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Abstract
Purpose: New and more consistent biomarkers of head

and neck squamous cell carcinoma (HNSCC) are needed to
improve early detection of disease and to monitor successful
patient management. The purpose of this study was to de-
termine whether a new proteomic technology could cor-
rectly identify protein expression profiles for cancer in pa-
tient serum samples.

Experimental Design: Surface-enhanced laser desorp-
tion/ionization-time of flight-mass spectrometry Protein-
Chip system was used to screen for differentially expressed
proteins in serum from 99 patients with HNSCC and 102
normal controls. Protein peak clustering and classification
analyses of the surface-enhanced laser desorption/ionization
spectral data were performed using the Biomarker Wizard
and Biomarker Patterns software (version 3.0), respectively
(Ciphergen Biosystems, Fremont, CA).

Results: Several proteins, with masses ranging from
2,778 to 20,800 Da, were differentially expressed between
HNSCC and the healthy controls. The serum protein expres-
sion profiles were used to develop and train a classification
and regression tree algorithm, which reliably achieved a
sensitivity of 83.3% and a specificity of 100% in discrimi-
nating HNSCC from normal controls.

Conclusions: We propose that this technique has poten-
tial for the development of a screening test for the detection
of HNSCC.

Introduction
Head and neck squamous cell cancer (HNSCC) remains a

significant disease, comprising �5% of all cancers in the United
States and an even larger proportion of cancers worldwide
(1). Tobacco use and excess alcohol consumption are well-
established risk factors for HNSCC. Despite many advances in
the treatment of HNSCC over the past 30 years, little progress
has been made toward improving survival rates. Given the usual
location of these tumors, they are often discovered in advanced
stages. Treatment of advanced HNSCC frequently leaves pa-
tients disfigured, with debilitating side effects of radiation and
chemotherapy manifested as compromised speech and swallow-
ing and significantly diminished quality of life.

Despite increased awareness and education about the po-
tential effects of tobacco and alcohol use, the incidence of
HNSCC in the United States has changed very little. Indeed,
prevention and early diagnosis are accepted as mainstays of
successful HNSCC treatment. Yet, no accepted screening test
exists for this cancer type. In fact, screening for HNSCC is not
mentioned in the most recent screening guidelines of the Amer-
ican Cancer Society (2) due primarily to the lack of sufficient
screening tools available to physicians. Aside from a complete
head and neck physical examination and imaging studies in
those patients with suspicious clinical findings or symptoms,
there are no accepted methods to screen for these cancers.

The search for biomarkers predictive of HNSCC has fo-
cused largely on the detection of genetic abnormalities leading
to the development of HNSCC (3, 4). Despite the identification
and characterization of multiple molecular aberrations in
HNSCC, available technology limits their routine clinical use,
and none has been determined to enhance early detection of
HNSCC. Recently, attention has focused on deciphering the
HNSCC proteome in search of diagnostic biomarkers. Tradi-
tionally, proteomic research has involved two-dimensional gel
electrophoresis to detect differences in protein expression in
tissue and body fluid specimens between the healthy (control)
group and the disease group (5, 6). Although two-dimensional
gel electrophoresis has been the “gold standard” proteomic
method, it has limitations in detection, is labor intensive, and is
not easily applied in the clinical setting.

One of the recent technological advances in proteomics is
the ProteinChip surface-enhanced laser desorption/ionization
(SELDI)-time of flight-mass spectrometry (7, 8). Applications
of this technology show great potential for the early detection of
prostate, breast, ovarian, and bladder cancers (9–14). The ob-
jective of this study was to determine whether protein profiling
using SELDI-time of flight-mass spectrometry could accurately
distinguish patients with HNSCC versus healthy controls, po-
tentially providing a novel screening approach for the detection
of HNSCC.

Materials and Methods
Serum Samples. Human sera from head and neck cancer

patients and controls were obtained through institutional review
board approved protocols at Saint Louis University School of
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Medicine and the Pennsylvania State University College of
Medicine from 1997 to the present, with an equal distribution of
cancers and controls between the sites. Cancer patients were
staged according to the 1998 American Joint Commission on
Cancer staging guidelines, and all stages of disease were repre-
sented in this group. The healthy control patients were predom-
inantly nonsmokers who underwent standard blood donor
screening and were noted to be disease free on complete head
and neck examination. The two groups were unmatched but
were comparable for sex and race. All serum was aliquoted and
frozen at �80°C until thawed specifically for SELDI analysis.

SELDI Protein Profiling. Serum samples were pro-
cessed for SELDI analysis as previously described using the
IMAC3 ProteinChip pretreated with CuSO4 (8). Briefly, 20 �l of
serum is pretreated with 8 M urea, 1% 3-[(3-cholamidopropyl)-
dimethylammonio]-1-propanesulfonic acid, and vortexed for 10
min at 4°C. A further dilution is made in 1 M urea, 0.125%
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid
and PBS. Diluted serum is then added to the ProteinChips with the
aid of a bioprocessor. Each serum sample was assayed in duplicate,
with duplicate samples randomly placed on different ProteinChips.
ProteinChips are then incubated at room temperature followed by
washes of PBS and water. Arrays were allowed to air, dry and a
saturated solution of sinapinic acid in 50%(v/v) acetonitrile and
0.5% (v/v) trifluoroacetic acid was added to each spot. The protein
chip arrays were analyzed using the SELDI ProteinChip System
(PBS-II; Ciphergen Biosystems, Fremont, CA). Spectra were col-
lected by the accumulation of 192 shots at laser intensity 220 in a
positive mode. The protein masses were calibrated externally using
purified peptide standards.

Data Analysis. Before analysis, the data were divided
into two sets as follows: a training set that consisted of 75
samples from each group (normal and HNSCC) and a test set of
24 HNSCC and 27 normals. Spectra were analyzed with the
Ciphergen ProteinChip software (version 3.0) and normalized
using total ion current. Peak labeling and clustering were per-
formed using Ciphergen’s Biomarker Wizard tool, exported into

a spreadsheet, and the intensity values for each peak were
averaged for duplicate samples. This spectral data were then
analyzed by the BioMarker Patterns software (Ciphergen Bio-
systems) to develop a classification tree.

Classification and Regression Tree (CART) Analysis.
Details regarding CART and the computational algorithms in-
corporated within the BioMarker Patterns software program
have been described elsewhere (15, 16). Briefly, classification
trees split the data into two nodes, using one rule at a time in the
form of a question. The splitting decisions in this case were
based on the normalized intensity levels of peaks from the
SELDI protein expression profile. Each peak or cluster identi-
fied from the SELDI profile is therefore a variable in the
classification process. The process of splitting is continued until
terminal nodes are reached, and additional splitting has no gain
in data classification. Classification trees were constructed using
the training set, and after V-fold cross validation, the accuracy
of each classification tree was then challenged with the test set.
Multiple classification trees were generated using this process,
and the best performing tree was chosen for additional testing.

Statistical Analysis. Specificity was calculated as the
ratio of the number of negative samples correctly classified to
the total number of true negative samples. Sensitivity was cal-
culated as the ratio of the number of correctly classified diseased
samples to the total number of diseased samples. Comparison of
relative peak intensity levels between groups was calculated
using the Student’s t test.

Results
Serum Samples. The experimental and control popula-

tions are characterized in Table 1, A and B, respectively. A total
of 99 sera from patients with HNSCC was used in the experi-
mental group. Tumor locations varied from many subsites
(24.2% larynx, 24.1% oral cavity, 14.1% oropharynx, 3.1%
hypopharynx, 1% nasopharynx, 1% sinuses, 6.1% skin, and

Table 1 Group Demographics

A. Cancer samples

Subsite Sex Age range (yrs) Ethnicity

Hypopharynx 3 (3.1%) Female 15 (15.1%) 44–85 African America 3 (3.1%)
Larynx 24 (24.2%) Male 79 (79.8%) 35–88 Hispanic 1 (1%)
Nasopharynx 1 (1%) Unknown 5 (5.1%) Caucasian 91 (91.9%)
Oral cavity 24 (24.1%) Unknown 4 (4.1%)
Oropharynx 14 (14.1%) Avg. age (yrs)
Sinuses 1 (1%) 65.8
Skin 6 (6.1%)
Unknown 26 (26.4%)
Total 99

B. Controls

Smokers Sex Age range (yr) Ethnicity

Yes 17 (16.7%) Female 46 (45%) 21–68 African American 1 (1%)
No 85 (83.3%) Male 53 (52%) 21–83 Hispanic 1 (1%)

Unknown 3 (3%) Caucasian 98 (96%)
Avg. age (yrs) Unknown 2 (2%)

Total 102 56.7
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26.4% from unrecorded subsites). Age range was 35–88 years
with the mean age of 65.8 years. Male to female ratio was �5:1.

There were a total of 102 sera from patients in the control
group that was predominantly nonsmoking. Age ranged from 21
to 83 years with a mean age of 56.7 years. Male to female ratio
was �1:1. Overall, the age and ethnicity of the two groups were
comparable.

Data Analysis. Peak detection using Ciphergen’s Pro-
teinChip software identified an average of 90 peaks/spectrum.
Of these, 80 common peaks or clusters were generated from the
training set, with masses ranging from 2,000 to 21,000 Da.

Because the majority of the peaks detected were in this mass
range, it was considered the most useful for protein profiling.
Each cluster was determined with a mass window of 0.2% and
represents one protein peak. As shown in Table 2, 32 of these
peaks were found to have significant differential expression
levels between the HNSCC and control sera.

CART Analysis. Using all 80 peaks, classification trees
were created using the training set with V-fold cross-validation.
This type of cross-validation uses random numbers to split up
the data in the training set for testing each tree. On the basis of
the CART analysis, no single peak was identified as having the
ability to separate HNSCC sera from normal sera alone. How-
ever, the underexpression of a protein peak at 5064 Da was used
in all of the classification trees as the first primary splitter. This
peak was identified as being significantly differentially ex-
pressed (Table 2). Fig. 1 is a representative gelview (Fig. 1A)
and spectra (Fig. 1B) showing the underexpression of this peak
in the HNSCC sera when compared with the control sera.
Averaged normalized intensity values for the 5064 Da peak in
each sample are plotted in Fig. 2. The average expression is
3-fold lower in HNSCC sera compared with the average expres-
sion in the control sera.

Of the many classification trees generated, the most accu-
rate tree, based on internal cross-validation results, was used for
additional analysis. The CART algorithm is a supervised clas-
sification tool, meaning the disease status of the samples in the
training set is known. The most accurate tree correctly classified
90.7% of the HNSCC sera in the training set (Table 3). This
classification tree algorithm was then challenged with a blinded
test set (in which the disease status is unrevealed) consisting of
27 sera from healthy individuals and 24 sera from patients
diagnosed with HNSCC (distinct from the training set). A total

Fig. 1 Representative surface-enhanced
laser desorption/ionization gelview (A)
and spectra (B) from sera of six head and
neck squamous cell carcinoma (HNSCC)
patients compared with sera from six nor-
mal controls ranging from 4000 to 6000
m/z is shown. The box identifies a peak
with an average mass of 5064 Da that is
underexpressed in HNSCC compared
with normal serum.

Table 2 Protein peaks differentially expressed in head and neck
squamous cell carcinoma versus control serum

m/za Pb m/za Pb

2778 �0.0001 7805 �0.0001
2951 �0.0001 7830 �0.0001
3772 �0.05 7920 �0.0001
3888 �0.001 7971 �0.0001
4181 �0.02 8928 �0.0001
4464 �0.0001 9094 �0.001
5064 �0.0001 9134 �0.0001
5078 �0.0001 9181 �0.0001
5242 �0.0001 9287 �0.001
5335 �0.0001 9416 �0.0001
5363 �0.001 10264 �0.05
5544 �0.01 10843 �0.05
5905 �0.0001 11722 �0.0001
5920 �0.0001 11922 �0.0001
6110 �0.0001 13350 �0.0001
7764 �0.0001 14687 �0.0001
a m/z mass/charge.
b P calculated from Student’s t test.
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of 100% of controls and 83.3% of HNSCC samples was cor-
rectly identified. The topology of the classification tree con-
sisted of three primary peaks (5,064, 13,881, and 15,139 Da)
and five terminal nodes (Fig. 3).

Reproducibility. We have optimized the SELDI system
for high-throughput assays and have demonstrated reliable re-
producibility using a pooled normal serum sample (10). The
intra-assay and interassay coefficient of variance for peak
masses is routinely 0.05% with normalized intensity coefficient
of variance values of 15–20%.

We furthermore devised several exercises to demonstrate
the reproducibility and robustness of both the protocol and the
decision tree classifier. The design of this experiment was to
compare a subset of the total samples to the total sample set,
which were separately run and analyzed 3 months apart. Fig. 4
is an example of the reproducibility of the SELDI spectra of
each of these runs. In addition, we examined the replicate
agreement between each sample duplicate. In the first exercise,
we asked whether the data set run 3 months earlier would retain
a high correct classification rate when used to challenge the
algorithm established from the total data set. The earlier data
subset was correctly classified at a rate of 85% (Table 4).
Because the early data set was limited to a single institution and
derived from a subset of the larger data set, this comparison
demonstrates the robustness of the decision tree algorithm over
time and cohort heterogeneity. We next evaluated the reproduc-
ibility of the process by examining the agreement between
duplicates of the same sample. In building the decision tree, the
duplicates were averaged to generate a single intensity value for
each peak. In this exercise, we uncoupled the duplicates and
“dropped” them down the decision tree. The result was �90%
agreement in final classification. This low incidence of dupli-
cates that misclassified approaches the overall misclassification
rate and therefore meets the expectation of strong duplicate
agreement. As a last demonstration of our experimental repro-
ducibility, we measured the variation in peak intensity values
between duplicates at the mass positions for each primary de-
cision peak. As shown in Table 4, the average coefficient of

variance between duplicates at each peak mass was between 27
and 33% of total intensity. This value was smaller than the
average variance for the decision peaks over the entire class of
samples, which was 50%.

Discussion
Detection of head and neck cancer at early disease stages is

paramount to successful clinical therapy. Yet, early-stage head
and neck cancer lacks specific symptoms or biomarkers that
accurately and reliably distinguish patients with HNSCC from
normal controls. A number of studies have described limited
success in identifying HNSCC-associated protein, DNA, and
RNA biomarkers that potentially could aid the early diagnosis
and prognosis of HNSCC. Reverse transcription-PCR was used
to detect metastasis-associated cytokeratin 19-positive tumor
cells in sera from a small number of patients with nasopharyn-
geal carcinoma. However, several longitudinal blood samples
were required to reach a sensitivity of 83.3% (five of six
patients; Ref. 17). An analysis of serum concentrations of mul-
tiple biological markers, including basic fibroblast growth fac-
tor, vascular endothelial growth factor, and matrix metallopro-
teinase-2 by ELISA in 26 HNSCC patients after primary
chemoradiation therapy, showed that only increased basic fibro-
blast growth factor concentrations correlated with earlier loss of
locoregional control (18). Other studies have investigated sev-
eral conventional serological markers in 26 HNSCC patients
and found none to be of statistical significance (19). Antibodies
to p53 tumor suppressor protein were detected in the sera of
25% of 271 patients with oral SCC (20) and at a low percentage
in saliva from HNSCC patients (21, 22). Nucleic acid-based
microsatellite analysis and tumor-specific aberrant promoter
methylation have been used as markers to detect tumor-specific
alterations in serum and saliva of patients with HNSCC (23–27).
These approaches are often subjective, can be technically chal-
lenging, and require a panel of microsatellite markers or selected
genes. In general, nucleic acid-based methods for detection of
cancer have been assessed with a limited number of samples and
will require additional trials to confirm these early results.

Despite the identification and extensive study of several
potential tumor markers, none has been found to have clinical
use as a diagnostic marker or screening tool for HNSCC. It
seems probable that given the complexity of the genetic and
molecular alterations that occur in HNSCC cells, the expression
pattern of these complex changes may hold more vital informa-
tion in screening, diagnosis, and prognosis than the individual
molecular changes themselves. Protein expression profiling was

Fig. 2 Expression level of 5064 Da protein in sera of HNSCC patients
compared with sera from normal controls. OOO, mean normalized
intensity; E, values of individual patients.

Table 3 Classification tree analysis of the head and neck squamous
cell carcinoma (HNSCC) training and test setsa

Groupb Percentage correct
Percentage

misclassified

Training set Normal (n � 75) 88.0% (66/75) 12.0% (9/75)
HNSCC (n � 75) 90.7% (68/75) 9.3% (7/75)

Test set Normal (n � 27) 100% (27/27) 0.0% (0/27)
HNSCC (n � 24) 83.3% (20/24) 16.7% (4/24)

a Peaks used in tree: m/z 5,064, 13,881, 15,131.
b Serum from control and HNSCC patients.
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used previously to detect a protein of 8670 Da using a hydro-
phobic surface (H4) in tumor extracts of five of six HNSCC
cases but not in matched normal tissue lysates (28). In a study
of two matched HNSCC cell lines derived from either the
primary tumor or lymph node metastasis, the SELDI Protein-
Chip H4 was used to identify the up-regulation of two
membrane-associated proteins (annexin I and annexin II) and
glycolytic protein enolase-� as well as the down-regulation of
calumenin precursor in the metastatic cell line (29). To date,
SELDI ProteinChip technology has not been reported as a tool
to interrogate serum from HNSCC patients compared with nor-
mal controls for protein fingerprints of HNSCC.

No standard screening tool is available for HNSCC pa-
tients. Patients are most often diagnosed in the late stages of
disease because of the location of the tumors and because early
symptoms often mimic and are treated as benign processes such
as viral upper respiratory infections. Continued efforts to iden-
tify protein profiles or patterns that differentiate cancer from
noncancer could lead to earlier detection and development of
diagnostic tests for HNSCC. Using SELDI-time of flight-mass
spectrometry techniques, we achieved 100% specificity and
83.3% sensitivity for detection of HNSCC rapidly and repro-
ducibly. This yielded a positive predictive value of 100%. By
using the Surveillance, Epidemiology, and End Results database
(30) and the most recent United States Census information, a
conservative estimate of HNSCC prevalence in the United
States can be approximated as 1:1000. This prevalence probably

varies by region of the country and is likely higher worldwide.
Assuming this prevalence, an adequate screening tool for
HNSCC must have a positive predictive value of 100% to be
effective. Screening tools with less than perfect specificity are
unlikely to be useful in this population. The algorithm presented
in this study currently provides a sufficient positive predictive
value. However, it is clear that the technology must be addi-
tionally tested to ensure the high specificity persists as the test
sets increase in size. If validated with more samples, in a
planned multi-institutional investigation, this approach may pro-
vide an innovative test of significant benefit for clinicians treat-
ing HNSCC.

A potential criticism of this research is that HNSCC is most
often related to tobacco and alcohol use, yet our control sera
were from predominantly normal individuals without those risk
factors. Indeed, our control population intentionally consists of
a broad spectrum of patients more closely representing the
targeted population to be screened. Additional and specifically
dedicated studies are needed to distinguish between cancer
patients and those at high risk alone. These studies are currently
underway. A screening tool testing these two groups may pos-
sibly be successful with lower sensitivity and specificity, given
the higher rate of HNSCC in smoking populations in compari-
son to the entire population as a whole.

Our approach to decision algorithm development has dis-
tinct advantages toward uncovering peak mass because this is
determined up front and maintained throughout the process.

Fig. 3 Diagram of classifica-
tion tree. HC, healthy control
patients. HNSCC, head and
neck squamous cell cancer pa-
tients. The squares are the pri-
mary nodes, and the circles in-
dicate terminal nodes. The mass
value in the root nodes is fol-
lowed by � the intensity value.
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However, there are certain concerns to be addressed when
applying any binary recursive partitioning approach (decision
tree) as is used by CART (31). Development of decision trees
involves nonparametric choosing of variables as decision split-
ters forming the branches of a tree. The perfect tree (the one that
fits the data best) is of course a very large tree with many
branches that most certainly “overfits” the data. Generally, these
trees have branch numbers that approach the sample size and are
not usually robust to subsequent data. However, CART imple-
ments several extra steps to safeguard against this tendency. The
first is called pruning; basically, branches are removed and the
cost of the removal determined and this value used to establish

a minimal tree size. Second, the tree is subjected to a 20-fold
cross-validation that separates the data into partitions that are
individually evaluated against the remaining data set. This proc-
ess replaces the need for an independent test group to choose the
best tree. Thus, the optimal tree that does not overfit the data are
chosen. We then add a blinded test set of data held out of the
training as a final evaluation of the chosen tree. Our data
represents a tree with four nodes that was chosen through this
multistep process. Therefore, it is unlikely that the algorithm has
overfitted the data.

Many protein peaks were found to be differentially ex-
pressed with high statistical significance in HNSCC compared

Fig. 4 Representative surface-
enhanced laser desorption/ioni-
zation spectra of two different
serum samples assayed three
months apart using the IMAC
ProteinChip.
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with control sera (Table 2). It is notable that not all of these
significant peaks are used in the classification tree algorithms.
Unlike some statistical tools that optimize for single variables
that can act as a predictor, the CART approach examines com-
binations of variables. The classification algorithm is able to
examine a number of different variables at once, looking for a
combination of peak expression that gives the best classifica-
tion. Furthermore, a peak without a significant P when testing
between groups may in fact be important for the classification
algorithm. Likewise, a significant P may be achieved when
testing for a group mean difference for a single protein peak and
such a single peak may not be very useful for decision tree
building. For instance, two of the peaks used in the best per-
forming classification tree shown in Fig. 3 (13,881 and 15,139
Da) were individually not expressed differentially between the
two groups of sera. However, they were significant to the
classification tree to delineate subsets of groups that had been
stratified by the significant peak at 5064 Da. The combination
that gave maximum sensitivity/specificity in this study for dif-
ferentiating HNSCC from the noncancer groups used the pat-
terns of several different masses. One of these masses, the 5064
Da peak, underexpressed in HNSCC, was found in every clas-
sification tree generated with this set of sera and is one example
of how SELDI technology may aid both the discovery of new
biological markers for HNSCC as well as provide analysis of
differences in protein expression patterns. Because it appears to
be a critical protein for differentiating HNSCC from noncancer
controls, work is in progress to identify and characterize this
potential biomarker.

Potential areas for improvement to this approach for
HNSCC will arise from studies that include high-risk groups as
well as the analysis of serum SELDI profiles before, during, and
after definitive treatment of HNSCC to determine whether this
technique can be equally useful for monitoring patients for
persistent or recurrent disease. In addition, the evaluation of
other chip surfaces to improve testing accuracy and to increase
the chance of discovery of potential biomarkers may also serve
to improve the overall process.

In summary, SELDI protein expression profiling of sera
from normal healthy individuals and from those with HNSCC
resulted in specific profile patterns that identified HNSCC with
83.3% sensitivity and 100% specificity. The high sensitivity and
specificity achieved in this study using SELDI-time of flight-
mass spectrometry techniques coupled with a learning classifi-

cation algorithm identified protein patterns in serum that distin-
guished healthy controls from HNSCC patients. To our
knowledge, this is the first study to demonstrate the use of serum
protein profiling to detect HNSCC. Additional investigation is
warranted to evaluate SELDI protein profiling as an assay for
early detection, diagnosis, and prognosis of HNSCC and to
realize the potential for this process to result in more accurate
screening, diagnosis, and treatment of HNSCC patients.
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