
MULTIPLE EXPLICITLY RESTARTED ARNOLDI METHOD FOR
SOLVING LARGE EIGENPROBLEMS

NAHID EMAD† , SERGE PETITON‡§ , AND GUY EDJLALI¶

Abstract.

In this paper we propose a new approach for calculating some eigenpairs of large sparse non-
Hermitian matrices. This method, called Multiple Explicitly Restarted Arnoldi (MERAM), is par-
ticularly well suited for environments that combine different parallel programming paradigms. This
technique is based on a multiple use of Explicitly Restarted Arnoldi method and improves its con-
vergence.

This technique is implemented and tested on a distributed enviromnment consisting of two in-
terconnected parallel machines. MERAM technique is compared to Explicitly Restarted Arnoldi
(ERAM) method, and one can notice that the accelaration of convergence is improved effectively. In
some cases, more than one two-fold improvement can be seen in MERAM results.

We also implemented MERAM on a cluster of workstations. According to our experiments,
MERAM converges better than Explicitly Restarted Block Arnoldi method and, for some matrices,
more quickly than PARPACK package which implements Implicitly Restarted Arnoldi Method.

Key words. Large eigenproblem, Arnoldi method, explicit restarting, parallel programming,
asynchronous communication, heterogeneous environment.

AMS subject classification. 65F15, 65F50 and 65Y05

Abbreviated title : Multiple Explicitly Restarted Arnoldi Method

1. Introduction. Hybrid methods were proposed during the last decade to ac-
celerate the convergence and/or to improve the accuracy of the solution of some
linear algebra problems. These methods combine several different numerical meth-
ods to solve these problems efficiently. For example, both convergence acceleration
techniques and preconditioning methods could be used to develop a hybrid method.
Hybrid methods were used successfully to solve linear systems, such as the problem
introduced by Brézinski and Redivo-Zagila [4], some eigenproblems with Arnoldi-
Chebyshev method proposed by Saad [20, 19] and Jacobi-Davidson algorithms from
Sleijpen, Van der Vorst and Bai [28].

In this paper, we propose a new approach for calculating some of the eigenpairs
in the context of large sparse non-Hermitian matrices. This new technique, called
Multiple Explicitly Restarted Arnoldi method (MERAM), is a hybrid method and
is based on the Explicitly Restarted Arnoldi method (ERAM). It involves multiple
invocations of ERAM and is closely linked to the Explicitly Restarted Block Arnoldi
method. Each ERAM invocation is done with different set of parameter values. This
approach may also be applied to some other restarted projection methods.

We propose an asynchronous parallel algorithm for Multiple Explicitly Restarted
Arnoldi method and show that some of its properties such as asynchronous communi-
cations between its coarse grain subtasks, fault tolerance and dynamic load balancing
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make this method well-adapted to the GRID computational environments. Our ex-
periments ran on two different platforms - a network of parallel machines and on a
cluster of workstations - showed that MERAM converges quicker than ERAM and
the Explicitly Restarted Block Arnoldi method. Moreover, according to our experi-
ments, for some matrices, one have a difficult convergence (slow or impossible) with
Implicitly Restarted Arnoldi Method and a fast convergence with MERAM.

Our asynchronous MERAM algorithm can be easily implemented on a cluster
of heterogeneous machines as it exhibits a coarse grain parallelism. These machines
can be sequential, vector, or parallel. The number of iterations to convergence of
the main process is reduced by combining results from other processes at runtime.
For example, a dedicated parallel machine can take advantage of the availability of a
cluster of non-dedicated processors to speed-up its convergence. We implemented our
approach on a CM5 and a small cluster of workstations [7], and were able to show
improvement on the number of iterations before convergence by just combining two
Sun Sparc machines to our 32 nodes CM5 parallel machine. In this paper, we will
propose results when multiple parallel machines are available for computation. In
particular, we will show that in some cases we can achieve more than one two-fold
improvement in the number of iterations before convergence by combining the results
from a faster and a slower parallel machine. We will propose also certain results
of comparison of MERAM with Explicitly Restarted Block Arnoldi and Implicitly
Restarted Arnoldi Methods on a cluster of workstations.

Before defining the Multiple Explicitly Restarted Arnoldi algorithm in the context
of the projection methods, a brief presentation of these methods is given in the next
section. An overview of the Arnoldi method and some of its variants is provided in
section 3. The MERAM and an aynchronous algorithm of this method are presented in
the section 4. It also includes the restarting strategy selected in MERAM, the stopping
criterion of the restarts in ERAM/MERAM, and the relationship between MERAM
and the Explicitly Restarted Block Arnoldi method. Parallel versions of these methods
are discussed in section 5. Section 6 is devoted to numerical experiments. Finally,
possible applications of the concept are discussed along with the conclusion in section
7.

2. General Purpose and Notations. Let A be a complex non-Hermitian ma-
trix of dimension n×n and K be a subspace of Cn. A Krylov subspace method allows
an approximation of an eigenpair (λ, u) of A by a Ritz-elements pair (λ(m) ∈ C ,
u(m) ∈ K) where the subspace K is defined by

Km,X = Span(X, AX, · · · , Am−1X)(2.1)

and X is spanned by a set of µ vectors. The point (resp. block) Krylov subspace
methods are characterised by choosing µ = 1 (resp. µ > 1).

A Krylov subspace method approximates s eigenpairs of A by those of a matrix
of order m, where s ≤ m ¿ n. This matrix is obtained by orthogonal projection of
A onto an m-dimensional subspace Km,v with X = Span(v). Let Wm be the matrix
whose columns w1, · · · , wm constitute an orthogonal basis of Km,v. The problem is to
find λ(m) ∈ C and y(m) ∈ Cm such that

(Hm − λ(m)I)y(m) = 0(2.2)

where the matrix Hm of dimension m × m, is defined by Hm = WH
m AWm. Note

that WH
m is the transpose conjugate of Wm and u(m) = Wmy(m). Therefore, some
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eigenvalues of A can be approximated by the eigenvalues of the matrix Hm. These
eigenvalues can be found by building an orthogonal basis of Km,v and by solving the
problem (2.2). There are different ways of building such basis and the most used
process is the Arnoldi’s orthogonalization.

3. Arnoldi Method and some of its Variants.

3.1. Arnoldi Method. Let the initial guess w1 be equal to v/‖v‖2. The well-
known Arnoldi process generates an orthogonal basis w1, · · · , wm of Krylov subspace
Km,v by using the Gram-Schmidt orthogonalization process:

Arnoldi Reduction : AR(input : A,m, v; output : Hm,Wm).
For j = 1, 2, · · · ,m do:
• hi,j = (Awj , wi), for i = 1, 2, · · · , j
• w̄j = Awj −

∑j
i=1 hi,jwi

• hj+1,j = ‖w̄j‖2
• wj+1 = w̄j/hj+1,j

The above algorithm may break down if wj = 0 for some j. This may happen if
the minimal polynomial of v is of degree j. In this case, the subspace Km,v is invariant
and the Ritz elements are exact [19].

This method was introduced by W. E. Arnoldi [1] in 1951 to reduce a matrix to an
Hessenberg form. The reduced matrix Hm = (hi,j) is an Hessenberg representation of
A in the orthonormal basis Wm of Km,v when m = n. Arnoldi hinted that the process
could give good approximations to some eigenvalues if stopped before completion [1],
i.e., when m < n. Today, it is the most common used method.

The matrices Hm and Wm issued from the AR algorithm and the matrix A satisfy
the equation:

AWm = WmHm + fmeH
m(3.1)

where fm = hm+1,mwm+1 and em is the mth vector of the canonical basis of Cm. Note
that the AR algorithm is the standard Gram-Schmidt orthogonalization process, and
assumes exact arithmetics. Therefore, the modified Gram-Schmidt or the Householder
variants of AR are more interesting as they both deal with inaccuracies introduced by
the hardware. The cost analysis and comparison of each version are given by Y. Saad
in [19].

Once the choice of the orthogonalization process is fixed, the s desired Ritz values
(with largest/smallest real part or largest/smallest magnitude) Λm = (λ(m)

1 , · · · , λ(m)
s )

and the corresponding Ritz vectors Um = (u(m)
1 , · · · , u(m)

s ) can be calculated as fol-
lows1:

Basic Arnoldi Algorithm : BAA(input : A, s,m, v; output : rs, Λm, Um).
1. Compute an AR(input : A,m, v; output : Hm,Wm) step.
2. Compute the eigenpairs of Hm and select the s desired ones.
3. Compute the s associate Ritz vectors u

(m)
i = Wmy

(m)
i .

4. Compute rs = (ρ1, · · · , ρs) with ρi = ‖(A− λ
(m)
i I)u(m)

i ‖2.
1We suppose that the eigenvalues and corresponding eigenvectors of Hm are re-indexed so that

the first s Ritz pairs are the desired ones.
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If the accuracy of the computed Ritz elements is not good enough, the projection
can be restarted again to generate a new Km,v.

The new Km,v can be defined with the same initial vector v and a larger m value.
It is clear that, according to the hypothesis that v does not belong to any desired
invariant subspace, m has to be as large as possible. An important, well-known,
shortcoming of this version of the Arnoldi method is its alarmingly large storage
space requirement and computational cost for large values of m.

3.2. Explicitly Restarted Arnoldi Method. In this version the projection
subspace size is fixed. Starting with an initial vector v, it computes BAA (Basis Arnoldi
Method). The starting vector is updated and a BAA process is restarted again until the
accuracy of the approximated solution is satisfactory (using appropriate methods on
the computed Ritz vectors). This update is designed to force the vector to be in the
desired invariant subspace. This goal can be reached by some polynomial restarting
strategies proposed in [19] and discussed in section 4.2. This method is called the
Explicitly Restarted Arnoldi (ERAM) and its algorithm is given below:

ERAM(input : A, s, m, v, tol; output : rs, Λm, Um).
1. Start. Choose a parameter m and an initial vector v.
2. Iterate. Compute a BAA(input : A, s,m, v; output : rs,Λm, Um) step.
3. Restart. If g(rs) > tol then use Λm and Um to update the starting vector v

and go to 2.

where tol is a threshold value and the function g defines the stopping criterion of
iterations. We will see some possible definition of this function in the next section.

3.3. Implicitly Restarted Arnoldi Method. Another variant of the Arnoldi
Method based on restarting technique is proposed by Sorensen [22]. This refined
version, called Implicitly Restarted Arnoldi Method (IRAM), is a technique that
combines the implicitly shifted QR with an Arnoldi factorization and can be viewed
as a truncated form of the implicitly shifted QR technique. This technique involves
an implicit application of a polynomial in A to the starting vector. It has been shown
that IRAM leads to good approximations of Ritz elements of large sparse matrices
[22, 11].

Several other versions of Arnoldi method based on the augmented Krylov methods
exist including variants proposed by Wu and Simon [29], Stewart [24], Morgan [12]
and Morgan and Zeng [13].

4. Multiple Explicitly Restarted Arnoldi Method. The method we pro-
pose is charactrised by a new restarting technique to the Arnoldi method. Our restart-
ing technique combines the two algorithms described above (i.e., in last paragraph
of 3.1 and in 3.2). In this version, we neither fix the parameter m nor the initial
vector v. To overcome the storage dependent shortcoming of the first variant of the
Arnoldi method, we introduce a constraint on the subspace size m. More precisely,
we suppose that m belongs to a discrete interval Im = [minf , msup]. The lower bound
minf and upper bound msup may be chosen as a function of the computation and
storage resources. In addition, the constraint minf ≤ msup ¿ n has to be fulfilled.
Let m1 ≤ · · · ≤ m` with mi ∈ Im (1 ≤ i ≤ `), M = (m1, · · · ,m`) be a set of subspace
sizes and V ` = [v1, · · · , v`] be the matrix of ` starting vectors. An algorithm of this
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method for calculating s (s ≤ m1) desired Ritz elements of A is as follows:

MERAM(input : A, s, M, V `, tol; output : rs, ΛM , UM )
1. Start. Choose a starting matrix V ` and a set of subspace sizes

M = (m1, · · · ,m`).
2. Iterate. For i = 1, · · · , ` do:

(a) Compute a BAA(input : A, s, mi, v
i; output : ri

s, Λmi , Umi) step.
(b) If g(ri

s) ≤ tol then stop.
3. Restart. Update the vectors v1, · · · , v` and go to 2.

Note that ri
s is the vector of the residual norms at the ith iteration.

Suppose that u
(mp)
j is “better” than u

(mq)
j if ρp

j ≤ ρq
j . Then an interesting updat-

ing strategy would be the choice of vi as a function f i of ”the best” Ritz vectors:

vi = f i(U best),(4.1)

where U best = (ubest
1 , · · · , ubest

s ) and ubest
j is ”the best” jth Ritz vector. The function

f i has to be chosen in order to force the vector vi to be in the desired invariant
subspace. A simple choice of f i would be a linear combination of ubest

1 , · · · , ubest
s

vectors. The definition of f i can be also based on the techniques proposed by Saad
in [19]. The latter will be discussed in more detail in section 4.2.

In order to ensure that the BAA processes, used in MERAM algorithm, produce
` different Krylov subspaces, (f i)i=1,···,` have to be chosen such that f i 6= f j for i 6= j.
Nevertheless, the vectors vi and vj , (for i 6= j), of step 3 can be defined using the
same restarting strategy. In other words, the equation (4.1) may become:

vi = f(U best)(4.2)

where f = f i (for i = 1, · · · , `). The vectors v1, · · · , v` will become identical and the
Krylov subspaces of different processes would look extremely close to one another
after few iterations.

Clearly, the MERAM algorithm is equivalent to a particular use of several ER-
AMs. It allows the restarting vector vi of an ERAM to be updated by taking interest-
ing eigen-information obtained by the other ERAMs into account. Another advantage
of this algorithm is that it can be parallelised easily, as it contains coarse grain par-
allelism. In fact, each iteration of step 2 can be executed as an independent process.
Suppose that we have ` processes and a process (i) is assigned to the iteration (i) of
the inner loop of the algorithm. Thereafter, the processes have to synchronise at the
step 3. The only drawback of this parallelisation is that the execution time of the
algorithm is dominated by the execution time of the slowest process. The algorithm
defined in the following section is a remedy for this problem.

4.1. Asynchronous MERAM. We suppose that after each BAA step, each
process broadcasts its output of interest to all other processes. The computation
of a restarting vector vi on process (i) can than be done by combining ”the best”
computed Ritz elements available within that process. As a consequence, this parallel
algorithm is not precisely a parallel version of the above MERAM algorithm where
BAA processes are all synchronized in step 3. In fact, the asynchronism introduced at
the end of each BAA step produces a ”parallel” version of MERAM algorithm without
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a corresponding ”serial” MERAM version2.
We call a dynamic algorithm, an algorithm whose one or more components are dy-

namic and a dynamic process a process whose run time behavior can depend on outside
events. The above parallel asynchronous MERAM can be considered as a dynamic al-
gorithm. To each run of this version corresponds one parallel static MERAM version in
which the matrices U best in the updating strategy (4.1) are different for every ERAM
process. That means, the initial vector vi can be thus defined by vi = f i(U best(i))
where U best(i) denotes the matrix U best of the ERAM process (i). Consequently, so
that MERAM does not produce the same Krylov subspaces, one must have f i 6= f j

and/or U best(i) 6= U best(j) (for i 6= j). In other words, this way of asynchronising
communications between the BAA processes allows MERAM to produce ` different
Krylov subspaces even with the restarting strategy (4.2)3.

The asynchronous MERAM consists of ` ”independent” ERAM processes which
cooperate to update their restarting vectors. Let Send Eigen Info represents the task
of sending eigen-information of interest from an ERAM process to all other ERAM
processes. Let Receiv Eigen Info be the task of receiving eigen-information of in-
terest from one or more ERAM processes by the current ERAM process. Finaly, let
Rcv Eigen Info be a boolean variable that is true if the current ERAM process has
received eigen-information from the other ERAM processes. An asynchronous parallel
version of MERAM is explained in the following:

An asynchronous MERAM Algorithm.

1. Start. Choose a starting matrix V ` and a set of subspace sizes M =
(m1, · · · ,m`).

2. Iterate. For i = 1, · · · , ` do in parallel:
• Computation process (ERAM process)

(a) Compute a BAA(input : A, s,mi, v
i; output : rs,Λmi , Umi) step.

(b) if g(ri
s) ≤ tol stop all processes.

(c) If (Rcv Eigen Info) then hybrid restart
else simple restart

• Communication process
(a) Send Eigen Info
(b) Receiv Eigen Info

In this algorithm, each ERAM process has either a simple or a hybrid restarting
strategy. A simple restart is a classical restarting strategy taking into account the
eigen-information computed by the current ERAM process. A hybrid restart is
a restarting strategy taking into account the eigen-information received by the other
ERAM processes also. A hybrid restart includes data from other processes when eigen-
information has been received, while the simple restart uses just the eigen-information
computed by the current process. Let u

(mk)
j be the jth Ritz vector computed by the

kth process (corresponding to the one with the subspace size mk) and received by
the current process. The matrix U best of (4.1) is then defined by (ubest

1 , · · · , ubest
s )

where ubest
j is ”the best” of u

(mk)
j and the jth Ritz vector computed by the current

2The terms parallel and serial are used here to mention the execution in parallel or in serial of
just the BAA processes of the MERAM.

3with mi 6= mj (for i 6= j) on homogeneous resources.
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process, where k ∈ F ⊂ [1, `], cardinal(F ) = p, and p is the number of the processes
that sent their eigen-information to the current process. When a new and ”better”
Ritz pair is received from a process, its older value is overwritten by the new value.
In addition to the coarse grain parallelism between ` ERAM processes, one can also
overlap communication step by computations. More details about the parallelisation
of this algorithm is given in section 5.

A consequence of the dynamicity of this algorithm is its large sensitivity to the
variations of the system on which it runs. Indeed, the results of this algorithm are a
function of architectural parameters such as the load of the interconnection network
or that of the processors which constitute the system. One important property of the
asynchronous MERAM algorithm is its fault tolerance. That means, the loss of an
ERAM process at run time doesn’t impede the other ERAM processes to continue
to run and finish the algorithm. Another important property of this algorithm is its
capacity of dynamic load balancing. Indeed, the complexities in time and in space
of an iteration of an ERAM process of MERAM is a function of the subspace size
of this process. Consequently, by using these complexities, the system can attribute
dynamically the ERAM processes to the processors of the system according to their
load. All these properties make the asynchronous MERAM a well suited algorithm
to the GRID computational environments.

4.2. Restarting Strategies - Convergence. The restarting strategy is a crit-
ical part of both ERAM and MERAM. Saad [20] proposed to restart the iteration
of ERAM with a preconditioning vector as to force it to be in the desired invariant
subspace. It concerns a polynomial preconditioning applied to the starting vector
of ERAM. The aim of the preconditioning is to make sure that the components of
the restarting vector are nonzero in the desired invariant subspace and zero in the
unwanted invariant subspace:

v(k) = p(A)v(4.3)

where v(k) is the kth update of the starting vector v of ERAM, v = v(0) is the starting
vector and p is a member of the space of polynomials of degree < m. One can define p
as a Chebyshev polynomial determined from some knowledge about the distribution
of A eigenvalues. This restarting strategy is very efficient in speeding the ERAM
convergence (For more details see [20, 19]). Another way of defining the polynomial p
is to compute the restarting vector with a linear combination of s desired Ritz vectors:

v(k) =
s∑

i=1

αiu
(m)
i (k)(4.4)

where u
(m)
i (k) denotes the ith Ritz vector computed at the iteration k. This restarting

strategy is polynomial because u
(m)
i (k) ∈ Km,v(k−1) implies u

(m)
i (k) = φi(A)v for some

polynomial φi and thus v(k) =
∑s

i=1 αiφi(A)v. There are several ways to choose the
scalar values αi in (4.4). One choice can be αi equal to the ith residual norm. Other
choices can be αi = 1, αi = i or αi = s− i+1 for 1 ≤ i ≤ s (see [21] for more details).

Note that if v =
∑n

j=1 γjuj , the IRAM with exact shifts [22, 11] provides a
specific selection of expansion coefficients γj for a new starting vector as a linear
combination of the current Ritz vectors for desired eigenvectors. Implicit restarting
provides a means to extract eigen-information of interest from large Krylov subspaces
while avoiding the storage and numerical difficulties. This is done by continually
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compressing eigen-information of interest into an s-dimensional subspace of fixed size.
This means that IRAM continues a BAA step, having kept all Ritz vectors of interest.

To define a restarting strategy for MERAM we have to define the functions f i

introduced in (4.1). The latter are the functions with several variables and have to be
used as input of MERAM. Their variables are calculated dynamically in the case of the
asynchronous MERAM. These functions constitute a very part of this algorithm. Here
again we have several possibilities of choosing f i. The first possibility is to choose them
as simple as possible by using the same restarting techniques proposed for ERAM.
The second possibility can be defined by using sophisticated restarting techniques
such as augmented Krylov or implicit restarting. In the rest of this paper, we use a
simple restarting technique defined in the (4.4) and we call it the hybrid restarting
strategy. According to the hypothesis: (λ(mp)

j , u
(mp)
j ) is better than (λ(mq)

j , u
(mq)
j ) if

ρp
j ≤ ρq

j , the hybrid restarting strategy is defined by:

vi = f i(U best) =
s∑

j=1

αi
ju

best
j(4.5)

where αi
j (for j = 1, s and i = 1, `) are some scalar values. The hybrid restarting

strategy corresponding to equation (4.2) is then:

vi = f(U best) =
s∑

j=1

αju
best
j(4.6)

where αj = α1
j = · · · = α`

j .
We can view (`−1) ERAM processes of MERAM as the convergence accelerators

of the last process. We implemented the parallel MERAM with the restarting strat-
egy (4.6). Our experiments in section 6 illustrate that this ERAM process converges
quicker than an ERAM with the same subspace size and starting vector. In other
words, our experiments show that the restarting vector computed with the hybrid
restarting technique is more in the desired invariant subspace than the one computed
with (4.4).

Clustered Eigenvalues. If the desired eigenvalues are not well-separated, the
restarting strategy (4.4) applied to ERAM will cause many iterations back and forth
toward the invariant subspace of interest. This means that the sum of the residual
norms (SRN4) corresponding to the desired eigenvalues is a non-monotonic function
of the number of restarts. There are many examples in [8] confirming this convergence
behavior for clustered eigenvalues even if the matrix A is symmetric. This convergence
history has been observed by other authors including Sleijpen, Van der Vorst and Bai
[28] for symmetric and non-symmetric cases.

MERAM is based on ERAM and the restarting strategy (4.6) of MERAM is the
corresponding restarting strategy (4.4) of ERAM. One can conclude that as long as
the restarting strategy of MERAM is a linear combination of ”the best” desired Ritz
vectors (i.e., strategy (4.6)), the above convergence history should also be valid for
MERAM.

4SRN is a stronger convergence measure than the residual of each Ritz vector alone. This because

SRN bounds the subspace residual : ‖AUm − UmΛm‖2 ≤ SRN =
∑s

i=1
‖Au

(m)
i − λ

(m)
i u

(m)
i ‖2.
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4.3. Stopping Criterion. The residual norms ρi defined in the previous section
verify the well known equation [19]:

ρi = ‖(A− λ
(m)
i I)u(m)

i ‖2 = hm+1,m|eH
my

(m)
i |(4.7)

where em is the mth vector of the canonical basis of Cm. This enables the computation
of the residual norms at low cost because the ith residual norm is equal to the product
of the last component of the eigenvectors y

(m)
i by hm+1,m. However, in practice the

residual norms ρi can be more indicative of current errors.
Let rs be a vector of the residual norms (ρ1, · · · , ρs). To stop the restarts in

ERAM one has to define a function g given in step 3. Some typical examples are:

g(rs) = ‖rs‖∞(4.8)

or by a linear combination of the residual norms

g(rs) =
s∑

j=1

αjρj(4.9)

where αj are scalar values5. The same technique applied to ri
s = (ρi

1, · · · , ρi
s) can be

used to define the stopping criterion of restarts - the function g in step 2.(b) - of
MERAM.

4.4. Relationship with Explicitly Restarted Block Arnoldi Method.
As shown in section 2, the block Krylov subspace methods allow the approximation
of (λ(m), u(m)) solution of (2.2) with Km,X an m × µ-dimensional subspace defined
by (2.1), where X = span(x1, · · · , xµ) and µ > 1. We assume that the vectors
x1, · · · , xµ are linearly independent.

The Explicitly Restarted Block Arnoldi Method (ERBAM) is used to extract the
eigenvalues whose algebraic multiplicity is less than or equal to the block size. Let X1

be the orthonormal matrix represented by the columns x1, · · · , xµ. The block Arnoldi
process generates a set of X1, · · · , Xm matrices. Let W m be the (n,m×µ)-size matrix
[X1, · · · , Xm]. The m × µ columns of this matrix constitute an orthogonal basis of
Krylov subspace Km,X1 :

Block Arnoldi Reduction : BAR(input : A, m,X1; output : Hm, W m).
For j = 1, 2, · · · ,m do:
• Hi,j = XH

i AXj , for i = 1, 2, · · · , j
• X̄j = AXj −

∑j
i=1 XiHi,j .

• Compute QR decomposition of X̄j :
X̄j = QjRj = Xj+1Hj+1,j ,

The Hi,j matrices generated by the BAR process constitute the blocks of an upper
block Hessenberg matrix Hm. The eigenvalues of this matrix approach the corre-
sponding eigenvalues of A. Then, an equivalent equation to (3.1) will be

AW m = W mHm + FmEH
m(4.10)

5if αj = 1 (for j = 1, · · · s) then (4.9) defines the SRN associated with s desired eigenelements.
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where Fm = Xm+1Hm+1,m and Em is the matrix of the last µ columns of Inµ.
The block version of BAA is unchanged, except for the first step where we calcu-
late BAR(input : A,m, X1; output : Hm,W m) instead of AR(input : A,m, v; output :
Hm, Wm). We call this algorithm BBAA(input : A, s, m, X1; output : rs,Λm×µ, Um×µ).

Even though both ERBAM and MERAM begin with a set of starting vectors,
they are not equivalent. Suppose that ` = µ is the number of starting vectors for
both methods. m × ` is the projection subspace size in ERBAM and m is the size
of each projection subspace in MERAM, which means m1 = · · · = m` = m. The
difference between these two methods is that the projection subspace in ERBAM
is Km,X=span(x1,···,x`) while in MERAM the problem is projected onto ` subspaces
Km,x1 , · · ·, Km,x`

. Now, assume that the degree of the minimal polynomial of X1 is
greater than m, these Krylov subspaces satisfy the following relation:

Km,X = Km,x1 ⊕ · · · ⊕Km,x`
.(4.11)

Therefore, if dim(Km,X) = m × ` we have dim(Km,xi) = m for all i ∈ [1, `] and
dim(X) = `.

Suppose that dim(Km,X) = m × `. The construction of an orthogonal basis
((x1

1, · · · , x1
`), · · · , (xm

1 , · · · , xm
` )) of Km,X1 is equivalent to the construction of an or-

thogonal basis X̃i = (x1
i , · · · , xm

i ) for each subspace Km,xi , 1 ≤ i ≤ `. The inverse is
true only if X̃i is orthogonal to X̃j for all i, j ∈ [1, `] and i 6= j. This means that the
block Arnoldi reduction which is also a Gram-Schmidt orthogonalization of Krylov
vectors of Km,X1 defines ` Arnoldi reductions which again are ` Gram-Schmidt or-
thogonalizations of Krylov vectors of subspaces Km,xi (1 ≤ i ≤ `) but the inverse is
not always true.

In the first method, s desired eigenvalues are approximated by the eigenvalues of
an (`×m)-size block Hessenberg matrix, while in the second, they are approximated
by s ”best” eigenvalues of ` Hessenberg matrices of order m. We notice also that in
ERBAM the relation m ≥ s/` has to be true while in MERAM the relation m ≥ s
must be true.

Some parallel and numerical properties of MERAM and ERBAM are discussed
in the next two sections.

5. Parallelism Analysis.

5.1. Parallel ERAM. Let us consider the Basic Arnoldi algorithm - BAA(input :
A, s, m, v; output : rs,Λm, Um) - which is the core of ERAM. This algorithm can be
considered as four main tasks corresponding to its four steps. The projection phase
of the algorithm manipulates the n-sized data sets. The second phase acts on m-sized
data sets and the third and fourth phase deal with the n and m sized data sets6.
Steps 1, 3 and 4 constitute the expensive parts of this algorithm. They are composed
mainly of sparse matrix-vector multiplications and triadic and reduction operations.

The global programming model used is message passing, which is crucial for
distributed architectures. This model is assuming that the system has a number
of processors that have local memories and communicate with each other by means
of memory transfer from one processor to another [5]. A classical way to parallelize
BAA using message passing model is to distribute the large arrays (vectors and/or
matrices) among the processors while the small arrays are kept on just one processor or

6This is not true for the fourth step if the right hand side of equation (4.7) is used to compute
the vector rs.
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redundantly on all processors. This is equivalent to distributing each of the tasks 1, 3
and 4 between the processors and to run step 2 on just one processor or simultaneously
on all processors.

In the context of the message passing programming model, the projection phase of
BAA is highly parallel. The second task can represent a good vector structure7 and the
last two tasks are also parallel. These different types of parallelism can be exploited
efficiently by a distributed memory platform formed, for example, by a distributed
memory parallel machine and a vector computer or by a distributed memory parallel
machine and a sequential machine. We must mention that we do not have to use
message passing model for the step 2, as this task would become a bottleneck in the
algorithm [17]. This means, in terms of implementation, the architecture used for
step 2 ought to be different from the one used for steps 1, 3 and 4 (see figure (1)).

In ERAM algorithm the size of the subspace determines the amount of time nec-
essary to execute each restart (mainly a BAA step). The cost of each restart increases
with the subspace size, while in general the number of restarts decreases accord-
ing to the subspace size. We need to find a balance between the execution time of
each restart and the number of restarts to minimize the total execution time [17, 6].
Generally, the larger the subspace size, the better the convergence properties, so the
subspace size m ought to be chosen as large as possible given the limitations of the
target system resources.

5.2. Parallel MERAM. MERAM consists of several ERAMs interacting with
some protocol. As we mentioned in section 4, a great advantage of MERAM is its
coarse grain parallelism. We consider here the asynchronous parallel MERAM al-
gorithm described in section 4.1. In this algorithm, each ERAM core - BAA(input :
A, s, m, v; output : rs, Λm, Um) - can be executed independently and asynchronously
from the others. Consequently, we have ` independent coarse grain tasks (ERAM pro-
cesses). For each of them, one can make use of above described parallelism.

In addition to the coarse grain parallelism between ` ERAM processes, one can
also overlap communication step by computations. The processors would always be
active and execute a non-redundant task. Therefore, a significant reduction of the
response time of this algorithm is expected. In the next section, we will confirm this
with our experiments.

5.3. Parallel ERBAM. Clearly, the paralellisation method described in sec-
tion 5.1 is also valid for ERBAM (i.e., BBAA in section 4.4). However, if the subspace
sizes of ERAM and ERBAM are equal to M = m × µ with µ > 1, the coarse grain
parallelism in each BBAA step is larger than in the corresponding BAA step. This is
due to the BAA core (i.e., AR) computes M = m × µ matrix-vector products with A
while in BBAA core (i.e., BAR) the computations of A on µ vectors can be done at
once; in roughly the same cost as computing a single matrix-vector product. The AR
has to compute M second level BLAS operations while BAR has to compute m third
level BLAS operations. Consequently, the computation cost of ERAM should be less
effective than ERBAM computation cost.

The global programming model used to implement ERBAM and MERAM is mes-
sage passing. Bearing in mind that large arrays are distributed among the processors
and small arrays are kept on one processor or replicated on all processors, this is
equivalent to distributing each of the tasks 1, 3 and 4 of BBAA among the processors
and running step 2 on just one processor or redundantly on all processors.

7If we use a classical method like QR and/or inverse iteration to solve this step.

11



Consider a MERAM with (µ) ERAM processes having the subspace sizes mi with∑µ
i=1 mi = M and m1 ≤ · · · ≤ mµ. The goal is to determine if this MERAM can be

competitive with ERBAM with subspace size M = m× µ. In other words, we would
like to know if ERAM(mµ) helped by the other ERAM processes of MERAM (i.e.,
ERAM(mi) for i = 1, · · · , µ− 1) can be competitive with ERBAM.

6. Numerical experiments. Data-parallel and Vector programming models
are very well suited for ERAM [17]. To efficiently exploit the natural parallelism of
MERAM, one has to use the coarse grain parallel model, where a number of ERAM
processes are running concurrently. In addition, one can exploit the fine grain par-
allelism within each task (ERAM process), in order to maximize the resource usage
of a Meta-Computing platform. A meta-Computer consists of heterogeneous and au-
tonomous computers linked by an interconnection network. This architecture has
a tremendous amount of memory and computational power [10] to cope with large
industrial applications. However, in practice, the number of parallel machines in-
volved in a meta-computer is limited. We present, in this section, some results of our
experiments on homogenous and heterogenous programming environments.

We denote by ERAM(m, v) (resp. IRAM(m, v)) an ERAM (resp. IRAM) process
with the subspace size m and the initial vector v, by ERBAM(m,V `)an ERBAM
process with the subspace size m and the initial matrix V ` and by MERAM(M,V `)
a MERAM with ` ERAM(mi, v

i)i=1,` processes where M = (m1, · · · ,m`) and V ` =
[v1, · · · , v`]. The matrix Ik denotes that one whose columns are e1, · · · , ek.

6.1. MERAM and ERAM.
Harware Platform. We implemented ERAM and MERAM according to the

above programming models on different heterogeneous environments [8]. These envi-
ronments were a 32-node Connection Machine (CM5), CM5 and a Sparc 20, a CM5
and 2 Sparc 20, and a CM5 and a 4K Connection Machine 200 (CM200). The CM5 is
a distributed memory MIMD8 architecture [26]. Each node of CM5 consists of a Sparc
processor, a 32 mega byte memory and 4 floating point computation unites operating
at 32 mega flops each. The CM5 supports message passing model, data parallel model
or a combination of the two. The CM5 nodes are connected by three networks. Data
network is a fat-tree point to point communications and has 0.5 Gb per second global
bandwidth. Control network is a binary tree for global operations (as diffusion, re-
duction, etc.) by pipelining the messages and diagnostic network is dedicated to error
messages. The CM200 is a massively parallel SIMD9 machine consisting of thousands
of bit serial data processors and a front-end for management and control [25]. The
processors and memory are packaged as 16 in a chip. Each chip also contains the
routing circuitry which allows any processor to send and receive messages from any
other processor in the system. The system version used has 0.5 giga byte memory and
operates at 10 MHz. The CM200 supports data parallel programming model. Both
CM5 and CM200 have workstation as front-end. The programming language used on
CM5 and CM200 is CM Fortran [27]. This is an extension of Fortran 77 allowing to
handle parallel variables distributed on the processors.

In [7], we showed that a significant acceleration can be achieved when the het-
erogeneous architecture consists of a CM5 and 2 Sparc workstations. In this paper,
we present the results of our experiments on a CM5 for ERAM and on a heteroge-
neous environment consisting of a CM5 and a CM200 interconnected by a 10Mbit/s

8Multiple Instruction Multiple Data
9Single Instruction Multiple Data
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Ethernet link for MERAM.
Implementation. As we have seen in the previous section, the Basic Arnoldi

algorithm can be divided in four main tasks: the projection, the computation in the
subspace, the Ritz vectors computation and the computation of the vector of the
residual norms. These tasks can run on different machines. The projection task,
the Ritz vectors computation and the computation of the residual norms are highly
data-parallel. They will be mapped on a parallel machine. The computation on the
subspace on the other hand is suited for vector programming. It will be mapped
onto the front-end (i.e., control processor) of the parallel machine. Figure 1 presents
this implementation of ERAM on a distributed architecture consisting of a parallel
architecture and a vector/sequential machine. In our experiments the parallel machine
is CM5 or CM200 while the other machine is the corresponding front-end.

Figure 2 describes the parallel MERAM algorithm for ` = 2 on a heterogeneous
architecture. TCMa and TCMb (resp. Tcomma and Tcommb)) are computation
(resp. communication) tasks of the algorithm. TCMa (resp. TCMb) communicates
with Tcomma (resp. Tcommb) using shared memory model. Tcomma and Tcommb
are connected by a network. These communication tasks are designed to overlap
communication with computation phases between parallel machines. TCMa (resp.
TCMb) implements an ERAM process. After each iteration, if the convergence is
not reached, the eigen-information is stored in the shared memory (SM) and sent by
one communication task to the other process. TCMa and TCMb are implemented
on a CM5 and a CM200 interconnected by a 10Mbit/s Ethernet link. The subspace
computation of TCMa and TCMb are mapped onto the CM5 front-end and the CM200
front-end respectively. PVM library is used to implement the communications between
Tcomma and Tcommb.

Test Matrices. The sparse matrices for our experiments have a C-diagonal pat-
tern. The only non-zero elements of a C-diagonal matrix are on the main diagonal and
the diagonals immediately around it. C is the maximum number of non-zero elements
per row or per column. These sparse matrices have some interesting properties. They
are easy to build and well suited for SGP (Sparse General Pattern) data parallel stor-
age format [18]. It has also been shown in [8] that matrices with C-diagonal pattern
have good performance in sparse matrix-vector multiplication algorithms executed on
data-parallel machines. The non-zero upper-diagonal and lower-diagonal elements of
our non-symmetric matrices are chosen in [−1, +1] range while the non-zero diagonal
elements are in [0, C]. To study the convergence properties of MERAM and to com-
pare it with ERAM, we intentionally limited the sizes of our test matrices. The size
of the test matrices is fixed to 1024.

Performances. The execution of ERAM on CM5 is done with starting vector
equal to v, the subspace size m and the restarting strategy (4.6) with αi = 1 (for
i = 1, s). While, two starting vectors (v1, v2), two subspace sizes (m1,m2), and two
restarting strategies are needed to execute MERAM on both CM5 and CM200. We
suppose that we have the same parameters on the CM5 for ERAM and for MERAM.
This means that v1 = v, m1 = m and the restarting strategies for ERAM and
MERAM will be the same if the restart of MERAM is simple on the CM5. In the
case of hybrid restart, we have two sets of eigen-information Em1 = (Λm1 , Um1 , r

1
s) and

Em2 = (Λm2 , Um2 , r
2
s). We choose ”the best” to form a new set of eigen-information:

Ebest = (Λbest, U best, rbest
s ). Then, with these s Ritz vectors, we compute the restart-

ing vector by (4.6) with αi = 1 (for i = 1, s). The speedup, S, is calculated as the
ratio of the time needed to solve the problem with MERAM (on CM5 and CM200)
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Fig. 1. ERAM on a distributed architecture.

by the time needed to resolve the same problem with ERAM (on CM5 alone). The
execution time of MERAM is the one of the converged node (the fastest node which
is CM5).

We want to find s = 4 algebraically largest eigenvalues and their corresponding
eigenvectors. The tolerance value is tol = 5E − 10.

We expect that MERAM converges faster than ERAM. In fact, for the worst case
scenario MERAM behaves like ERAM applied to the fastest processor (i.e., CM5).
This is the case when no other processes yield information that is better than the
original ERAM process. In other words, since the CM5 is faster than the CM200, the
CM200 ERAM process can be viewed as an accelerator for the CM5 ERAM process.
Consequently, the number of iterations (restarts) of MERAM on the CM5 ought to
be less than the number of iterations of the ERAM on this machine. By the number
of iterations of MERAM, we mean the number of iterations of its process on the CM5.

The figures 3 to 7 illustrate the sum of the residual norms (SRN), (4.9) with
αi = 1 for i = 1, s, with respect to the number of restarts for ERAM and MERAM
for C−diagonal matrices. They present the number of iterations required by ERAM
and MERAM to converge. Table 1 brings together the parameters and the curves of
performances presented in figures 3 to 7. This table and all these figures illustrate
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the influence of the CM200 eigen-information on the improvement of the restarting
vector, and consequently the convergence of ERAM process of MERAM on the CM5.
We notice that the oscillations of the convergence curves of MERAM are qualita-
tively and quantitatively less important than the ones of ERAM. According to our
experiments, MERAM always converges more rapidly than the ERAM to the desired
invariant subspace. These results also show that we can obtain a good acceleration
of convergence compared to ERAM.

MERAM ERAM
Fig. C m1, m2 v1, v2 iteration m = m1 v = v1 iteration S
3 21 28,15 z, r 80 28 z 120 0.80
4 63 26,26 z, r 42 26 z 54 0.84
5 21 32,32 z, r 50 32 z 80 0.72
6 21 32,20 z, z 56 32 z 80 0.81
7 63 40,40 z, z 63 40 z 148 0.51

Table 1
The vector z is defined by z = 1√

n
(1, · · · , 1)t and r is a normalized random vector.

In figure 6 there is a section of convergence history where ERAM is better than
MERAM. This seems to be due to the distribution of the eigenvalues. Indeed, the
s Ritz values computed by two ERAM processes with subspace sizes m1 and m2 do
not always correspond to s wanted eigenvalues. Suppose for example that the wanted
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Fig. 3. MERAM((28, 15), [z, r]) versus ERAM(28, z) with 21−diagonal matrix.

eigenvalues are (s = 4) algebraically the largest: λ1 > λ2 > λ3 > λ4 > λ5 > · · · and
λ4, λ5 are very close to each other. At some iteration, ERAM process with m1 can
compute Ritz values corresponding to λ1, λ2, λ3 and λ4 while the ERAM process with
m2 can approach Ritz values corresponding to λ1, λ2, λ3 and λ5. Now, if the residual
norm of Ritz vector corresponding to λ5 is less than the one corresponding to λ4,
then the Ritz vector corresponding to λ5 will be chosen as ”the best”. Thus, hybrid
restart takes into account a ”bad” information to update the restarting vector in
MERAM. Consequently, the restarting vector moves away from the wanted invariant
subspace. An approach to remedy this issue seems to be to use a mixture of all Ritz
vectors instead of ”the best” vector. The hybrid restart strategy should make use of
all Ritz vectors and no computed information will be lost. But this approach brings
together all ”good” and ”bad” Ritz vectors to compute a new restart guess. Thus,
the convergence of MERAM with this restarting strategy would be slower than with
the restarting strategy integrating just ”the best” eigen-information.

6.2. MERAM and other methods. To evaluate MERAM with respect to
some other methods, we compared it with ERBAM and IRAM under similar con-
straints. That means, we tried to know which of MERAM and ERBAM/IRAM will
be faster to produce the wanted Ritz elements on a similar amount of memory and
processor.

Hardware Platform. Numerical experiments were done on several workstations
Sun Ultra Sparc linked by a 10 Mbit/s and 100 Mbit/s Ethernet networks for the
experimentation of sections 6.2.1 and 6.2.2 respectively. We made use of two or three
Sparc Ultra-1 workstations for the experiments of section 6.2.1. A maximum number
of six workstations - three Sparc Ultra-1 and three Sparc Ultra-5-10 - are used for the
experiments of section 6.2.2. All of these workstations function with Sun Operating
System.

Implementation. We made use of LAKe and MPI message passing libraries to
implement ERBAM and MERAM. LAKe (Linear Algebra Kernel) is a linear algebra
class library implemented in C++ which uses MPI through OOMPI [16] for the par-
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Fig. 4. MERAM((26, 26), [z, r]) versus ERAM(26, z) with 63−diagonal matrix.
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Fig. 5. MERAM((32, 32), [z, r]) versus ERAM(32, z) with 21−diagonal matrix.

allel classes [14, 15]. We used the PARPACK package [23] to run a parallel version
of IRAM. PARPACK is a parallel version of the ARPACK software (a package of
Fortran 77 subroutines) which implements IRAM. This package is targeted for dis-
tributed memory message passing systems. The message passing layers supported
are BLACS and MPI. The reverse communication interface of PARPACK allows a
simplified SPMD10 parallelization strategy.

10Single Program Multiple Data
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Fig. 6. MERAM((32, 20), [z, z]) versus ERAM(32, z) with 21−diagonal matrix.
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Fig. 7. MERAM((40, 40), [z, z]) versus ERAM(40, z) with 63−diagonal matrix.

Test Matrices. The matrices are taken from the matrix market [2] and the
University of Florida sparse matrix collection11. We present results obtained with two
matrices AF23560 and BFW782A of the first collection and the matrix V ENKAT01
of the second one. The size of the first matrix is 23560 and the number of its nonzero
elements is 484256. The size of the second one is 782 and the number of its nonzero
elements is 5982. The matrix V ENKAT01 has 62424 size and the number of its
non-zero entrees is 1717792.

11http://www.cise.ufl.edu/research/sparse/matrices/
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6.2.1. MERAM versus ERBAM. For our experiments we have exploited only
very high level parallelism of asynchronous MERAM. We did not take advantage of
other types of parallelism that can be found in each ERAM process of MERAM. This
means that each ERAM process of MERAM runs in serial mode. The parallelization
of ERBAM is done according to the scheme presented in section 5.3. Each of the
tasks 1, 3 and 4 of BBAA is distributed between the workstations and step 2 runs
redundantly on all processors.

We used these methods in order to find the s = 4 eigenvalues of largest modulus.
The initial vector vi is taken as the vector ei (for i = 1, `). Let M =

∑`
i=1 mi be the

sum of the subspace sizes of the ` ERAM processes of MERAM. The subspace size of
ERBAM is chosen as `×m, where m is defined by m = M

` +mod(`, mod(M, `)). The
tolerance value is tol = 1E − 6. The number of iterations of MERAM in figures 8 to
12 is the number of iterations of the ERAM process which reaches convergence (the
others ERAM processes are stopped when the first one converges). It is, generally,
the ERAM process with the largest subspace size.

We run experimentations with 2 or 3 ERAM in parallel (i.e., ` = 2 or 3). The
figures 8 to 12 illustrate Log10 of the sum of the residual norms versus the number of
restarts and the execution time for ERBAM and MERAM on ` workstations. Table 2
brings together the parameters and the curves of performances presented in figures 8
to 12. The figures 8 and 11 show approximately the same behavior for both MERAM
and ERBAM. We notice in Figures 9, 10 and 12 an important reduction of MERAM
response time with respect to ERBAM. The convergence of MERAM can be seen as
the convergence of its ERAM process with the largest subspace size (i.e., ERAM(m`)).
According to our experiments, this ERAM process accelerated by the other ERAM
processes of MERAM, is competitive with ERBAM. This is due to different factors:
the small subspace size of ERAM (m`) in comparison to the subspace size of ERBAM
(i.e., ` × m), the mixing of restarting strategies in MERAM, and the use of some
additional resources in order to reduce ERAM (m`) process response time.

MERAM ERBAM
Matrix Fig. ` m1, · · · ,m` iteration time `×m iteration time

AF23560 8 2 10, 30 6 554 2× 20 9 487
9 3 20, 25, 35 5 602 3× 27 5 1053
10 3 27, 27, 27 5 574 3× 27 5 1053

BFW782 11 2 13, 37 10 35 2× 25 8 36
12 2 5, 45 4 20 2× 25 8 36

Table 2
MERAM versus ERBAM on ` interconnected workstations

6.2.2. MERAM versus IRAM. The Implicitly Restarted Arnoldi is a more
robust method than ERAM. This because of the powerful restarting strategy used in
IRAM [22]. As we have seen before MERAM improves the convergence of ERAM.
This is because the restarting vector of an ERAM process of MERAM is computed by
taking into account the eigen-information obtained by the other ERAM processes. To
evaluate the restating strategy of MERAM with respect to IRAM, we have compared
these methods under similar constraints.

The PARPACK package[23] implements a parallel version of IRAM according to
the message passing model. We run experimentations with this package on a set of p
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Fig. 8. MERAM((10, 30), I2) versus ERBAM(40, I2) with AF23560 matrix.
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Fig. 9. MERAM((20, 25, 35), I3) versus ERBAM(81, I3) with AF23560 matrix.

interconnected workstations.
For our experiments, we have exploited the high level parallelism of asynchronous

MERAM (i.e.; that one between its ERAM processes) as well as the parallelism in-
side each ERAM process. The Multiple Explicitly Restarted Method is implemented
according to the model described in section 6.1. That means, we define ` compu-
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1

0

-1

-2

-3

-4

-5

-6

-7

-8
1 5 10 15

re
si

du
al

 n
or

m

iteration

MERAM
ERBAM

1

0

-1

-2

-3

-4

-5

-6

-7

-8
1 10 20 30 40

re
si

du
al

 n
or

m

time(sec)

MERAM
ERBAM

Fig. 11. MERAM((13, 37), I2) versus ERBAM(50, I3) with BFW782A matrix.

tation tasks TCMi and ` communication tasks Tcommi (for i = 1, `). Here TCMi

communicates with Tcommi using message passing model. TCMi implements the ith
ERAM process of MERAM. After each iteration, if the convergence is not reached,
the eigen-information is sent to Tcommi which sends it in its turn to the Tcommj

tasks (for all j 6= i). Moreover, Tcommi receives the eigen-information coming from
21
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Fig. 12. MERAM((5, 45), I2) versus ERBAM(50, I2) with BFW782A matrix.

Tcommj (j 6= i) and communicates it to TCMi.
MERAM is implemented on a set of p interconnected workstations. The TCMi

task is implemented on pi workstations ; pi = 1 corresponds to a serial run. The
subspace computation of TCMi is replicated to all of the pi workstations. The Tcommi

task is implemented on a workstation. We have then p = (
∑`

i=1 pi) + `. The MPI
library is used to implement the communications between Tcommi (for i = 1, `).

We used these methods in order to find the s = 2 eigenvalues of largest modulus.
We run experimentations with p = 5 or 6 workstations. The maximum number of
iterations is taken to be 100 and tol = 1.e− 8. The figures 13 to 16 illustrate Log10 of
the sum of the residual norms versus the number of restarts and the execution time
for IRAM and MERAM. Table 3 brings together the parameters and the curves of
performances presented in figures 13 to 16. We notice in Figures 13, 14 and 15 an
relevant reduction of MERAM response time with respect to IRAM. The figure 16
shows that PARPAK is faster than MERAM. This seems to be due to the increment
of the charge of the workstation supporting the ERAM process with the smallest
subspace size when the matrix size increases. Indeed, this process can be considered
as the accelerator of the other ones. As we see in table 3, this ERAM process has
run in serial mode on a workstation. When the matrix size is too large with respect
to the resources of the workstation, this process can become very slow and would not
play its role of accelerator.

7. Conclusion. We have presented the Multiple Explicitly Restarted Arnoldi
Method and some of its characteristics : restarting strategy and its relationship to
the block version of ERAM. We also presented an asynchronous parallel version of
this method and performance results of its implementation on heterogeneous and
homogeneous environments. MERAM allows us to restart each of its ERAM processes
with a vector preconditioning so that it can be forced in the desired direction. This
preconditioning can be seen as a particular application of an ERAM process to the
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MERAM IRAM
Matrix Fig. p, p1, p2 m1,m`=2 iteration time m iteration time
AF23560 13 6, 3, 1 13, 23 9 380 23 100* 900
BFW782 14 5, 2, 1 10, 20 8 22 20 74 63

15 5, 2, 1 10, 30 5 29 30 42 60
VENKAT 16 6, 3, 1 10, 30 3 399 30 4 191

Table 3
MERAM versus IRAM on p workstations.
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Fig. 13. MERAM((13, 23), I2) versus IRAM(23, e1) with AF23560 matrix.

starting vector of the other ones.
The restarting strategy is a critical part of MERAM. For an ERAM process of this

method, a hybrid restart is defined to be a restarting strategy that takes into account
all Ritz vectors including those received from the other ERAM processes. Thus, the
restarting vector of this ERAM process is a linear combination of ”the best” Ritz
vectors of interest. We define ”the best” Ritz vector to be the vector that has the
smallest residual norm. The approach consisting of mixing of all Ritz vectors instead
of choosing only ”the best” can seem better. Thus, the updated restarting vector
would be a linear combination of all Ritz vectors. But this approach brings together
all ”good” and ”bad” Ritz vectors to update the start guess. Thus, the convergence of
MERAM with this restarting strategy would be slower than with the one combining
just ”the best” wanted Ritz vectors.

Asynchronous MERAM is characterised by the fact that the communications be-
tween its subtasks (i.e., ERAM processes) are totally asynchronous. As a consequence,
this parallel algorithm is not the parallel version of a unique serial one. Each run of
this dynamic algorithm corresponds to one parallel static version. MERAM is a fault
tolerant method. A loss of an ERAM process during MERAM execution does not
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Fig. 14. MERAM((10, 20), I2) versus IRAM(20, e1) with BFW782A matrix.
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Fig. 15. MERAM((10, 30), I2) versus IRAM(30, e1) with BFW782A matrix.

interfere with its termination. Furthermore, this algorithm has a great potential for
dynamic load balancing. Indeed, the attribution of ERAM processes of MERAM
to the available resources can be done as a function of their subspace size at run
time. The heterogeneity of computing supports can be then an optimization factor
for this method. All these properties show that MERAM is well suited to the GRID
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Fig. 16. MERAM((10, 30), I2) versus IRAM(30, e1) with V ENKAT01 matrix.

computational environments.
As we have seen, MERAM accelerates the convergence of ERAM. Furthermore, it

can cooperate with convergence acceleration methods similar to the iterative Cheby-
shev polynomials. The presented results of our experiments on a cluster of work-
stations pointed out that MERAM has a good convergence behavior compared to
Explicitly Restarted Block Arnoldi method. Moreover, for some matrices, one have a
difficult convergence (slow or impossible) with Implicitly Restarted Arnoldi Method
and a fast convergence with MERAM.

We showed that the multiple-use of ERAM is more interesting than its simple-
use. This concept is simple and can be extended to some other restarted projection
methods like IRAM, GMRES or Hermitian/non-Hermitian Lanczos methods.

There are still many open problems in these methods which involve interesting
work from theoretical point of view as well as practical computation. Some potential
improvements to restarting techniques should be considered in future works. Ap-
proaches based on sophisticated restart such as augmented Krylov or implicit restart-
ing are also under investigation.
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