the Kernel so they are

always accessible if another Domain is active when an interrupt occurs.

� Set up the I/O and P() a semaphore.

� Wait for interrupts to drive the I/O. Use the Iterator to traverse the chunks of physical memory

if necessary.

� When the I/O is complete

{ On DVMA systems remove the kernel mirror mappings.

{ V() the semaphore, letting the block containing the chain exit causing the chain destructor

to unlock the memory.

January 21, 1992 { 16 : 35 DRAFT 19

6.4 Reference Counting and Garbage Collection

Choices implements reference counting on objects by using "Refs" and "Stars" which behave like

smart C++ references and pointers (*'s). The Refs and Stars implement reference counting and

allow things to be passed around more easily and automatically deleted when no longer needed.

The following code show the use of a reference counted Semaphore:

SemaphoreStar s = new Semaphore(); // Would have been Semaphore * = ...

s->P();

extern void semaphoreUser(SemaphoreStar s);

semaphoreUser(s);

s = 0; // unreference and delete if reference count == 0

// (if semaphoreUser didn't pass it on increasing reference count)

6.5 First Class Classes

Choices allow access to the Class hierarchy at run time much like Smalltalk allows. Every class

derived from Object is inserted in the Class system and can lookup access to its static and run

time hierarchy information. The constructors are also available for Classes enabling creation of a

member of that class from the Class hierarchy. See the �le Class.h for operations on Classes.

6.6 The SystemInterface

Choices does not have a typical system call interface such as UNIX. Instead, the Choices Kernel

gives Proxy objects to Applications that they can use as if they were normal C++ objects. When

a method on a Proxy is accessed it causes a trap to the Kernel which validates parameters and

executes the method on behalf of the Application.

6.6.1 Proxies

Choices implements Proxies by introducing an extra level of indirection. The pointer returned to

the user is really a pointer to an ObjectProxy, which contains information about the real object

and a pointer to the ObjectProxy C++ vtable. The vtable is used to implement virtual function

calls. The vtable points to the virtual function dispatch table for the class of the object. In the

ObjectProxy case the vtable points to an table of functions in the kernel that cause a trap. The

trap code then handles the call and arranges for return values. If the return value is another Kernel

object an ObjectProxy is created to that Object and returned instead.

In Choices there is an extra keyword "proxiable" added to the C++ header (interface) �les.

A class that is derived from the class ProxiableObject can be accessed from an Application level

ObjectProxy. Each virtual method of an class derived from the ProxiableObject class can have the

proxiable keyword prepended to it allowing that method to be called on the object.

6.6.2 Use of Proxies

The strength of using Proxies is that the implementation allows you to write code that is the same

whether in or out of the Kernel. For example, in an Application we can write:

January 21, 1992 { 16 : 35 DRAFT 20

SemaphoreStar sem = new Semaphore();

sem->P();

Console() << "Got signal\n" << eor;

6.7 System Boot and Initialization Sequence

This section describes how Choices boots and initializes itself.

6.7.1 Machine Dependent Basic Boot Loading

Each machine has it's own way of booting a kernel. The goal is to get the Kernel loaded into

low memory with VM disabled and jump to the entry point of the Kernel (usually called start).

Some machines, such as the SPARCstation, boot with VM enabled or have other things in memory

such as memory mapped I/O or EEPROM monitors. With a good bootloader the Kernel will be

loaded automatically and jumped to. Other machines may need an intermediate bootstrap that

the bootloader loads and then the intermediate bootloader loads and runs Choices. In any case

we assume that the bootloader and machine dependent boot code loads the Kernel into low (1-1

mappable) memory and calls Main(0,0);, followed by processorStart();

6.7.2 Kernel Initialization

Once the bootloader has loaded the Choices kernel into memory and jumped to it Main(0,0) is

called. Main sets up the boot allocator, does some initialization and calls MAIN for the particular

machine. The machine dependent main creates the Console and debugging will work now. Main

then calls constructors for statically allocated objects, creates the Kernel object, initializes the

Class objects, and calls Kernel::initialize().

Kernel::initialize creates input and output streams for the console, creates a scheduler and builds

and readies the �rst process, the Kernel setup process. It then continues, calling basicInitialize

which sets up the physical memory map and VM constants. When basicInitialize returns the

AddressTranslation::init() is called, so that memory allocated for page tables will be 1-1 mapped

since the allocation comes o� the bootHeap.

Now initial VM mappings are laid out in Kernel::initialize. The Kernel has three contiguous

parts: the low kernel and high kernel are separated by the ReadOnly section that contains the

ObjectProxy trap tables. The high part of the Kernel contains the code and data past the read-

only section plus any memory allocated by the boot allocator, which starts at the end of the kernel

and allocates memory linearly. After the Kernel MemoryObjects are inserted MemoryObjects for

mapping all of memory 1-1 are created and inserted, and �nally a MemoryObject for the kernel

heap is created and inserted.

At this point Kernel::initialize sets the Kernel memory allocator to be the kernelHeap, which

uses the heap memory object inserted above. At this point Kernel::initialize returns to Main,

which returns to the entry point function which calls processorStart.

January 21, 1992 { 16 : 35 DRAFT 21

processorStart looks up the current CPU, gets the idleProcess (created in the CPU constructor),

�nd the Processes context, and dispatches it. The dispatch activates the domain on the MMU,

enables VM, interrupts, etc. The idleProcess loops giving the processor away. The �rst process it

�nds to give the processor to is the kernel setup process. The setup process calls Kernel::main.

Kernel::main sets up some object names, does some Proxy initialization, creates and initializes

devices and device managing processes such as disks, ethernets, etc. builds the SystemInterface,

creates a cleanup process but does not ready it, and enters the loop dispatching applications. When

the dispatch loop terminates the cleanup process is readied, which brings the system down.

6.7.3 Memory Layout Assumptions

Once the Kernel has successfully booted the virtual memory layout should look something like this

(although it is slightly machine dependent):

--------------- 0x0

| invalid (opt.)|

--------------- _kernelStart

| low Kernel |

|readOnly Kernel|

| high Kernel |

--------------- &end

| Boot Heap |

| Kernel Heap |

| |

--------------- _kernelStart + _kernelSize

| Application |

--------------- _applicationStart

| |

| |

--------------- 0xffffffff

