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Abstract

The multinomial (Dirichlet) model, derived from de Finetti’s concept of exchangeability, is proposed as a general Bayesian

framework to test axioms on data, in particular, deterministic axioms characterizing theories of choice or measurement. For testing,

the proposed framework does not require a deterministic axiom to be cast in a probabilistic form (e.g., casting deterministic

transitivity as weak stochastic transitivity). The generality of this framework is demonstrated through empirical tests of 16 different

axioms, including transitivity, consequence monotonicity, segregation, additivity of joint receipt, stochastic dominance, coalescing,

restricted branch independence, double cancellation, triple cancellation, and the Thomsen condition. The model generalizes many

previously proposed methods of axiom testing under measurement error, is analytically tractable, and provides a Bayesian

framework for the random relation approach to probabilistic measurement (J. Math. Psychol. 40 (1996) 219). A hierarchical and

nonparametric generalization of the model is discussed.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many models of choice and measurement can be
characterized by a set of qualitative axioms. A set of
axioms is a set of assumptions that are jointly sufficient
for a model’s representation, and also, jointly sufficient
for a given level of the uniqueness of the representation.
At the same time, any single axiom clarifies what
predictions a model makes about subjects’ behavior.
In many cases, an axiom states a set of binary order

relations that must hold over elements of a non-empty
set A ¼ fa; b; c; . . .g (where A is possibly a Cartesian-
product). The elements refer to, for example, different
objects, stimuli, gambles, experimental conditions, or
groups of subjects. For any single pair of elements fa; bg;
a binary relation is of the form ahb; a � b; or a � b;
where � denotes ‘‘preference’’ (or ‘‘dominance’’), �

denotes ‘‘indifference’’, and h refers to ‘‘preference or
e front matter r 2004 Elsevier Inc. All rights reserved.
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indifference’’. Many axioms have been developed for
theories of choice and measurement, and virtually all of
the empirically testable axioms can be classified as
belonging to one of four types. Table 1 contains a list of
some of the names of well-known deterministic axioms
that correspond to each type. Table 1 also includes
names of some probabilistic axioms.
Given the fundamental scientific implications of

axioms, it is of primary importance to test whether data
conform to their predictions. However, there is a
challenging incompatibility between empirical data and
the nature of the axioms. On the one hand, empirical
data in general contain random error, which is
attributable to a number of sources, such as the inherent
unreliability of human (or animal) behavior, and
sampling error. On the other hand, the axioms do not
account for random error, because they are stated in a
deterministic, qualitative form (aside from the probabil-
istic axioms listed in Table 1). Therefore, there have
been major efforts to develop statistical methods of
axiom testing, starting with Iverson and Falmagne
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Table 1

Four different types of axioms, and well-known examples of them

Axiom type Examples of testable axioms

a � b Coalescing; segregation; gain-loss decomposition; additivity of joint receipt; duplex decomposition;

commutativity; complementarity.

ahb3chd Order independence; consequence monotonicity; joint independence; order independence of events;

monotonicity of joint receipt; stochastic dominance.

Strict form (replacing h with �): restricted branch independence; distribution independence; monotonicity of

event inclusion.

Probabilistic: quadruple condition.

ahb and. . .and chd ) ehf Transitivity; double, triple, quadruple, and higher-order cancellation; distributive, and dual-distributive

cancellation; stochastic dominance.

Strict form (replacing h with �): Lower cumulative independence; upper cumulative independence.

Probabilistic: Bi-cancellation, weak stochastic transitivity, moderate stochastic transitivity, strong stochastic

transitivity.

a � b and. . .and c � d ) e � f Thomsen condition, gains partition, N-compound invariance.
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(1985) likelihood-ratio method, and continuing with the
Bayesian statistical methods developed by Karabatsos
(Karabatsos, 2001, 2005; Karabatsos & Ullrich, 2003;
Karabatsos & Sheu, 2004).
The present study continues these efforts by propos-

ing a Bayesian statistical framework, described in
Section 2. This framework provides a practical basis
for testing any deterministic axiom, on discrete- or real-
valued response data that can be represented as
frequencies in one or more multidimensional contin-
gency tables. In particular, the data are modeled with a
Dirichlet posterior distribution, under a multinomial
sampling distribution for the data, and a Dirichlet prior
distribution specified over the multinomial parameters.
This exchangeable multinomial model is motivated from
de Finetti’s (1930, 1937/1964, 1970/1974, 1970/1975)
representation theorem, based on his concept of
exchangeability for 0–1 random vectors, each random
vector representing a multinomial response (see Bernar-
do (1996) for a recent discussion of this concept).
Furthermore, within this framework, a Bayes factor can
be directly computed to provide tests of any type of
deterministic axiom. Section 3 applies the Bayesian
framework to tests of 16 different axioms on real data.
All four types of axioms defined in Table 1 are
exemplified in these tests. The conclusions of Section 4
explain how this exchangeable multinomial model
generalizes models that have been previously proposed
for axiom testing. Moreover, this more general model is
far easier to implement, and it does not require a
deterministic axiom to be cast in a probabilistic form
(e.g., casting deterministic transitivity as weak stochastic
transitivity). A hierarchical and nonparametric general-
ization of the exchangeable multinomial model is also
discussed.
2. Exchangeable multinomial model: mathematical

background

The following four subsections explain the proposed
Bayesian framework for axiom testing. In the first
subsection, it is shown how each observed response
(data point) from a given experiment can be character-
ized as a 0–1 random vector (i.e., multinomial response).
In the second subsection, a multinomial (Dirichlet)
model is derived through de Finetti’s representation
theorem for an exchangeable sequence of 0–1 random
vectors, and the third subsection presents a Bayes factor
in closed form, which is useful for testing deterministic
axioms. Finally, the last subsection presents how the
exchangeable model and the Bayes factor are extended
to multiple, partially exchangeable 0–1 random vectors.

2.1. Data represented as response patterns

Suppose that in a given experiment, each subject is
viewed as having J possible response patterns. These
possible response patterns are represented by a J-length
vector R ¼ ðr1; . . . ; rj ; . . . ; rJÞ; where rjarh for all pairs
j; h 2 f1; . . . ; Jg; with jah: In particular, each rj denotes
a particular response pattern of one or more binary
preferences, each binary preference represented as a
member of the set fa � b; ahb; a 	 b; a"b; a �

b; afbg: Furthermore, a proper subset V 
 R of
possible response patterns represents violations of a
particular axiom, and the remaining set of response
patterns � V ¼ R � V represent non-violations.
As a simple example of the concept of ‘‘possible

response patterns,’’ consider two gambles a ¼ ($96,.95;
$0) and b ¼ ($96,.95; $24), where the form ($x; p; $y)
refers to a binary a gamble where $x is won with
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probability p, and $y is won with probability 1� p:
Suppose that a given experiment generated N total
responses, where for example, each of N subjects state a
single preference between these gambles, or where a
single subject stated a preference between these gambles
over NX1 repeated trials. The axiom of consequence
monotonicity predicts that the strict preference relation
a 	 b must occur. From such an experiment, there may
be J ¼ 2 possible response patterns over the two
gambles a and b, characterized by Rab ¼ ðr1 ¼

ahb; r2 ¼ a 	 bÞ; where pattern V ab ¼ r1 represents a
violation of consequence monotonicity, and pattern �

V ab ¼ r2 represents a non-violation. In indifference
responses are not allowed (forced-choice), then the
possible response patterns are Rab ¼ ðr1 ¼ a � b; r2 ¼
a 	 bÞ; where again, V ab ¼ r1 and � V ab ¼ r2: In a color-
matching experiment, where a � b signifies that light a is
metametric to light b, the possible response patterns
would be Rab ¼ ðr1 ¼ a � b; r2 ¼ afbÞ:
It is possible to extend the concept of possible

response patterns to handle more complex patterns of
binary preferences. As an example, consider the
transitivity axiom, which, for any set of three objects
fa; b; cg; predicts that

a � b and b � c imply a � c (1)

must hold. Again, suppose that an experiment generated
N subject responses. For example, each of N subjects
stated a strict preference between each and every pair of
the three objects fa; b; cg; or where a single a subject
stated a strict preference between each and every pair for
N repeated trials. From such an experiment, there are
J ¼ 8 possible response patterns, denoted by Rabc ¼

ðr1; r2; r3; r4; r5; r6; r7; r8Þ: Here, r1¼fa� b; b� c; a� cg; r2¼

fa� b; b	 c; a� cg; r3 ¼ fa 	 b; b � c; a� cg; r4 ¼ fa � b;
b 	 c; a 	 cg; r5¼fa	 b; b� c; a	 cg; r6 ¼ fa � b; b � c;
a 	 cg; r7 ¼ fa 	 b; b 	 c; a � cg; and r8 ¼ fa 	 b; b 	 c;
a 	 cg: Also, response patterns V ¼ fr6; r7g represent
violations of transitivity (1), and the remaining
patterns � V ¼ fr1; r2; r3; r4; r5; r8g represent non-
violations.
Since each of the four types of axioms presented in

Table 1 are characterized by a set of binary order
relations, the current study focuses on the case where
each rj refers to a pattern of binary preferences. But
indeed the same Bayesian framework proposed in this
study can be easily be applied when each rj characterizes
a pattern of M-ary preferences, for MX2 (e.g.,
Regenwetter, 1996).

2.2. Modeling a sequence of 0– 1 random vectors

Now suppose that fx1; . . . ;xi; . . . ;xNg is a sequence of
0–1 random vectors that is observed from an experiment
of size N, where any single observation xi ¼

ðxi1; . . . ; xij; . . . ;xiJÞ is a 0–1 vector of length J, such that
xij ¼ 1 if the ith response is response pattern rj ; and
xij ¼ 0 otherwise, with

PJ

j¼1 xij ¼ 1: Such a sequence
may have been observed from N different subjects of a
homogeneous group, or observed from the same subject
over N repeated trials.
When modeling the joint probability pðx1; . . . ;xi; . . . ;

xNÞ of the sequence, it can be reasonable to assume that
the subscripts that identify the N individual observations
fx1; . . . ; xi; . . . ;xNg are ‘‘uninformative,’’ in the sense
that the information that the xi’s provide are indepen-
dent of the order they are collected. That is, the
subscripts are finitely exchangeable, such that

pðx1; . . . ;xi; . . . ; xNÞ ¼ pðxpð1Þ; . . . ;xpðiÞ; . . . ;xpðNÞÞ (2)

holds for any permutation p defined on the set
f1; . . . ; i; . . . ;Ng: An infinite sequence of random quan-
tities fx1;x2; . . .g is infinitely exchangeable if every finite
sequence of fx1;x2; . . .g is exchangeable.
The following representation theorem describes the

form of the joint probability pðx1; . . . ;xi; . . . ;xNÞ; when
an observed sequence of 0–1 random vectors
fx1; . . . ; xi; . . . ;xNg arises from an infinitely exchangeable
sequence fx1; x2; . . .g:
Representation Theorem for 0–1 Random Vectors (de

Finetti, 1930, 1937/1964, Bernardo & Smith, 2002
Proposition 4.2, p. 176). If fx1; x2; . . .g is an infinitely

exchangeable sequence of 0–1 random vectors with

probability measure P, then there exists a distribution

function Q such that the joint mass function pðx1; . . . ;xi;
. . . ;xNÞ for the finite sequence fx1; . . . ;xi; . . . ;xNg has

the form

pðx1;x2; . . . ;xNÞ ¼

Z
Y

YN
i¼1

YJ

j¼1

y
xij
j dQðYÞ; (3)

where Y
¼ fY ¼ ðy1; . . . ; yj ; . . . ; yJÞ; yj 2 ½0; 1�;

PJ

j¼1 yj

¼ 1g; and where

QðYÞ ¼ lim
N!1

P½ðx̄1½N�py1Þ [ � � � [ ðx̄j½N�pyjÞ

[ � � � [ ðx̄J½N�pyJÞ�

for all j ¼ 1; . . . ; J; with x̄j½N� ¼ N�1
PN

i¼1 xij and yj ¼

limN!1 x̄j½N�:

For any exchangeable sequence of observations
fx1; . . . ; xi; . . . ;xNg; the resulting representation theorem
has three implications. First, it is as if, conditional on Y;
the sequence fx1; . . . ;xi; . . . ;xNg (observed from a
homogeneous group of subjects or a single subject) is
a random sample from a multinomial distribution with
parameter Y; according to a joint sampling distribution

pðx1; . . . ;xN jYÞ ¼
YN
i¼1

pðxi jYÞ ¼
YN

i¼1

YJ

j¼1

y
xij
j : (4)

Second, there exists a prior distribution Q which has to
describe the initially available information about Y
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which labels the model. Hence, a Bayesian approach is

required to model the joint probability pðx1; . . . ;
xi; . . . ;xNÞ: And third, by the strong law of large
numbers, yj ¼ limN!1 x̄j½N� for all j ¼ 1; . . . ; J; so the
distribution function Q may be interpreted as represent-
ing the prior beliefs about the limiting frequency of
response pattern rj :
Then from standard probability arguments involving

Bayes’ theorem, it follows that, after the outcome
fx1; . . . ;xi; . . . ; xNg of the experiment has occurred, the
available information about Y is described by its
posterior density:

pðY jx1; . . . ; xNÞ ¼

QN

i¼1 pðxi jYÞpðYÞR QN

i¼1 pðxi jYÞpðYÞ dY
; (5)

where pðYÞ refers to the prior distribution of Y in
terms of a probability density function. However, since
the representation theorem is an existence theorem,
it does not specify the form of the prior distribu-
tion pðYÞ (or in more general terms, the form of the
prior measure QðYÞ). Even so, it is possible to repre-
sent the prior density pðYÞ by the Dirichlet (Di)
distribution:

pðYÞ ¼
YJ

j¼1

GðtjÞ

 !�1

G
XJ

j¼1

tj

 !YJ

j¼1

y
tj�1
j

¼ DiðY j t1; . . . ; tj; . . . ; tJÞ; ð6Þ

where Gðt40Þ ¼
R1

0
qt�1e�q dq is the so-called Gamma

function (Johnson & Kotz, 1970), and where tj40 refers
to the prior information about the number of observa-
tions of response pattern rj: The Dirichlet prior
distribution (6) is proper in the sense that it satisfiesR

pðYÞ dYa1; and it is of the same family (conjugate
to) the multinomial distribution, which means that the
posterior distribution of Y is available in closed form as
a Dirichlet distribution:

pðY jx1; . . . ; xNÞ ¼
YJ

j¼1

Gðnj þ tjÞ

 !�1

�G
XJ

j¼1

ðnj þ tjÞ

 !YJ

j¼1

y
njþtj�1
j

¼ DiðY j t1 þ n1; . . . ; tj þ nj ; . . . ; tJ þ nJÞ;

ð7Þ

where nj ¼
PN

i¼1 xij counts the number of responses
equaling response pattern rj from the N total observa-
tions. In fact, from a sequence of exchangeable obser-
vations fx1; . . . ;xi; . . . ;xNg; the vector n ¼ ðn1; . . . ; nJÞ

(with N ¼
PJ

j¼1 nj) provides a sufficient statistic for the
parameter Y; thus pðY jx1; . . . ;xi; . . . ; xNÞ ¼ pðY j nÞ:
Furthermore, the posterior distribution (7) is proper
because it satisfies 0p

R
pðY j nÞ dYa1: This is im-

portant, because inferences based on an improper
posterior distribution (where
R

pðY j nÞ dY ¼ 1) are
not guaranteed to be asymptotically consistent, in the
sense that jŶ�Y0j does not necessarily converge to 0 as
N ! 1; where Ŷ is the posterior mode and Y0 is the
true population value of Y (e.g., Gelman, Carlin, Stern,
& Rubin, 2003, Section 4.3).
The posterior distribution (7) provides a basis for

testing axioms on a single exchangeable sequence of
data fx1; . . . ;xi; . . . ;xNg; while accounting for any prior
information that may be available about the J possible
response patterns R ¼ ðr1; . . . ; rj ; . . . ; rJÞ: However, when
there is no prior information available, as is often the
case in Bayesian analysis (e.g., Berger & Bernardo,
1992), it is reasonable to represent pðYÞ by a ‘‘non-
subjective’’ prior that has little influence, resulting in a
posterior distribution pðY jx1; . . . ;xi; . . . ;xNÞ that is
mostly determined by the data.
One possible choice of a non-subjective prior

distribution pðYÞ is the uniform distribution, speci-
fied by ft1 ¼ t2 ¼ � � � ¼ tJ ¼ 1g in (6) (and (7)). This
prior distribution represents the belief that, before the
sequence of data fx1; . . . ;xNg is observed, each and every
possible response pattern rj is expected to occur with
probability 1=J: While the uniform prior distribution is
proper (in the context of the Dirichlet prior distribution
(6)), it is, unfortunately, not invariant over one-to-one
transformations of Y: It seems that such invariance
is a minimum requirement for any method aimed at
testing axioms that characterize theories of choice or
measurement.
Alternatively, the reference prior distribution pro-

vides an appealing non-subjective choice for pðYÞ; since
it is invariant over the class of one-to-one transforma-
tions of Y: This prior is also appealing because, with
respect to all possible choices of proper prior distribu-
tions that could be defined on pðYÞ; the reference prior is
the choice of proper prior distribution that leads to a
posterior distribution pðY j nÞ / pðx1; . . . ;xN jYÞpðYÞ

that is most ‘‘data driven,’’ i.e., that leads to a posterior
pðY j nÞ that is mostly influenced by the sampl-
ing likelihood pðx1; . . . ; xN jYÞ; and least influenced
by the prior pðYÞ (Bernardo, 1979). More precisely,
the reference prior is the choice of prior distribu-
tion pðYÞ that maximizes the posterior informationR

pðnÞ
R

pðY j nÞ log½pðY j nÞ=pðYÞ� dn dY; where pðnÞ ¼R
pðn jYÞpðYÞ dY is the marginal distribution, andR
pðY j nÞ log½pðY j nÞ=pðYÞ� dY is the expected utility of

the data n (Bernardo & Smith, 2002, Section 3.4.4).
The reference prior is specified according to how

the analyst orders and groups the parameters y1; . . . ; yJ

in terms of importance (Berger & Bernardo, 1992).
For example, certain response patterns may be
of special theoretical interest to the researcher, and
thus s/he may treat a proper subset of the para-
meters y1; . . . ; yJ as the ‘‘parameters of interest,’’
and treat the remaining parameters as ‘‘nuisance’’
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parameters.1 In this paper, for the task of axiom testing,
all of the parameters will be treated as equally
important, i.e., they all form a single group. Under this
grouping, the reference prior is defined by the speci-
fication ft1 ¼ t2 ¼ � � � ¼ tJ ¼ 1=2g: This prior is in
fact equivalent to the Jeffrey’s prior for the multi-
nomial distribution (Jeffreys, 1961; Berger & Bernardo,
1992).

2.3. Axiom testing with the Bayes factor

In this study, an axiom is viewed as a hypothesis that
implies a proper subset O of the total parameter space
Y; such that the possible values of Y satisfy Y 2 O 


Y: In particular, a deterministic axiom is viewed as
‘‘completely true’’ when y ¼

P
rjeV yj ¼ 1; and so O is

represented by this sum-constraint. The term y is the
probability that a population of respondents yields
observation level response patterns that are consistent
with the theoretical-level order-relations that a specific
axiom implies. In other words, the probability y
indicates the degree to which an observed exchangeable
sequence is consistent with the axiom, such that, in the
limit as y approaches 1, it is increasingly certain that a
deterministic axiom is true.
As is well-known (e.g., Bernardo & Smith, 2002,

pp. 134–135), the posterior distribution of the sum y ¼P
rjeV yj can be written as

pðy j sÞ ¼ Diðy j t�V þ s; tV þ N � sÞ

¼ Beðy j t�V þ s; tV þ N � sÞ;

/ Binðs j yÞ Beðy j t�V ; tV Þ; ð8Þ

where Be refers to the Beta distribution, Bin denotes the
binomial distribution, s ¼

P
rjeV nj is a sufficient statistic

for y that counts the number of the N responses that do
not ‘‘violate’’ a given axiom, N � s is the number of
responses that do ‘‘violate,’’ and t�V ¼

P
rjeV

tjX0 and
tV ¼

P
rj2V tjX0 represent the prior information that

the axiom is non-violated and violated, respectively.
Eq. (8) makes explicit that the Beta distribution is a
special case of the Dirichlet distribution for J ¼ 2:
Furthermore, the posterior (8) is proper when and only
when t�V þ s40 and tV þ ðN � sÞ40:
Now suppose it was of interest to test the null

hypothesis H0 that a given axiom is satisfied with
probability y 2 ½cmin; cmax� 
 ½0; 1�; against the general
alternative hypothesis H1: ye½cmin; cmax� that it is vio-
lated. Using conventional ideas of Bayesian inference
(e.g., Carlin & Louis, 1996, pp. 47–54; Robert, 2001,
p. 436; Bernardo & Smith, 2002, p. 436), the Bayes
factor provides a device to compare the evidence in the
1Berger and Bernardo (1992) present a general algorithm for

deriving the reference prior for any number of ordered groups of

multinomial parameters.
data for H0 against H1: The Bayes factor is given by

BðH0: y 2 ½cmin; cmax�Þ

¼
pðs jH0Þ

pðs jH1Þ
¼

R
y2½cmin ;cmax �

Binðs j yÞBeðyÞ d yR
ye½cmin ;cmax �

Binðs j yÞBeðyÞ d y

¼
pðH0 j sÞ=pðH1 j sÞ

pðH0Þ=pðH1Þ
: ð9Þ

In the second term of the Bayes factor (9), pðs jH0Þ is the
likelihood of the observed number of axiom non-
violations s, given hypothesis H0: y 2 ½cmin; cmax�; and
pðs jH1Þ is that likelihood given the alternative hypoth-
esis H1: ye½cmin; cmax�: The third term of (9) shows that
the Bayes factor is also the ratio of integrated like-
lihoods, where for example, Binðs j yÞ denotes the
binomial likelihood of the observed number of axiom
non-violations s, integrated over the prior distribution
BeðyÞ within the parameter space y 2 ½cmin; cmax� of the
null hypothesis H0:
Finally, in the last term of (9), the posterior odds ratio

pðH0 j sÞ=pðH1 j sÞ is the post-experimental evidence of
H0 after having observed the data s, and the prior odds-
ratio pðH0Þ=pðH1Þ is the pre-experimental evidence in
favor of H0: This last term in (9) shows that the Bayes
factor BðH0 2 ½cmin; cmax�Þ is a ratio of these two odds,
that measures how much the data observation s has
increased ðBðH0 2 ½cmin; cmax�Þ41Þ or decreased ðBðH0 2

½cmin; cmax�Þo1Þ the odds of H0 relative to H1; from prior
(odds) to posterior (odds). The Bayes factor result of
BðH0 2 ½cmin; cmax�Þ41 (BðH0 2 ½cmin; cmax�Þo1; respec-
tively) means that there is more evidence in favor of
H0 versus H1 (more evidence in favor of H1 versus H0;
respectively). In fact, logðBðH0 2 ½cmin; cmax�ÞÞ is the
weight of evidence for H0 (Good, 1950, 1985).
The Bayes factor (e.g., (9)) has properties that are

necessary for coherent statistical tests. For example, it is
invariant over all one-to-one transformations of the
data (e.g., s) and parameters (e.g., y). Also, it satisfies
symmetry B12 ¼ 1=B21 and transitivity B13 ¼ B12B23;
where B12 denotes the Bayes factor of a hypothesis 1
over a hypothesis 2 (e.g., Robert, 2001, p. 351; Berger &
Pericchi, 1996, p. 119). Furthermore, although (9) is
formulated in terms of the posterior and prior prob-
ability of H0; and of H1; when using the Bayes
factor, one does not have to strictly assume that either
‘‘model’’ H0 or H1 is true. This is because the Bayes
factor is the integrated likelihood ratio weight of
one hypothesis over another (second term of (9)),
and therefore can be seen as measuring the relative
success of H0 versus H1 at predicting the data (e.g., s)
(Kass & Raftery, 1995; Berger & Pericchi, 1996). In fact
(Dawid, 1992; Hartigan, 1992), the predictive ideas of
the Bayes factor are related to so-called prequential
analysis (Dawid, 1984) and stochastic complexity
(Rissanen, 1987).
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It is straightforward to directly compute the Bayes
factor (9), in terms of the posterior probability pðH0 j sÞ

and the prior probability pðH0Þ (e.g., Carlin & Louis,
1996, p. 32). In particular

pðH0 j sÞ ¼ pðyocmax j sÞ � pðypcmin j sÞ; (10)

where pðypcmaxÞ (and pðypcminÞÞ is calculated through
the cumulative distribution function of the beta poster-
ior in (8):

pðypc j sÞ ¼
GðN þ t�V þ tV Þ

Gðs þ t�V ÞGðN � s þ tV Þ

�

Z c

0

zsþt�V ð1� zÞN�sþtV dz: ð11Þ

The prior probability of H0; which is pðH0Þ ¼

pðypcmaxÞ � pðyocminÞ; is calculated through (11) after
specifying s ¼ N ¼ 0: Furthermore, pðH1 j sÞ ¼

1� pðH0 j sÞ and pðH1Þ ¼ 1� pðH0Þ:
In this study, when testing a deterministic axiom on a

set of data with the Bayes factor BðH0 2 ½cmin; cmax�Þ; five
null hypotheses are considered separately, namely:
H0: yX:999; H0: yX:99; H0: yX:95; H0: yX:75; and
H0: yX:50: Consistent with Jeffreys’ (1961) interpreta-
tion, the result BðH0 2 ½cmin; cmax�Þo1=10 is interpreted
as indicating ‘‘decisive’’ evidence in the data against a
null hypothesis H0: Now, recall that in the limit as y
approaches 1, it is increasingly certain that a determi-
nistic axiom is true. According to this idea, then, if the
Bayes factor does not indicate decisive evidence against
H0: yX:999; it is concluded that the data do not violate
a given deterministic axiom. If however the Bayes factor
rejects all hypotheses except H0: yX:50 (that is, if each
of the four other stricter hypotheses obtained aBayes
factor less than 1/10), it is then concluded that the data
‘‘weakly’’ supports the deterministic axiom.
Occasionally, it is of interest to test an axiom under

some point-null hypothesis y0: For example, in experi-
ments conducted by Cho and colleagues (Cho, Luce, &
von Winterfeldt, 1994; Cho & Luce, 1995), it was
assumed that each subject had J ¼ 2 possible preference
responses for any paired presentation of gambles a and
b, characterized by the possible response patterns ðr1 ¼
a � b; r2 ¼ a 	 bÞ: In testing axioms having the form a �

b; these authors considered the null hypothesis H0: y0 ¼
1=2 against the alternative H1: y0a1=2: Accordingly, the
Bayes factor BðH0 2 ½cmin; cmax�Þ can be calculated under
the null hypothesis H0: j y�y0jp� against the general
alternative H1: j y�y0j4�; where � ¼ cmax � cmin repre-
sents a ‘‘small’’ interval ½cmin; cmax� 
 ½0; 1� centered
around y0(Berger & Delampady, 1987, p. 320). (But of
course, in the posterior pðy j sÞ used to calculate this
Bayes factor, s does not represent the observed number
of axiom non-violations, as both response patterns r1 ¼

a � b and r2 ¼ a 	 b violate an axiom with form a � b:
Here, s represents the number of observations of
response pattern r1 ¼ a � b; and thus N � s would then
be the number of observations of response pattern
r2 ¼ a 	 b:)
2.4. Testing axioms on partially exchangeable sequences

Thus far, we have only considered testing an axiom
on a data set of size N arising from a single exchange-
able observed sequence of 0–1 random vectors
fx1; . . . ; xi; . . . ;xNg; each observation labeled by a single
index i ¼ 1; 2; . . . : In other words, a sequence of
observations was assumed to arise from a homogeneous
group of subjects, or the same subject over multiple
trials. Clearly, in many applications of axiom testing, the
situation is more complicated than this. As an example
(not meant to describe all possible examples), a sequence
observed from an experiment may be represented by six
different subscripts, such as

fx1mc124; x2md137;x3fb125; x3fb225;x4mb134;

. . . ;ximb234; . . . ;xNfb448g; ð12Þ

where for instance x3fb125 denotes the response of subject
i ¼ 3; that subject being a female subject ð f Þ with
education level b (e.g., of five possible education levels
a; b; c; d; e), at time point 1 (e.g., of four total time
points) under experimental condition 2 (e.g., of four
possible experimental conditions), with respect to axiom
5 (e.g., of the eight total axioms that were tested in the
experiment). Certainly, it is not reasonable to model the
sequence in (12) as exchangeable, because the rates of
axiom violation may depend on subject, gender,
education level, experimental condition, time point,
and which axiom is being tested.
Given such a possibility of dependence, it is often

more realistic to assume exchangeability of a sequence
of observations fx1k

; . . . ; xik
; . . . ; xNk

g obtained from
within a homogeneous unit k, for multiple homogene-
ous units k ¼ 1; . . . ;m: For example, it may be reason-
able to assume exchangeability of observations fx1k

; . . . ;
xik

; . . . ;xNk
g obtained from the kth homogeneous group

of subjects characterized by a particular gender, educa-
tion level, time point, experimental condition, and
axiom. As another example, it may be reasonable to
assume exchangeability of the observations fx1k

; . . . ;
xik

; . . . ;xNk
g obtained from the kth homogeneous group,

characterized a particular subject, within a particular
experimental condition, and with respect to a particular
axiom.
In order to deal with such complicated situations, it is

necessary to adapt the basic form of the Representa-
tion Theorem to accommodate partial exchangeability.
This adaptation involves modeling a total sequence,
such as (12), as m independent exchangeable sequences
fx1k

; . . . ; xik
; . . . ;xNk

; k ¼ 1; . . . ;mg; where k indexes an
exchangeable sequence of Nk observations fx1k

; . . . ;



ARTICLE IN PRESS
G. Karabatsos / Journal of Mathematical Psychology 49 (2005) 51–69 57
xik
; . . . ;xNk

g obtained from a particular homo-
geneous unit.
When modeling the joint probability pðx1k

; . . . ;
xik

; . . . ;xNk
; k ¼ 1; . . . ;mÞ of m independent exchange-

able sequences, it is assumed that the sequences satisfy
unrestricted exchangeability, in the sense that

pðx1k
; . . . ;xik

; . . . ;xNk
; k ¼ 1; . . . ;mÞ

¼ pðxpk ð1k Þ
; . . . ; xpk ðik Þ

; . . . ; xpk ðNk Þ
; k ¼ 1; . . . ;mÞ ð13Þ

holds for any choice of permutation pk on f1k; . . . ;
ik; . . . ;Nkg; for k ¼ 1; . . . ;m: Infinite sequences of
random quantities fx1k

;x2k
; . . . ; ; k ¼ 1; . . . ;mg are un-

restricted infinitely exchangeable if every finite sequence
of fx1k

;x2k
; . . . ; g is exchangeable, for k ¼ 1; . . . ;m: If m

sequences of 0–1 random vectors fx1k
; . . . ; xik

; . . . ;
xNk

; k ¼ 1; . . . ;mg arises from m unrestricted infinitely
exchangeable sequences, then the following representa-
tion theorem describes the form of the joint probability:
pðx1k

; . . . ;xik
; . . . ;xNk

; k ¼ 1; . . . ;mÞ:
Representation Theorem for m sequences of 0–1

random vectors (Bernardo & Smith, 2002, pp.
211–216). If fx1k

; . . . ;xik
; . . . ; k ¼ 1; . . . ;mg are unrest-

ricted infinitely exchangeable sequences of 0–1 random

vectors with probability measure P, then there exists a

distribution function Q such that the joint mass function

pðx1k
; . . . ;xik

; . . . ;xNk
; k ¼ 1; . . . ;mÞ for the m finite

sequences fx1k
; . . . ;xik

; . . . ;xNk
; k ¼ 1; . . . ;mg has the

form

pðx1k
;x2k

; . . . ;xNk
; k ¼ 1; . . . ;mÞ

¼

Z
Y

Ym

k¼1

YNk

ik¼1

YJk

jk¼1

y
xikjk
jk

dQðY1; . . . ;Yk; . . . ;YmÞ ð14Þ

with Y
¼ Y

1 � � � � �Y

m; Y

k ¼ fYk ¼ ðy1k
; . . . ; yjk

;
. . . ; yJk

Þ; yjk
2 ½0; 1�;

PJk
jk¼1

yjk
¼ 1g; and QðYkÞ ¼

limNk!1 P½ðx̄1k ½Nk �
p y1k

Þ [ � � � [ ðx̄jk ½Nk �
p yjk

Þ [ � � � [

ðx̄Jk ½Nk �
pyJk

Þ� for all jk ¼ 1; . . . ; Jk and k ¼ 1; . . . ;m; with

x̄jk ½Nk �
¼ N�1

k

PNk
ik¼1

xikjk
; yjk

¼ limNk!1 x̄jk ½Nk �
:

Accordingly, with the prior density pðY1; . . . ;
Yk; . . . ;YmÞ assumed to be the product of m Dirichlet
densities:

pðY1; . . . ;Yk; . . . ;YmÞ

¼
Ym

k¼1

pðYkÞ ¼
Ym

k¼1

DiðYk j t1k
; . . . ; tJk

Þ; ð15Þ

the joint posterior distribution of Y1; . . . ;Yk; condi-
tional on m observed independent exchangeable se-
quences fx1k

; . . . ;xik
; . . . ; xNk

; k ¼ 1; . . . ;mg; is

pðY1; . . . ;Ym jx1k
; . . . ;xNk

; k ¼ 1; . . . ;mÞ

¼
Ym

k¼1

DiðYk j t1k
þ n1; . . . ; tjk

þ njk
; . . . ; tJk

þ nJk
Þ;

ð16Þ
and it follows that the joint posterior distribution
pðy1; . . . ; yk; . . . ; ym j s1; . . . ; smÞ is

pðy1; . . . ; ym j s1; . . . ; smÞ

¼
Ym

k¼1

Beðyk j t�Vk
þ sk; tVk

þ Nk � skÞ; ð17Þ

where yk denotes the posterior probability that an
axiom is satisfied in the kth exchangeable sequence of
observations fx1k

; . . . ; xik
; . . . ;xNk

g; and sk refers to the
number of axiom non-violations observed in that
sequence.
Of course, a set of m observed independent exchange-

able sequences fx1k
; . . . ;xik

; . . . ; xNk
; k ¼ 1; . . . ;mg can

give rise to a set of m Bayes factors fBðH0k: yk 2

½cmin;k; cmax;k�Þ; k ¼ 1; . . . ;mg; where BðH0k: yk 2

½cmin;k; cmax;k�Þ refers to a test of the null hypothesis
H0k: yk 2 ½cmin;k; cmax;k� 
 ½0; 1� against the alternative
hypothesis H1k: yke½cmin;k; cmax;k� on the kth sequence of
data. The parameter space ½cmin;k; cmax;k� of a null
hypothesis H0k may be chosen to vary over the different
sequences k ¼ 1; . . . ;m:
Since the Bayes factor is multiplicative, as supported

by its coherency properties mentioned in the previous
subsection (symmetry, transitivity), it is possible to
compute the Bayes factor for the evidence of the null
hypothesis H0: fyk 2 ½cmin;k; cmax;k�; k ¼ 1; . . . ;mg against
the alternative hypothesis H1: fyke½cmin;k; cmax;k�; any kg;
by the product:

BðH0Þ ¼
Ym

k¼1

BðH0k: yk 2 ½cmin;k; cmax;k�Þ: (18)

Eq. (18) provides a general and flexible method for
testing axioms on data that typically arise from
experiments. For example, it may be of interest to
test the null hypothesis H0 that the data satisfy a
single axiom, over m observed independent exchange-
able sequences, where each sequence k is from a
particular homogeneous group. Here, the kth sequence
may characterize the responses from subjects of a
particular gender, education level, experimental condi-
tion, and/or time point, or alternatively, the kth
sequence may reflect multiple trials within a single
subject. As a second example, given m indepen-
dent observed exchangeable sequences, it may be of
interest to test the null hypothesis H0 satisfy m differ-
ent axioms, where each sequence k corresponds to a
test of a particular axiom. Of course, the Bayes
factor (18) can be extended to test axioms in a situa-
tion reflecting some combination of the two preced-
ing examples. In summary, the Bayes factor (18) can
be aggregated over any m observed exchange-
able sequences, provided that these sequences are
independent.
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Table 3

Seven axioms of measurement theory

Axiom name Axiom

Transitivity ahb and bhc ) ahc

Quadruple condition Pða � bÞXPðc � dÞ3Pða � cÞXPðb � dÞ

Bi-cancellation Pðd � eÞXPða � bÞ and Pðe � f ÞXPðb � cÞ )

Pðd � f ÞXPða � cÞ

Order independence awhbw3axhbx; for 8x 2 A2

Double cancellation axhbw and byhcx ) ayhcw

Triple cancellation axhbw and byhcx and czhdy ) azhdw

Thomsen condition ay � cx and by � cw ) aw � bx

Note: The notation a; b; c; d; e; f ; . . . refer to objects (e.g., stimuli), while

Pða � bÞ refers to the probability that object a is preferred to object b:
Also, aw 2 A1 � A2 refers to an object having attribute a 2 A1 ¼

fa; b; c; d; . . .g and attribute w 2 A2 ¼ fw; x; y; z; . . .g; where A1 \ A2 ¼ ;:

G. Karabatsos / Journal of Mathematical Psychology 49 (2005) 51–6958
3. Axiom tests

This section presents example applications of the
Bayes framework described in Section 2, through tests
of 16 different axioms on real data, axioms that are
central to the theories of choice and measurement. Each
of the 16 axioms belongs to one of the four types of
axioms, as classified in Table 1. All these axioms were
tested using a statistical program the author developed
in the S-PLUS (1995) language, and is provided in the
Appendix.
Nine of the axioms, relating to theories of choice

behavior, will be tested, and they are detailed in Table 2.
See Luce (2000) for a full theoretical background on
these axioms. Table 2 contains notation in the form
($a;p; $b;q; $c; r), which denotes a gamble where $a is
won with probability p, $b is won with probability q,
and $c is won with probability r ¼ 1� p� q: Also,
Table 2 also refers to UðgÞ; denoting the utility of a
gamble g, and also refers to g � h; denoting the joint
receipt of two gambles g and h. As shown, the choice
axioms refer specifically to gambles having money
consequences. However, these axioms apply to choice
behavior in general. For example, Steingrimmson (2002)
Table 2

Nine axioms for theories of choice

Axiom name Axiom

Consequence

monotonicity

$ah $b3 ($a; p; $c)h ($b; p; $c)

Segregation ($a� $b;p; $b)� ($a;p; 0)� $b; for a; b40

Duplex

decomposition

($a; p;�$b)� ($a;p; 0)�($0, p;�$b), for

a; b40

Additivity of joint

receipt

Uðg � hÞ ¼ UðgÞ þUðhÞ

Stochastic dominance pr($a4t j g)Xpr($a4t j h)8t ) g � h or g � h

Coalescing ($a; p; $a; q; $b; r)� ($a; p þ q; $b; r)

Lower cumulative ($a; p; $b; q; $c; rÞ � ($a;p; $b
0; q; $c0; r))

independence ($b
0;p; $c;qþ r)� ($b

0;pþ q;$c0; r)

Upper cumulative ($a0;p; $b
0; q; $c0; r)� ($a;p; $b;q; $c0; r))

independence ($a0;p; $b
0; qþ r)� ($a;pþ q; $b

0; r)

Restricted branch ($a; p; $b; q; $c; r)� ($a0;p; $b
0; q; $c; r))

independence ($a; p; $b; q; $c0; r)� ($a0; p; $b
0;q; $c0; r)

Note: Notation such as ($a;p; $b;q; $c; r) refers to a gamble where $a is

won with probability p; $b is won with probability q; and $c is won

with probability r ¼ 1� p� q: Also, g and h denote two different

gambles, UðgÞ refers to the utility of a gamble g; and g � h refers to the

joint receipt of gambles g and h; and prð�Þ refers to the cumulative

distribution function defined on dollar amount.
consider choice axioms (with non-monetary conse-
quences) in the psychophysics domain.
Also, seven of the axioms of measurement theory will

be tested, and they are detailed in Table 3. Krantz, Luce,
Suppes, & Tversky (1971, Chap. 6), Falmagne (1985),
and Michell (1990) provide excellent backgrounds about
these axioms. As shown in Table 3, the transitivity,
quadruple condition, and bi-cancellation axioms pertain
to objects (e.g., stimuli) from a single set A ¼

fa; b; c; . . .g: In contrast, the axioms of conjoint measure-
ment theory, namely order independence, double
cancellation, triple cancellation, and the Thomsen
condition, refer to objects arising from the product set
A1 � A2; where (in general) A1 ¼ fa; b; c; . . .g and A2 ¼

fw;x; y; . . .g are two distinct sets, and aw 2 A1 � A2

denotes an object with attribute a and attribute w.
The following subsections describe the tests of the 16

axioms, using the Bayesian framework presented earlier.

3.1. Tests of consequence monotonicity

As a simple illustration, the Bayes factor is applied
first to test the consequence monotonicity axiom on
data. The data arise from an experiment conducted by
von Winterfeldt, Chung, Luce, & Cho (1997, Table 2,
p. 413), where 31 subjects stated a preference between
two gambles, ($96, .95; $0) and ($96, .95; $24). Since in
the second consequent of the two gambles, $244$0;
then subjects should prefer the second gamble to the
first, according to the axiom. The results of the
experiment showed that s ¼ 19 of the N ¼ 31 subjects
preferred the second gamble to the first, as predicted
by consequence monotonicity. In the experiment, a
subject was considered to prefer the second gamble
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to the first gamble, if and only if the subject judged
the second gamble to be worth a higher sum of money
than the first, i.e., had a higher ‘‘judged certainty
equivalent.’’
Given observation s ¼ 19 and N ¼ 31; is there enough

evidence in the data to support that the axiom is
violated? To answer this question, it is assumed that the
31 observations in the sequence fx1;x2; . . . ;x31g are
exchangeable, a random sample that depends on a
multinomial distribution with parameter vector Y: Also
consider J ¼ 2 possible response patterns, namely
r1 ¼ f($96,.95; $0) h ($96,.95; $24)g and
r2 ¼ f($96,.95; $0) 	 ($96,.95; $24)g; where only the
second response pattern conforms to consequence
monotonicity, thus V ¼ r1 and � V ¼ r2: In correspon-
dence, the parameter vector is Y ¼ ðy1; y2 ¼ 1� y1Þ;
with y2 ¼ y and y1 ¼ 1� y; where y is the probability
that consequence monotonicity is satisfied. Also, by
specifying t1 ¼ t2 ¼ 1=2; the reference prior distribution
is assumed over those possible response patterns.
Simply, t1 ¼ tV ¼ 1=2 is the prior on the response
pattern that represents a violation of the axiom, and
t2 ¼ t�V ¼ 1=2 is the prior on the response pattern that
represents a non-violation. It turns out that the data
ðs ¼ 19; N ¼ 31Þ ‘‘weakly’’ support consequence mono-
tonicity, as the Bayes factor concludes rejection of
H0: yX:999; H0: yX:99;H0: yX:95; and H0: yX:75;
Table 4

Number of N ¼ 31 subjects not violating consequence monotonicity (data fro

of that axiom over different priors ft1 ¼ tV ; t2 ¼ t�V g (for clarity, subscript

Gamble pair Non-violations ðsÞ

1. ($96, .05; $0) vs. ($96, .05; $6) 23

2. ($96, .20; $0) vs. ($96, .20; $6) 15

3. ($96, .50; $0) vs. ($96, .50; $6) 17

4. ($96, .80; $0) vs. ($96, .80; $6) 18

5. ($96, .95; $0) vs. ($96, .95; $6) 21

6. ($96, .05; $6) vs. ($96, .05; $24) 29

7. ($96, .20; $6) vs. ($96, .20; $24) 27

8. ($96, .50; $6) vs. ($96, .50; $24) 21

9. ($96, .80; $6) vs. ($96, .80; $24) 18

10. ($96, .95; $6) vs. ($96, .95; $24) 19

11. ($96, .05; $0) vs. ($96, .05; $24) 26

12. ($96, .20; $0) vs. ($96, .20; $24) 24

13. ($96, .50; $0) vs. ($96, .50; $24) 25

14. ($96, .80; $0) vs. ($96, .80; $24) 16

15. ($96, .95; $0) vs. ($96, .95; $24) 20

Bayes factors calculated over multiple gamble pairs

Bayes factor over gambles 1–5 (under H0: yX:5)
Bayes factor over gambles 5–10 (under H0: yX:5)

Bayes factor over gambles 11–15 (under H0: yX:5)

Bayes factor for all 15 gambles (under H0: yX:5)
but does not reject the hypothesis H0: yX:50: In
particular, B½H0: yX:5� ¼ 8:62; with pðH0 j sÞ ¼ :896
and pðH0 j sÞ ¼ :5:
Table 4 shows the observed number s of the N ¼ 31

responses not violating consequence monotonicity, for
each of 15 different pairs of gambles fk ¼ 1; . . . ;m ¼ 15g
studied by von Winterfeldt et al. (1997), including
the gamble pair just considered. It is assumed that for
every gamble pair k, the 31 observations in the sequence
fx1k

;x2k
; . . . ; x31k

g are exchangeable, a random sample
from a multinomial distribution with parameter vector
Yk ¼ ðy1k

; y2k
¼ ð1� y1k

ÞÞ; with y2k
¼ yk; and y1k

¼

ð1� ykÞ: One column of Table 4 presents the results of
the Bayes factor under the reference prior distribution
ft1k

¼ tVk
¼ 1=2; t2k

¼ t�Vk
¼ 1=2g for all k ¼ 1; . . . ; 15:

As shown, one gamble pair does not reject H0: ykX:99;
two pairs do not reject H0: ykX:95; two pairs do not
reject H0: ykX:90; four pairs fail to reject H0: ykX:75;
and the remaining six pairs fail to reject H0: ykX:50:
(Recall that when a null hypothesis, say H0: ykX:90; is
‘‘not rejected’’, it is implied that the Bayes factor is at
least 1/10 for all weaker hypotheses fH0: ykX:75;
H0: ykX:50g; and less than 1/10 for all stricter hypoth-
eses fH0: ykX:95;H0: ykX:99; H0: ykX:999g).
Table 4 presents Bayes factors calculated under two

other prior distributions that may be considered reason-
able, as specified by ft1k

¼ tVk
¼ 1; t2k

¼ t�Vk
¼ 4g and
m von Winterfeldt et al., 1997, Table 2), and the Bayes factors support

k is suppressed)

Null H0: yXcmin that was not rejected (Bayes factor)

tV ¼ 1=2 tV ¼ 1 tV ¼ 1

t�V ¼ 1=2 t�V ¼ 4 t�V ¼ 8

X:75 ð1:6Þ X:75 ð:51Þ X:75 ð:22Þ
X:50 ð:75Þ X:50 ð:11Þ None

X:50 ð2:4Þ X:50 ð:36Þ None

X:50 ð4:4Þ X:50 ð:69Þ X:50 ð:14Þ
X:75 ð:42Þ X:75 ð:15Þ X:50 ð2:3Þ
X:99 ð:18Þ X:99 ð:13Þ X:95 ð:88Þ
X:95 ð:22Þ X:95 ð:15Þ X:90 ð2:3Þ
X:75 ð:42Þ X:75 ð:15Þ X:50 ð2:3Þ
X:50 ð4:4Þ X:50 ð:69Þ X:50 ð:14Þ
X:50 ð8:6Þ X:50 ð1:42Þ X:50 ð:327Þ
X:90 ð:58Þ X:90 ð:29Þ X:75 ð:18Þ
X:75 ð3:1Þ X:75 ð:97Þ X:75 ð:43Þ
X:90 ð:21Þ X:90 ð:11Þ X:75 ð:89Þ
X:50 ð1:3Þ X:50 ð:20Þ None

X:95 ð:20Þ X:50 ð3:19Þ X:50 ð:82Þ

109181 16.20 .01

3:9� 1015 1:1� 1012 7:0� 109

3:2� 1012 1:1� 109 .01

1:4� 1033 2:2� 1022 4:8� 1014
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ft1k
¼ tVk

¼ 1; t2k
¼ t�Vk

¼ 8g for all k ¼ 1; . . . ; 15:
Each of these two priors represent the belief that, for
any of the 15 gamble pairs, a subject is more inclined to
prefer the second gamble over the first gamble. The
results of Table 4 indicate that there is less evidence of
consequence monotonicity, as there is more prior weight
on the second gamble in a pair. Under prior ft1k

¼

tVk
¼ 1; t2k

¼ t�Vk
¼ 8g; three gamble pairs violate the

axiom.
It may be reasonable to assume independence between

the five exchangeable sequences of 31 observations
fx1k

;x2k
; . . . ;x31k

; k ¼ 1; . . . ; 5g arising from gamble
pairs 1–5. Independence may also hold between the five
exchangeable sequences of 31 observations fx1k

;x2k
; . . . ;

x31k
; k ¼ 6; . . . ; 10g arising from each of the gamble pairs

6–10, and between the five exchangeable sequences
fx1k

;x2k
; . . . ;x31k

; k ¼ 11; . . . ; 15g arising from each of
the gamble pairs 11–15. However, it does not seem
realistic to assume that all m ¼ 15 exchangeable
sequences of observations fx1k

;x2k
; . . . ; ; k ¼ 1; . . . ;m ¼

15g are independent, because each of the 15 gamble pairs
shares a gamble with some other gamble pair. According
to the assumptions of independence that can be made,
Table 4 presents the results of the Bayes factor aggregated
over gamble pairs 1–5, to provide a test of the null
hypothesis H0: fykX:5; k ¼ 1; . . . ; 5g: Likewise, the
Bayes factor was aggregated over gamble pairs 6–10
under the null hypothesis H0: fykX:5; k ¼ 6; . . . ; 10g;
and aggregated over gamble pairs 11–15 under the null
hypothesisH0: fykX:5; k ¼ 11; . . . ; 15g: With respect to
priors ft1k

¼ tVk
¼ 1=2; t2k

¼ t�Vk
¼ 1=2g and ft1k

¼

tVk
¼ 1; t2k

¼ t�Vk
¼ 4g; these aggregate Bayes factors

indicate that there is very strong evidence that the data
satisfy consequence monotonicity, within each of the
three sets of gamble pairs 1–5, 6–10, and 11–15. But with
respect to prior ft1k

¼ tVk
¼ 1; t2k

¼ t�Vk
¼ 8g; the

Bayes factor indicates that each of the set of gamble
pairs 1–5 and 11–15 violate consequence monotonicity.
At the bottom of Table 4, it is seen that the Bayes

factor, aggregated over all 15 pairs of gambles, indicates
that the data, as a whole, satisfy consequence mono-
tonicity, for any of the three choices of prior distribu-
tion. Though these aggregate Bayes factors should be
interpreted with some caution. Since the 15 gamble pairs
share gambles, there may be dependence in the choice
responses among the subjects between those pairs, while
the Bayes factor should only be aggregated over
independent exchangeable sequences of data.
A reasonable way to address this response dependence

is to increase the number of possible response patterns
from J ¼ 2 (for the moment, the subscript k is
suppressed). For example, notice that gamble pairs 1,
6, and 11 share gambles (the same is true for gamble
pairs 2,7,12, for pairs 3,8,13, or pairs 4,9,14, and for
pairs 5,10,15). Instead of representing each of gamble
pairs 1, 6, and 11 with J ¼ 2 possible response patterns,
these three pairs may be combined to form J ¼ 8 possible
response patterns, Rabc ¼ ðr1; r2; r3; r4; r5; r6; r7; r8Þ: Here,
r1 ¼ fahb; bhc; ahcg; r2 ¼ fahb; bhc; a 	 cg; r3 ¼

fa 	 b; bhc; ahcg; r4¼fa 	 b; bhc; a 	 cg; r5¼ fahb;
b 	 c; ah�cg; r6 ¼ fahb; b 	 c; a 	 cg; r7 ¼ fa 	 b;
b 	 c; ahcg; and r8 ¼ fa 	 b; b 	 c; a 	 cg; where a; b
denote the two gambles from pair 1, gambles b; c are
from pair 6, and gambles a; c are from pair 11. From
Rabc response pattern � V ¼ r8 represents a non-viola-
tion of consequence monotonicity, while each of the
remaining patterns V ¼ fr1; r2; r3; r4; r5; r6; r7g do repre-
sent violations. Now, with the Bayes factor, it is possible
to test consequence monotonicity on the data frequen-
cies n ¼ ðn1; . . . ; n8Þ; and s ¼ n8; ðN � sÞ ¼ n1 þ n2 þ

n3 þ n4 þ n5 þ n6 þ n7: This approach to testing ad-
dresses any response dependency that may exist between
gamble pairs 1, 6, and 11, because the possible response
patterns in Rabc is constructed so as to combine the three
pairs that share gambles. Unfortunately, this analysis
could not be performed, since the paper by von
Winterfeldt et al. (1997, Table 2, p. 413) presents the
data as choice frequencies for each of the 15 gamble
pairs separately, and not as choice frequencies in the
form n ¼ ðn1; . . . ; n8Þ; with respect to a vector of possible
response patterns Rabc:

3.2. Tests of segregation, duplex decomposition, and

additivity of joint receipt

Table 5 presents the choice frequencies of eighteen
gamble pairs arising from subjects’ judged certainty
equivalents of each of the gambles, as reported in a
study conducted by Cho et al. (1994, p. 938, Table 1). In
Table 5, the frequencies are presented such that AoB

refer to an event where a subject judged the second
gamble in a pair to have a higher certainty equivalent,
A4B refers to an event where the first gamble was
judged higher. Finally, A ¼ B refers to an event where a
subject judged both gambles in the pair to have the same
certainty equivalent. In the following analysis, it is
assumed that for each gamble pair k ¼ 1; . . . ;m ¼ 18;
the 31 observations fx1k

;x2k
; . . . ;x31k

g are an exchange-
able, random sample from a multinomial distribution
with parameter Yk:
The data presented in Table 5 correspond to 6 tests

of each of the axioms of segregation, duplex decom-
position, and additivity of joint receipt. Recall that
each of these three axioms is stated in the form a � b:
So for each of the 18 gamble pairs k ¼ 1; . . . ;m ¼ 18;
the vector of possible response patterns are consi-
dered as Rab;k ¼ ðr1k

¼ ak � bk; r2k
¼ ak 	 bkÞ; where n1k

and n2k
are the choice frequencies of r1k

and r2k

respectively. Also, as done in Cho et al. (1994),
the number of tied choices ðA ¼ BÞ is divided by two,
and this number is added into each of the frequencies n1k

and n2k
:
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Table 5

Number of subjects whose judged certainty equivalents (CEs) for one type of gamble were higher than, equal to, or lower than those for the other

type of gamble, and Bayes factor values (data frequencies of the gamble pairs are from Table 1 of Cho et al., 1994)

Gamble pairs, segregation test AXB A ¼ B AoB Bayes factor

($166, .2; $70) vs. ($96, .2; $0)� $70 52 7 32 1.31

($166, .5; $70) vs. ($96, .5; $0)� $70 53 8 30 .64

($166, .9; $70) vs. ($96, .9; $0)� $70 37 29 34 12.01

(�$166, .2; $70) vs. (�$96, .2; $0)� �$70 11 9 36 :029
(�$166, .2; $70) vs. (�$96, .5; $0)� �$70 21 11 24 8.69

(�$166, .2; $70) vs. (�$96, .9; $0)� �$70 21 4 31 3.84

Overall Bayes factor for segregation ¼ 9:67

Gamble pairs, duplex decomposition test

($96, .2; �$40) vs. (96, .2; $0)� (0, .2; �$40) 33 13 45 5.42

($96, .5; �$40) vs. (96, .5; $0)�(0, .5; �$40) 36 19 36 11.99

($96, .9; �$40) vs. (96, .9; $0)� (0, .9; �$40) 44 10 37 9.16

($96, .2; �$160) vs. (96, .2; $0)� (0, .2; �$160) 31 20 40 7.68

($96, .5; �$160) vs. (96, .5; $0)� (0, .5; �$160) 35 20 36 11.92

($96, .9; �$160) vs. (96, .9; $0)� (0, .9; �$160) 34 19 38 10.98

Overall Bayes factor for duplex decomposition ¼ 598215:8

Gamble pairs, additivity of joint receipt test

($96, .2,$0)� ($70) vs. ($96, .2,$0) + ($70) 26 17 48 .82

($96, .5,$0)� ($70) vs. ($96, .5,$0) + ($70) 25 17 49 .49

($96, .9,$0)� ($70) vs. ($96, .9,$0) + ($70) 15 17 59 :0002
(�$96, .2,$0)� (�$70) vs. (�$96, .2,$0)+ (�$70) 27 5 24 8.69

(�$96, .5,$0)� (�$70) vs. (�$96, .5,$0)+ (�$70) 29 8 19 3.84

(�$96, .9,$0)� (�$70) vs. (�$96, .9,$0)+ (�$70) 34 12 10 :05
Overall Bayes factor for additivity of joint receipt ¼ :0001

Overall Bayes factor for segregation, duplex decomposition, and additivity of joint receipt ¼ 650:13

Note: Each result of the Bayes factor refers to the test of H0: j y�y0jp� against the alternative H1: j y�y0j4�; where y0 ¼ :5 and � ¼ 2� 10�6

(k subscript suppressed).
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According to the possible response patterns specified,
the parameter vector for each gamble pair k has the
form Yk ¼ ðy1k

; y2k
¼ ð1� y1k

ÞÞ; with y1k
¼ yk treated as

the probability of choice r1k
; and y2k

¼ ð1� ykÞ the
probability of choice r2k

: Also, the reference prior is
specified with t1k

¼ t2k
¼ 1=2: Since each of the axioms

is of the form a � b; the Bayes factor, for each pair k, is
computed under the null hypothesis H0k: j yk � :5 jp�;
against the general alternative H1: j yk � :5 j4�; where �
represents a ‘‘small’’ interval centered at the point null-
hypothesis y0k ¼ :5: This interval is � ¼ 2� 10�6; but can
be chosen to be arbitrarily small.
Table 5 shows the results of the Bayes factor, which

state that the data violate segregation in gamble pair
k ¼ 4; none of six gamble pairs violate duplex decom-
position, and gamble pairs k ¼ 15 and k ¼ 18 violate
additivity of joint receipt. Cho et al. (1994, Table 1)
calculated the w2 sign test under the point-null hypoth-
esis H0: y0k ¼ :5; and also reported that gamble pairs
k ¼ 4; 15; 18 violated their respective axioms (i.e.,
rejected the point-null hypothesis). In fact, among the
18 pairs of gambles, these three gambles had the highest
w2 values under the null hypothesis, while here, these
three gambles had the lowest Bayes factors. How-
ever, these authors reported that gamble pairs k ¼

1; 2; 4; 13; 14; 18 also violated their respective axioms.
These latter w2 results may reflect the well-known fact
that the p-value, arising from the w2 test, tends to
overstate the evidence against the null hypothesis,
especially for large sample sizes (Berger & Delampady,
1987, Section 4.6; Delampady & Berger, 1990).
It may be realistic to assume independence

between the 18 exchangeable sequences of observations
fx1k

;x2k
; . . . ; xNk

; k ¼ 1; . . . ;m ¼ 18g arising from all
gamble pairs 1–18, because none of the gamble pairs
share any gambles between them. This means that it is
possible to aggregate the Bayes factor over all the 18
exchangeable sequences, in any manner.
Table 5, shows that the Bayes factor was aggregated

over gamble pairs 1–6, to test the null hypothesis
H0: fjyk � :5jp�; k ¼ 1; . . . ; 6g; and it is concluded that
all these pairs, together, satisfy segregation. Also, under
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the null hypothesis H0: fjyk � :5jp�; k ¼ 7; . . . ; 12g; the
Bayes factor indicates that there is enormous evidence in
the data that the set of gamble pairs 7–12 satisfy duplex
decomposition. However, under the null hypothesis
H0: fjyk � :5jp�; k ¼ 13; . . . ; 18g; the Bayes factor indi-
cates that the set of gamble pairs 13–18 violate additivity
of joint receipt. Of course, it is possible to test whether
there is evidence that the data satisfy all three axioms, by
calculating the Bayes factor under the null hypothesis
H0: fjyk � :5jp�; k ¼ 1; . . . ; 18g: As the bottom of Table
5 shows, all eighteen pairs of gambles satisfy segrega-
tion, duplex decomposition, and additivity of joint
receipt, together. Though this global result should not
overshadow the fact that gamble pairs 13–18 violate
additivity of joint receipt.

3.3. Tests of many other axioms of theories of choice and

measurement

We now proceed to present several other data sets, in
Tables 6–10, assumed to contain eleven exchangeable
sequences k ¼ 1; . . . ;m ¼ 11: These sequences provide
tests of the 12 remaining axioms, outlined in Tables 2
and 3. Each of these data sets (sequences) is presented as
frequencies in a mutidimensional contingency table,
Table 6

Data sets for tests of stochastic dominance, coalescing, cumulative independe

1999, Tables 4–7). Frequencies in bold represent instances where the axiom

underline)

Gambles of two paired comparisons

(a) Data for tests of stochastic dominance and coalescing

a ¼ ð$12; :05; $14; :05; $96; :90Þ;

a0 ¼ ð$12; :10; $90; :05; $96; :85Þ;

b ¼ ð$12; :05; $14; :05; $96; :05; $96; :85Þ;

b
0
¼ ð$12; :05; $12; :05; $90; :05; $96; :85Þ:

(b) Data for the test of lower cumulative independence

c ¼ ð$2; :80; $40; :10; $44; :10Þ;

d ¼ ð$2; :80; $10; :10; $98; :10Þ;

c00 ¼ ð$10; :80; $44; :20Þ;

d 00
¼ ð$10; :90; $98; :10Þ:

(c) Data for the test of upper cumulative independence

c0 ¼ ð$40; :10; ; $44 :10; ; $110 :80Þ;

d
0
¼ ð$10; :10 ; $98; :10; $110; :80Þ;

c000 ¼ ð$40; :20; $98; :80Þ;

d
000
¼ ð$10; :10; $98; :90Þ:

(d) Data for the test of restricted branch independence

c ¼ ð$2; :80; $40; :10; $44; :10Þ

d ¼ ð$2; :80; $10; :10; $98; :10Þ:

c0 ¼ ð$40; :10; $44; :10; $110; :80Þ

d 0
¼ ð$10; :10; $98; :10; $110; :80Þ:
where an un-bolded frequency represents the number of
observations of a response pattern rjk

that characterizes
a violation of a specific axiom (that is, rjk

2 V k). A bold
frequency represents the number of observations of a
particular response pattern rjk

that represents a non-
violation of a specific axiom (that is, rjk

2� V k).
Table 6 presents data from Birnbaum’s (1999)

experiment, as four separate 2� 2 contingency tables,
each indicating the observed frequencies of preference-
responses made over two pairs of gambles (each single
gamble is described in that table). The frequency data
were generated from a lab-based experiment where 124
subjects stated preferences between pairs of gambles,
over two repeated trials. Thus there were 248 responses
for each gamble pair (aside from missing data arising
from occasional subject non-response). The objective of
Birnbaum’s experiment was to test the several axioms of
choice behavior, including stochastic dominance, coa-
lescing, lower cumulative independence, upper cumula-
tive independence, and restricted branch independence.
Tables 7 and 8 refer to a data set of 14 cancer patients

who indicated, on each pair of a set of symptoms A ¼

fa; b; c; d; e; f g (described in the tables), the symptom
they prefer to learn more about. This data set is
available in http://umanitoba.ca/centres/mchp/concept/
nce, and branch independence, on gamble preference data (Birnbaum,

is not violated (for stochastic dominance and coalescing: bold and

Choice frequencies

http://umanitoba.ca/centres/mchp/concept/thurstone/programming.html
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Table 8

Data for the test of bi-cancellation on the symptoms data set

Choice frequencies

The data frequencies in bold indicate instances where the axiom is not

violated.

Note: The items for paired comparisons are: a ¼ insomnia; b ¼ bowel;
c ¼ fatigue; d ¼ appetite; e ¼ breathing; f ¼ pain:

Table 7

Data for tests of transitivity and the quadruple condition on the

symptoms data set

Items of paired comparisons Choice frequencies

(a) Data for a test of transitivity

a ¼ Insomnia

b ¼ Bowel

d ¼ Fatigue

(b) Data for a test of the quadruple condition

a ¼ Insomnia

b ¼ Bowel

e ¼ Breathing

f ¼ Pain

The data frequencies in bold indicate instances where the correspond-

ing axiom is not violated.
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thurstone/programming.html. The data presented in
Table 7a provide a test of transitivity arising from three
paired comparisons of symptoms a; b; and d, and the
data in Table 7b provide a test of the quadruple
condition using four paired comparisons of symptoms
a; b; e; and f. (Recall that the quadruple condition is
defined in Table 3 in terms of choice probabilities.) Also,
the data in Table 8 provide a test of the bi-cancellation
condition arising from six paired comparisons of all six
symptoms.
Tables 9 and 10 refer to data arising from a memory

experiment (obtained from W. H. Batchelder and Jarad
Smith, University of California at Irvine). The data in
these two tables provide tests of axioms of conjoint
measurement. In this experiment, each of 109 subjects
were instructed to study a set of words for a short time
period, and after the study period, and then to recall the
words over four separate repeated trials.2 The tables
refer to the set of trials as A1 ¼ fa ¼ Trial 1; b ¼

Trial 2; c ¼ Trial 3; d ¼ Trial 4g; and four words, de-
fined by the set A2 ¼ fw ¼ Word 1; x ¼ Word 2; y ¼

Word 3; z ¼ Word 4g: For any member of the product
set aw 2 A1 � A2; in terms of the data, a single
observation is coded aw ¼ 1 when a subject successfully
2Of course, in this data example; the solvability axiom of conjoint

measurement is violated unless the four levels of the ‘‘Trials’’ factor are

equally spaced (see Krantz et al., 1971, Chapters. 1 and 6).
recalls word a on trial w, and aw ¼ 0 otherwise.
Therefore, for any pair aw; bx 2 A1 � A2; a relation
awhbx in Tables 9 and 10a refers to a data observation
where the response on aw is greater than or equal to the
response on bx, and aw 	 bx when response bx is
greater than response aw. Similarly, a relation aw � bx

in Table 10b refers to a data observation where the
response on aw is equal to the response on bx, and ‘‘not
aw � bx’’ is an observation where they are not equal.
The sixth column of Table 11 (labeled ‘‘1-GROUP’’)

presents the results of the Bayes factor, for tests of each
of 12 axioms of decision and measurement, on the data
sets described in Tables 6–10. In this column, it is
assumed that for each test of the 12 axioms, the
sequence of observations fx1k

;x2k
; . . . ; xNk

g arising from
a group of Nk subjects, are exchangeable, a random
sample from a multinomial distribution that depends on
a parameter Yk ¼ ðy1k

; y2k
; . . . ; yjk

. . . ; yJk
Þ; with yk ¼P

rjk
eVk

yjk
and 1� yk ¼

P
rjk

2Vk
yjk

: Moreover, the
Bayes factor is considered under five different null
hypotheses, namely: H0: ykX:999; H0: ykX:99; H0: ykX

:95; H0: ykX:75; and H0: ykX:50: Also, recall that each
axiom is assigned a prior specification ft�Vk

; tVk
g

http://umanitoba.ca/centres/mchp/concept/thurstone/programming.html
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Table 11

Tests of 12 axioms with the Bayes factor (for clarity, k subscript is

suppressed)

Axiom Prior Prior s N Null H0: yXcmin
t�V tV that was not rejected

(Bayes factor)

1-Group Individual

Stochastic .5 1.5 54 245 Axiom Axiom

dominance violated violated

and coalescing

Coalescing only 1 1 78 245 Axiom Axiom

violated violated

Lower 1.5 .5 189 246 X:75 X:75
cumulative ind. (2.0) ð2:7� 106Þ

Upper 1.5 .5 139 245 X:50 Axiom

cumulative ind. (14.6) violated

Restricted branch 1 1 170 244 X:50 X:75
independence ð3:9� 109Þ ð6:8� 1010Þ

Transitivity 3 1 12 14 X:95 X:95
(.32) ð:31Þ

Quadruple 6 2 12 14 X:95 X:95
condition (.41) (.39)

Bi-cancellation 27.5 4.5 13 13 X:999 X:999
(5.19) (7.10)

Order 1 7 74 109 X:75 X:95
independence (78.7) ð7:2� 1019Þ

Double 3 1 88 109 X:75 X:75
cancellation (9.0) ð1:2� 105Þ

Triple 7 1 94 109 X:90 X:75
cancellation (.12) ð4:5� 104Þ

Thomsen 3 1 88 109 X:75 X:75
condition (9.0) ð1:2� 105Þ

Note: ‘‘Prior t�V ’’ refers to the prior t�V ¼
P

rjeV tj that an axiom is

satisfied, and ‘‘Prior tV ’’ refers to the prior tV ¼
P

rj2V tj that the

axiom is violated (assuming the reference prior over all J possible

response patterns).

Table 9

Data for tests of independence and double cancellation on the

(simulated) memory experiment data

Pattern frequencies

(a) Data for a test of ordinal independence

(b) Data for a test of double cancellation

text

The data frequencies in bold indicate instances where the correspond-

ing axiom is not violated.

Note: The objects of conjoint measurement are trials: A1 ¼ fa ¼ Trial

1, b ¼ Trial 2, c ¼ Trial 3, d ¼ Trial 4g; and words: A2 ¼ fa ¼

Word 1; b ¼ Word 2; c ¼ Word 3; d ¼ Word 4g:

Table 10

Data for tests of triple cancellation and the Thomsen condition on the

(simulated) memory-experiment data

Pattern frequencies

(a) Data for a test of triple cancellation

(b) Data for a test of the Thomsen condition

The data frequencies in bold indicate instances where the correspond-

ing axiom is not violated.

Note: The objects of conjoint measurement are trials: A1 ¼ fa ¼

Trial 1; b ¼ Trial 2; c ¼ Trial 3; d ¼ Trial 4g; and words: A2 ¼ fa ¼

Word 1; b ¼ Word 2; c ¼ Word 3; d ¼ Word 4g:
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according to the number of response patterns the axiom
contains in � V k; and the number of response blocks it
contains in V k; with respect to the reference prior
specified over all relation blocks, ft1k

¼ � � � ¼ tJk
¼

1=2g: So for example, Table 9b shows that 2 of the
eight response patterns violate double cancellation, and
the 6 remaining response patterns do not violate. Given
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the reference prior ft1k
¼ � � � ¼ tJk

¼ 1=2g; the prior

specification ft�Vk
; tVk

g for double cancellation is derived

as t�Vk
¼
P

rjk
eVk

tjk
¼ 3 and tVk

¼
P

rjk
2Vk

tjk
¼ 1:
The sixth column of Table 11 (labeled ‘‘1-GROUP’’)
shows that the data violate both stochastic dominance
and coalescing, and coalescing alone; in each case,
H0: yX:50 was rejected, with the Bayes factor being
near zero. But other data sets appear to give ‘‘strong’’
support for several axioms, such as transitivity
(H0: ykX:95 is not rejected by the Bayes factor), the
quadruple condition (H0: ykX:95 not rejected), bi-
cancellation (H0: ykX:999 not rejected), and triple
cancellation (H0: ykX:90 is not rejected). Also, the data
give ‘‘moderate’’ support for lower cumulative indepen-
dence, order independence, double cancellation
(H0: ykX:75 is not rejected), and ‘‘weak’’ support for
upper cumulative independence and restricted branch
independence (H0: ykX:50 is not rejected).
The seventh column of Table 11 (labeled ‘‘INDIVI-

DUAL’’) shows the results of the Bayes factor,
calculated under a different assumption of exchange-
ability that accounts for individual (subject) differences
in response behavior. In particular, exchangeability is
assumed within each subject (for the five axioms
considered from Birnbaum’s (1999) experiment, exchan-
geability is assumed within each trial as well). More
precisely, within each of the 12 axioms, and within each
subject now indexed by k, the single response of the kth
subject fx1k

g is viewed as a random sample that depends
on a multinomial parameter vector Yk; assuming fx1k

g is
from an exchangeable sequence fx1k

; x2k
; :::g: (We could

imagine unobserved multiple trials within that subject.)
One advantage to this assumption of exchangeability is
that, since responses are nested within each subject, the
assumption of independence between choice pairs is
avoided.
Then within each axiom, over the parameter vectors

Y1; . . . ;Yk; . . . ;Ym; one vector per subject k, the Bayes
factor in support of the null hypothesis H0 that the
axiom is satisfied is simply calculated through Eq. (18)
by BðH0Þ ¼

Qm

k¼1 BðH0k : yk 2 ½cmin;k; cmax;k�Þ: Compared
with the Bayes factors in the sixth column of Table 11
(labeled ‘‘1-Group’’), the Bayes factors of the seventh
column (labeled ‘‘Individual’’) that account for indivi-
dual (subject) differences, provide four different conclu-
sions. In particular, order independence and restricted
branch independence are more strongly satisfied, triple
cancellation is more weakly satisfied, and upper
cumulative independence is violated.
4. Conclusions, connections, and generalizations

The Bayesian framework proposed in this paper
provides a practical basis testing data fit to all types of
deterministic axioms choice and measurement, for a
wide range of experimental setups. The focus of the
current study was the exchangeable multinomial model:

pðx1k
;x2k

; . . . ;xNk
; k ¼ 1; . . . ;mÞ

¼

Z
Y2O�Y

Ym

k¼1

YNk

ik¼1

YJk

jk¼1

y
xikjk
jk

dQ

ðY1; . . . ;Yk; . . . ;YmÞ; ð19Þ

where Y
¼ Y

1 � � � � �Y

m;Y


k ¼ fYk ¼ ðy1k
; . . . ; yjk

;
. . . ; yJk

Þ; yjk
2 ½0; 1�;

PJk
jk¼1

yjk
¼ 1g; and O is a subset of

Y implied by a specific deterministic axiom. The model
in (19) provides a Bayesian framework for the so-called
‘‘Random Relations’’ approach (Regenwetter, 1996) to
representing judgements and preferences. This approach
entails assigning a probability measure on possible
response patterns of M-ary preference relations (it is
straightforward to extend (19) such that each possible
response pattern consists of a set of M-ary relations, for
MX2). Furthermore, there are two other general ways
to represent judgements and preferences. They are the
random utility approach (which assumes that a real-
valued utility random variable is associated with each
choice alternative), and the random relations approach
(which assumes that the set of choice alternatives are
represented as a utility function, being a random sample
from an urn of such utility functions). It is proven that,
under reasonable conditions, that if any one of the three
representations hold, then so do each of the others
(Regenwetter & Marley, 2001).
Model (19), in terms of Jk; generalizes two other

statistical models that were proposed for axiom testing.
First, the binomial model, a special-case of (19) assuming
Jk ¼ 2; has been extensively investigated by Karabatsos
(2001), Karabatsos & Ullrich (2003) and Karabatsos &
Sheu (2004) in Bayesian tests of conjoint measurement
axioms on binomial data. These axioms included indepen-
dence, double cancellation, joint independence, distributive
cancellation, and dual-distributive cancellation (see Kar-
abatsos, 2005, for a review). In this context, the subset O
represented order-restrictions on the binomial parameters,
such as fy1k

p � � �pyjk
p � � �pyJk

g: Second, Iverson &
Falmagne’s (1985) and Iverson (1991), in a classical
statistical (non-Bayesian) framework, also proposed a
binomial model with Jk ¼ 2; where the probability of m

exchangeable sequences is conditioned on the maximum-
likelihood estimate of the vector Y ¼ ðY1; . . . ;YmÞ:

pðx1k
;x2k

; . . . ;xNk
; k ¼ 1; . . . ;mÞ

¼ sup
Y2O�Y

Ym

k¼1

YNk

ik¼1

YJk¼2

jk¼1

y
xikjk
jk

 !
: ð20Þ

Here,Y ¼ ðY1; . . . ;YmÞ is constrained to lie within a subset
O; representing the parametric order-constraints implied by
any probabilistic axiom, such as weak stochastic transitivity:
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Pða � bÞX1=2 and Pðb � cÞX1=2 imply

Pða � cÞX1=2; for all a; b; c 2 A; ð21Þ

or the quadruple condition (see Table 3).
For four reasons, model (19) that handles the case of

JkX2 provides a significant improvement over the two
models that strictly assume Jk ¼ 2: First, in the task of
axiom testing, model (19) does not require a determinis-
tic axiom to be reformulated into a probabilistic axiom
(e.g., does not require deterministic transitivity to be
reformulated as weak stochastic transitivity). Second,
the two models that assume Jk ¼ 2 tend to demand
computationally-intensive methods for axiom testing. In
particular, they either require Markov chain Monte
Carlo simulation of the posterior distribution of the
order-constrained parameters pðY jx1k

;x2k
; . . . ;xNk

; k ¼

1; . . . ;mÞ (Gelfand, Smith, & Lee, 1992; Chib & Green-
berg, 1995), or require the derivation of highly complex
optimization methods to find the maximum likelihood
estimate of Y under the restriction Y 2 O 
 Y (Iverson
& Falmagne, 1985). In contrast, as demonstrated in
Section 3, model (19) can be implemented to test any of
the four types of axioms on data, over many different
types of experiments, using a Bayes factor that can be
directly calculated. Third, the non-Bayesian model (20)
does not account for uncertainty in the parameter vector
Y ¼ ðY1; . . . ;YmÞ; since it predicts that the probability
of the m exchangeable sequences fx1k

;x2k
; . . . ; ; k ¼

1; . . . ;mg is conditioned on the maximum likelihood
estimate of Y subject to the constraint Y 2 O � Y: In
contrast, the Bayesian model (19) accounts for the
uncertainty in model parameters, by predicting that the
m exchangeable sequences is based on the integration of
the multinomial likelihood over the prior distribution
QðY1; . . . ;YmÞ:
Fourth, model (19) easily accommodates any depen-

dence that exists between paired comparisons that share
objects. The two other models that imply Jk ¼ 2 assume
that the vector of possible response patterns is Rk ¼

ðr1k
¼ a � b; r2k

¼ a 	 bÞ; for the kth object pair a; b 2

A; and for all distinct pairs of objects k ¼ 1; . . . ;m:
Obviously, this specification of possible response pat-
terns leads to the parameterization Yk ¼ ðy1k

¼ Pða �

bÞ; y2k
¼ ð1� y1k

Þ ¼ Pða 	 bÞÞ for each exchangeable
sequence k ¼ 1; . . . ;m: But this assumption of Jk ¼ 2
may be unrealistic for all experimental setups, because
this leads to the assumption that any subject’s choices
between two objects are independent over the m paired
comparisons (see (19)). On other words, it leads to the
assumption that, for any two object pairs k; k0

2

f1; . . . ;mg; a subject’s preference between a and b within
a pair k is independent from his/her preference between
another b and c in a different pair k0; even though the
same object b appears in both paired comparisons. Of
course, one can design an experiment with conditions
where subjects are induced to make independent
responses between all m unique pairs of objects a; b 2

A; and/or by presenting subjects m pairs such that any
two pairs k, k

0
2 f1; . . . ;mg; one pair does not consist of

the same objects as another pair k
0: But even so, for the

analysis of choice data, it seems more satisfying to
consider a model that accommodates any dependence
that exists between paired comparisons that share
objects. As mentioned, (19) does provide such a model,
and it seems to provide a method for testing axioms on
data arising from a larger class of experiments, not just
data arising from experiments where subjects provided
m independent paired-comparison judgements. Model
(19) is able to accommodate JkX2 possible response
patterns of binary preference relations fr1k

; r2k
; . . . ; rJk

g;
so that within a response pattern, the binary preference
relations are over paired comparisons that share objects.
As a simple example: Rabc;k ¼ ðr1k

¼ fa�b; b�cg; r2k
¼

fa	b; b�cg; r3k
¼fa�b; b 	 cg; r4k

¼ fa 	 b; b 	 cgÞ;
where object b is shared. Recall that Section 3 provided
many other examples of this approach, in tests of
restricted branch independence, lower and upper cumu-
lative independence, transitivity, double cancellation,
and so forth.
To conclude, (19) can be generalized to a hierarchical

model, by not only by treating each of the m sequences
fx1k

; . . . ; xik
; . . . ;xNk

; k ¼ 1; . . . ;mg as exchangeable, but
also by treating the parameters Y1; . . . ;Yk; . . . ;Ym as an
exchangeable, random sample from a distribution that
depends on a hyper- parameter f with prior distribution
PðfÞ: This hierarchical model is given by

pðx1k
; x2k

; . . . ;xNk
; k ¼ 1; . . . ;mÞ ¼

Z
Y2O�Y

Ym

k¼1

YNk

ik¼1

YJk

jk¼1

y
xikjk
jk

dQ

ðY1; . . . ;Yk; . . . ;Ym jfÞ;QðY1; . . . ;Yk; . . . ;Ym jfÞ ¼
Ym

k¼1

fðYkÞ

PðfÞ: ð22Þ

Model (22) offers a flexible framework that allows for
any dependence that may exist between the parameters
Y1; . . . ;Yk; . . . ;Ym; whereas model (19) strictly assume
that these parameters are independent. Independence
may not be realistically assumed when the parameters
Y1; . . . ;Yk; . . . ;Ym can be judged as being ‘‘similar.’’
Such judgements of similarity may be reasonable when
the same subject is observed under m different condi-
tions, or when m different subjects are observed under a
particular experimental condition (e.g., time point).
Judgements of similarity may also be reasonable when
m different experiments are involved in the same study,
or when m different paired comparisons of an experi-
ment share choice objects between them. Hierarchical
models of the form (22) deserve study in future research
on methods of axiom testing. In fact, if Pð�Þ is specified
by a Dirichlet process prior (Ferguson, 1973; Lo, 1984)
or by a Póeya Tree prior (Mauldin, Sudderth, &
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Williams, 1992; Lavine, 1992, 1994), then it is possible
with (22) to generalize axiom testing to be based entirely
on a non-parametric framework of statistical inference.
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Appendix

An S-Plus program for computing the Bayes factor, for testing a deterministic axiom under an interval-null
hypothesis.
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