Connection Machine Lisp:
 Fine-Grained Parallel Symbolic Processing

Guy L. Steele Jr.
W. Daniel Hillis
Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142

Abstract

Connection Machine Lisp is a dialect of Lisp extended to allow a fine-grained, data-oriented style of parallel execution. We introduce a new data structure, the xapping, that is like a sparse array whose elements can be processed in parallel. This kind of processing is suitable for implementstion by such fine-grained parallel computers as the Connection Machine System and NONVON.

Additional program notation is introduced to indicate various parallel operations. The symbols α and are used, in a manner syntactically reminiscent of the backquote notation used in Common Lisp, to indicate what parts of an expression are to be executed in parallel. The symbol β is used to indicate permutation and reduction of sets of data.

Connection Machine Lisp in practice leans heavily on APL and FP and their descendants. Many ideas and atylistic idioms can be carried over directly. Some idioms of Connection Machine Lisp are difficult to render in APL because Connection Machine Lisp xappings may be sparse while APL vectors are not sparse. We give many small examples of programming in Connection Machine Lisp.

Two metacircular interpreters for a subset of Connection Machine Lisp are presented. One is concise but suffers from defining α in terms of itself in such a way as to obscure its essential properties. The other is longer but facilitates presentation of these properties.

1 Introduction

Connection Machine Liep is intended for symbolic computing applications that are amenable to a primarily fine-grained, dataoriented atyle of parallel solution. While the language was invented with the architecture and capabilities of the Connection Machine System [11] in mind, its design is relatively hardware-

[^0]Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specfic permission.
independent, and may be suitable for implementation on other parallel computera, ruch as NON.VON [22] or the NYU Ultrecomputer [21], as woll as nequential machines.

Connection Machine Lisp begins with a atandard dialect of Lisp, and then adde a new data type (the aapping) and some additional program syntax for exprewing parallelism. (We use Common Lisp [23] as our bace language, but Scheme $[28,27,3,2]$ would be an attractive alternative.) The resulting language is much like APL $[13,12,8,4]$, but with richer data atructures; much like FP [1], but with variables and aide effecta; momewhat like KRC [29], in that one possible semantics for Connection Machine Lisp includes lazy date structurea; but rather unlike QLAMBDA [5] or Multilisp [10], which introduce paralleliam via control atructures rather than data structures (although it may be poocible to copy certain good ideas from those languages into Connection Machine Lisp without ill effect).

2 The Xapping Data Type

All parallelism in Connection Machine Lisp is organized around a data structure called a xapping (rhymoe with "mapping"). A xapping in something like an array and something like a hach table, but all the entries of a xapping can be operated on in parallel, for example to perform associative searching. This date atructure by itself is not a particularly original idea; the innovation in Connection Machine Lisp lies in the program notation used in conjunction with it.

To be precise, a xapping is an unordered set of ordered pairs. The first item of each pair is called an inder, and the second item is called a value. We write a pair as indez \rightarrow value. An index or value may be any Lisp object. A xapping cannot contain two distinct pairs whone indices are the same; all the indices in a xapping are distinct (but the values need not be distinct). There is a question of what is meant by "eame"; for now assume that the Common Lisp function eql determinen eameness.

Here is an example of a xapping that mape symbole to other symbola:
\{aky \rightarrow blue apple \rightarrow red grase \rightarrow green $\}$
The same xapping could have been written in this manner:
$\{$ apple \rightarrow red sky \rightarrow blue grase \rightarrow green\}
The order in which the paire are written makes no difference.
To apeak in terms of implementation on a parallel computer, one may think of an index as a label for a processor, and think of the corresponding value as being stored in the local memory of that processor. The index might or might not be atored explic-
itly also. The xapping shown above might be represented, for example, by atoring pointers to the aymbols apple and red in procomeor 6, aky and blue in processor 7, and grana and green in processor 8. Additional header information indicating that the xapping is atored in three processort beginning with processor 6 must also be atorod somewhere. The ingenious reader can no doubt invent many other representations for xappiage suitable for particular purposes. In any caso, it is well to think of indices as labelling abatract procesers, and to think of two velues in two xappinge an being atored in the same processor if they have the same index.

Semantically a xapping really is like an array or hash table, where the indicee may be any Lisp objecte. A xapping may be acceased by index to obtain a value:
(xrei '\{sky \rightarrow blue apple \rightarrow red grass \rightarrow greon $\}$ 'apple) \Rightarrow rad
(Following [23], we use the aymbol \Rightarrow to mean "evaluates to.")
Sometimes the index and the value of a pair are the came (that is,.eql). As a convenient abbreviation, such a pair may be written within xapping-notation as just the value, without the index or the neparating arrow. For example,

\{apple \rightarrow iruit color \rightarrow abstraction
 abstraction \rightarrow abetraction\}

could be abbreviated to

\{apple \rightarrow fruit color \rightarrow abetraction abetraction\}

This is most convenient in the case where all the pairs may be so abbreviated:
\{red blue green yellow beige manve\}
means the same as
\{red \rightarrow red blve \rightarrow blue grean \rightarrow grean
yellow \rightarrow yellow beige \rightarrow belge gave \rightarrow mauve $\}$
but is considerably shorter. If all the clements of a xapping can be abbreviatod in this manner, then the xapping is called a aet (rhymes with "set").

If a finite xapping has a set of indices that are consecutive nonnegative integera beginning with sero, then the xapping may be abbreviatod by writing the valuea in order according to their indices, seperated by whitespace as neceseary and surrounded by brackete. Por example, the notation [rad green blue] in merely an abbreviation for $\{0 \rightarrow$ red $1 \rightarrow$ green $2 \rightarrow$ blue $\}$. A xapping that can be abbreviated in this manner is called a rector (rhymes with "vector"). The use of xectors in Connection Machine Liap is similar to the use of vectors in APL.

One can have a theory of lists (or arraya) that can speak of both finite and infinite linte and then use this theory to explain a language implementation that supports only finite lista. One might aleo implement a very similar language that supporta apparently infinite lints by means such special reprocentations as lasy lists or liste all of whoee elemente are the eame. In the eame manner, we have a theory that apeake of infinito xappinge. For the next few sections we apeak as if infinite xappings really are supported. In section 6 we eddress the semantic and implementetion difficulties that can arise when supporting infinite xappinge and various trado-offe that can be mede.

It is desirsble to introduce three different kinds of infinite xappinge.

- A constant xapping has the same value for every index. A constant xapping with value v is written as $\{\rightarrow v\}$. For oxample, the xapping $\{\rightarrow 5\}$ has the value 5 for every index. Constant xappinge are important to the implicit mapping (apply-to-all) notation discuseed below in section 3.
- A universal xapping, written $\{\rightarrow\}$, is the xet of all objects; that in, for every Liap object there is a pair with that object as both index and value. There is an important operation in the language, called domain, that takes a xapping and returns a xet of its indices; given that constant xappings exist, universal xappings are needed so that the donain operation can be total.
- A lazy xapping uses a unary Lisp function to compute a value given an index. For example, the xapping (. sqrt\} mape every number to ite equare root. (Note the dot that in part of the notation.) Lasy xappings are a means of dealing with the mapping of arbitrary functions over infinite xappinge.
Any of the three types of infinite xapping may have a finite number of explicit excoptions, where for a given index there is an explicitly repremented value. The "infinite part" is conventionally written after all of the explicit pairs. For example, the lazy xapping
$\{p i \rightarrow 1.772463861 \bullet \rightarrow 1.0487212 \rightarrow 1 \rightarrow i(s q r t\}$
is generally defined by the eqrit function but has explicit values for three particular indices.

3 Notation for Implicit Apply-to-All

Paralleliam is introduced into Connection Machine Liap primarily by having a way to apply a function to all the olemente of a xapping at once. This notion is not new; indeed, wa.were inspired by the "apply-to-all" operator α of FP [1]. The apply-to-all operator takes a function f and produces ... something ... that, when applied to a nequence, applies f to all the elemente of the sequence and yielde a sequence of the results:

$$
\alpha f:\left(x_{1}, x_{2}, \ldots, x_{n}\right\rangle \equiv\left\langle f: x_{1}, f: x_{2}, \ldots, f: x_{n}\right\rangle
$$

We may do the same thing in Connection Machine Lisp:

FP is purely applicative, and so the question of ordor of application is irrelovant. In Connection Machine Lisp, which is not purely applicative, we must address this queation, and we aleo apocify more procisely what is that something that apply-to-all produces. We begin by treating it as a aimple operator (or rather a read-macro character fronting for an operator, much as "'" fronts for quote), but are lod to regard it as a complex ayntactic device rather than a pure functional.

The expresion αx, where x is a variable or constent, conatructs a constant xapping with the value of a. For example, $\alpha 5 \Rightarrow\{\rightarrow 5\}$; this in "a sillion fives," loomely speaking. ${ }^{1}$ Similarly, the expremion α sqrt produces " sillion squaroroot functions." Putting it back into preudo-FP syntax, it in at if

$$
\alpha f \equiv(f, f, f, \ldots)
$$

[^1]We then make the rule that when a xapping is applied as a function, all of the arguments must also be xappings, and the xapping being applied must have functions as its elements (these elements may themselves be xappings). An implicit apply-to-all operation (apecifically, apply-to-all of funcell) occurs: function elements and argument elements are matched up according to their indices. The result is a xapping that has a pair for every index appearing in the function xapping and all argument xappings. Put another way, the result is defined for all indices for which the function and argument xappings are defined. In yet other words: the domain of the result is the intersection of the domains of the function and argument xappings.

Enough! Time for an example!

$$
\begin{aligned}
& \text { (acons } \quad\{a \rightarrow 1 b \rightarrow 2 c \rightarrow 3 d \rightarrow 4 f \rightarrow 5\} \\
& \cdot\{b \rightarrow 6 \quad d \rightarrow 7 \quad e \rightarrow 8 \quad f \rightarrow 9\}) \\
& \Rightarrow\{b \rightarrow(2.6) d \rightarrow(4,7) 1 \rightarrow(5.9)\}
\end{aligned}
$$

Note that the value of α cons, namely $\{\rightarrow$ (cons function) $\}$ (again apeaking rather looeely), is defined for all indices, and so does not reatrict the domain of the result; the function is defined at whatever index it may be needed. On the other hand, the domains of the two arguments are both finite, and their intersection determines the domain of the result.

Operationally, this function call implicitly sets up the following calls to cons:

(cons 2 6) (cons 4 7) (cons 6 9)

These calls are executed in parallel (perhaps asynchronouslysee section 6). Resynchronization occurs, at latest, when all of the parallel computations have completed and the result xapping is to be constructed.

Note that argument forms are not necessarily evaluated in parallel (as in the peall construct of Multilisp [10]); that is an orthogonal notion. The parallel evaluation of arguments forms is a parallelism in eval (or more precisely in evlis). The parallelism in Connection Machine Lisp is a parallelism made manifest in apply. (This distinction is further discussed below in section 6.)

Consider now two forms: $(\alpha+\alpha 2 \alpha 3)$ and $\alpha(+2$ 3). The first evaluates the function and argument forms to produce $\{\rightarrow+\}$, $\{\rightarrow 2\}$, and $\{\rightarrow 3\}$. The first is then applied to the other two. All three are defined for all indices, and so an infinite number of calls to + are set up, all of the form (+2 3). (Kindly ignore for now the pragmatic and semantic difficulties of actually performing an infinite number of function calls, especially in a language with side effects. We will return to these difficulties in section 6.) All of these calls produce the result 5 , and so the result is $\{\rightarrow 5\}$. As for $\alpha(+23)$, we have not yet defined what " α " does when written before an arbitrary form such as (in this case) a function call, but it is tempting to define it simply to evaluate the form and then produce a constant xapping with the resulting value. If we adopt this definition, then $\alpha(+23)$ also produces $\{\rightarrow 5\}$, and in fact we have an important syntactic property:
" α " distributes over function calls.
Suppose that we want to add 32 to every element of a xapping c ; we may write ($\alpha+\mathrm{c} \alpha 32$). Now suppose instead that we wish to multiply each element of c by $9 / 5$ before adding 32 ; we write ($\alpha+$ ($\alpha *$ c $\alpha 9 / 5$) $\alpha 32$). Or perhaps we really want a xapping of 2 -lists pairing each such computed value with the original element of c: (α list $\mathrm{c}(\alpha+(\alpha * \mathrm{c} \alpha 9 / 6) ~ \alpha 32)$). As we construct ever more complicated expressions to be executed independently and in parallel, we find ever more apply-to-all op-
erators creeping in. The distribution rule can be used to "factor out* these operators if every subform of a function call has a proceding α, but that is not the case here. We wolve this problem by introducing "s" as an "inverce" to " α ": by definition, $\alpha \cdot x$ $\equiv x$. We can then alwaye apply the distribution law by introducing occurrences of " $\alpha 0$ " first. To continue our example, we begin with the expression ($\alpha 1$ ist c ($\alpha+(\alpha *$ c $\alpha 9 / 5$) $\alpha 32$)) and make successive transformations:

and derive the result α (list $\cdot \mathrm{c}$ (+ (* oc 9/6) 32)).
We have ended up with a notation for fine-grained parallism that is similar to the familiar Common Lisp backquote notation. One may think of a backquote as meaning "make a copy of the following data structure" and of a comma as meaning "except don't copy the following expression, but instead use its value." Likewise think of " α " as meaning "perform many copies of the following code in paralle"" and of "o" as meaning "except don't do the following expression in parallel, but use elements of its value (which must be a xapping)."

The template that follows a backquote indicates parts of the constructed data atructure that are the amme in all instances constructed by the backquoted expremion, and commas indicate values that can vary from instance to instance (in time). Similarly, the template that follows an α indicates parts of the computation that are the same in all the parallel computation, and each - indicates a value that can vary from instance to instance (in space).

This notation is powerful becsuse it allows two simultaneous points of view (as with a Necker cube). On the one hand, it can be understood as a computation with a single thread of control, operating on arrays of data. This allows one to have a global understanding of how the data is transformed, as in FP or APL. On the other hand, it can be understood as an array of pro cesses, with each process executing the same code that follows the " α " and with "o" flagging date values that may differ among processes. This allows one to take a piece of code written for a single processor and trivially change it to operate on a processor array by annotating it with " α " and "o" in a few places. Thus the notation simultaneously aupports both macroucopic and microscopic views of a parallel computation.

4. Other Useful Operations

In this section we discuse various operations on xappings, some primitive (for the purposes of this paper) and some derived. \boldsymbol{A} number of programming examples are presentod. Many of the examples are reminiscent of APL programming atyle; we point out important similarities and differences along the way.

4.1 Common Lisp Sequence Functions

Xappings are just another kind of sequence (in the Common Lisp sense). Connection Machine Lisp extends the meaning of many Common Lisp functions to operate on xappings. For example, the length function will return the number of paira in a finite xapping. Many important operations on xappings, such as solection, filtering, and aorting, may be performed using ordinary Common Lisp sequence functions:

```
(subeeq '[the slick brown quax jumped
            over the lazy frog]
    36)
    => [quux jumped over]
(remove-if-not
    *aton
    -{ 3->(prim odd)
        6->(conpozite even perfect)
        \bullet->(transcondeztal hap-pretty-continued-fraction)
        57->boring
        pi->(transcendental has-ggly-continued-traction)
        25->odd })
    =>{57->boring 25 }->\mathrm{ odd}
(sort "{aky->blue banama }->\mathrm{ yellow apple }->\mathrm{ red
                graes }->\mathrm{ green shirt }->\mathrm{ plaid}
            #'string-1essp)
    =>[blue green plaid red yellov]
```

Many of thees functions, such as subseq, depend on the argument sequences to be ordered, and so are senaible only if applied to a xector. Some of the functions will atill work if applied to any other kind of xapping, and will operate by first implicitly ordering the xapping (indeed, the explicit purpose of sort is to order a sequencel). Yot other operations do not require an argument to be ordered, and never implicitly order the xapping; renove-ifnot is an example of this. For other functions it is considered an error for a xapping argument not to be a xector. (Unfortunately, it appears to be necomary to determine case by case which of these is the most useful behavior.)

4.2 Domain, Enumeration, and Union

The donain function takes any xapping and returns a xet of the indicee.

```
(domain '{Eky->blue graes->green apple->red})
    => {aky grase applo}
```

The onumerate function takes a xapping and constructs a new xapping with the same domain but with consocutive integere atarting from sero as values. The net effect is to impose an (arbitrary) ordering on the domain. Enumerating the same xapping twice might produce two different resulta.

```
(enumorate '{sky->blve grase->greon apple->red})
    =>{sky->0 grase->1 apple->2}
    or {sky }->1\mathrm{ grase }->0\mathrm{ apple }->2
    or {sky->1 grass->2 apple->0}
    or {sky->2 grass->1 apple->0}
    or {sky->2 grass->0 apple->1}
    or {eky }->0\mathrm{ grase }->2\mathrm{ apple }->1
```

The xector and xet functions are like list, in thet they take any number of arguments and conatruct a xector or xet. Note that xet must eliminimie duplicate alemente.

```
(xector 'red 'blue 'green 'blue 'yellow 'red)
    =>[red blve green blue yellov red]
(xet 'red 'blue 'green 'blue 'yellow 'rod)
    => {blue green red yellow}
```

The function xunion takee a combining function and two xappinge; the reauli is a xapping that in the union of the sete of pairs of the argument xappings. The combining function is unod to
combine values for which the tame index appears in both argument xappinge (and furthermore xunion guarantees that the first argument to the combining function comes from the first xapping, and the second argument from the second xapping).

```
(xonion *' + '\{alburt \(\rightarrow 0\) dsindzichashrili \(\rightarrow 1\)
            nardandras \(\rightarrow 0\) mpesky \(\rightarrow 2\}\)
            - \(\{\) alburt \(\rightarrow 0\) seiravan \(\rightarrow 1\)
            spassky \(\rightarrow 1\) rachels \(\rightarrow 0\}\) )
\(\Rightarrow\) \{alburt \(\rightarrow 0\) dzindzichashvili \(\rightarrow 1\) merdandres \(\rightarrow 0\)
    rachole \(\rightarrow 0\) seiravan \(\rightarrow 1\) spaseky \(\rightarrow 3\}\)
```

It is not necemary to have a function called xintersection, because (xinteratiotion $f x y$) $=(\alpha f x y)$; all function calls implicitly perform an interwection operation.

Using xunion we can define come composition operations (whose names are taken from [18], where the operations are used to compose images):
(defun orer (a b) (xunion " (lambda (x y) x) a b))
(defon in (a b) (α (lanbda (x, y) x) a b))
(deiun atop (a b) (in (over a b) b))
The result of (over $x y$) is the union of x and y, as if they were both laid on a table with x over y, so that where x and y are both definod the element from x is alwaye taken.

```
(over ' {1->a 3->b 5->c 7->d} '[% # 0 + = *])
    =>{0->% 1->a 2->e 3->b 4->= 5->c 7->d}
```

The result is not printed as a xector because there is no element with index 6.

The result of (in $x y$) is the intersection of x and y, with values taken from x; that is, the domain of y sorves as a mask on the domain of x.

$$
\begin{aligned}
& \text { (} \ln \cdot\{1 \rightarrow a 3 \rightarrow b 5 \rightarrow c 7 \rightarrow d\} \cdot[\% *+* *]) \\
& \Rightarrow\{1 \rightarrow 3 \rightarrow 5 \rightarrow c\}
\end{aligned}
$$

The result of (atop $x y$) has the same domain as y, but the values are taken from x for indices that appear in x, and otherwise from y :

```
(atop '{1->a 3->b 6 b c 7 T d} '[% * 0 + = *])
    =>[% a & b | c]
```


4.3 Reduction and Combining

The α syntax can be used, in effect, to replicato or broadcast data (conatante and values of variables) and to operate in parallel on date (by applying a xapping of functiona). Another syntax, using the " $\beta^{\prime \prime}$ character, is uned to exprees the gathering up of parallel data to produce a single result, and to expreas the permuting and multiple-reault combining of parallel deta.

For gathering up, the expreesion ($\beta f=$) takes a binary function f and a xapping x and returne the renult of combining all
the values of x using f, a process sometimes called reduction of a vector. ${ }^{2}$ (This operation is written as f / x in FP and APL.)

As an example, ($\beta+f 00$) produces the sum of all the values in $\mathbf{f o o}$, and (β nax $\mathbf{f 0 0)}$) returns the largest value in $\mathbf{f 0 0}$. Note that in this case the indices associated with the values do not affect the reault. Any binary combining function may be uned, but the result is unpredictable if the function is not associative and commutative, because the manner in which the values are combined is not predictable. For example, ($\beta \pm$ ' $\left\{\begin{array}{ll}1 & 2 \\ 3\end{array}\right\}$) might compute ($\ddagger 1$ ($\ddagger 23$)) or ($\ddagger(\pm 12) 3$) or (\pm ($\ddagger 31$) 2) or any other method of arranging the values into a binary computation tree. (If the argument xapping is a xector, then the result is predictable up to associativity: the combining function need not be commutative, but should be associative.) Note that in APL and FP the order in which elements are combined is completely predictable. We eliminate predictability in Connection Machine Lisp for two reasons: first, the domain may be unordered; second, we wish to perform reductions in logarithmic time rather than linear time by using multiple processors.

Sometimes this unpredictability doesn't matter even though the function is not associative or commutative: the expression (β (lambda (x y) y) foo) is a standard way to choose a single value from $f 00$ without knowing any of the indices of foo. This operation, though not logically primitive, is so useful that it has a standard name choice:
(defun choice (xapping)
(β (lambda ($x y$) y) xapping))
Note that the combining function (lanbde (x y) y) is not commutative. However, also note that executing the same expression twice might result in choosing the same element twice or two different elements. The choice is arbitrary; it might or might not be random. The expression (choice 'a b) might return a the firat ten million times it is executed and then might return b thereafter. Or it might always return a.

If a matrix is represented as a xector of row-xectors, then we can perform reduction over rows or over columns by using β and α together:

```
(\alpha\beta+ '[[\begin{array}{lll}{1}&{2}&{3}\end{array}][\begin{array}{lllll}{4}&{5}&{6}\end{array}][\begin{array}{lll}{7}&{8}&{9}\end{array}]) ;Sum over rove
    => [\begin{array}{llll}{6}&{15}&{24}\end{array}]
(\beta\alpha+
    =>[[\begin{array}{lll}{12 15 18]}\end{array}]
```

For a three-dimensional array (represented by nested xectors), the reduction functions indicated in APL by $+/[0],+/[1]$, and $+/[2]$ are written in Connection Machine Lisp as $\beta \alpha \alpha+, \alpha \beta \alpha+$, and $\alpha \alpha \beta+$.

For permuting data, the expression ($\beta f d x$) takes a binary function f and two xappings d and x and returns a new xapping z whose indices are specified by the values of d and whose values are specified by the values of x. To be more precise, the value of ($\beta f d x$) is
$\{q \rightarrow s|S=\{r \mid(p \rightarrow q \in d) \wedge(p \rightarrow r \in x)\} \wedge| S \mid>0 \wedge s=(\beta f S)\}$

[^2]For every distinct value g in d there will be a pair $q \rightarrow s$ in the result. If that value g occure in more than one pair of d, then * is the result of combining all of the correaponding valuee from x. As an example,

$$
\left.\begin{array}{c}
\langle\beta+\quad\{\text { grass } \rightarrow \text { green eky } \rightarrow \text { blue benana } \rightarrow \text { yellow } \\
\text { apple } \rightarrow \text { red tometo } \rightarrow \text { red egg } \rightarrow \text { white } \\
\end{array} \text { (grass } \rightarrow 1 \quad \text { Eky } \rightarrow 2 \text { benana } \rightarrow 3 \text { mango } \rightarrow 6\right\}
$$

The pair red $\rightarrow 9$ appears becsuse the value 4 from apple and 5 from tomato were summed by the combining function + . The reault has no pair with index white or value 5 because neither egg nor mango appeared as an index in both operand xappings.

Histogramming ia a useful application of this more general form of β; many tums must be computed by counting 1 for each contributor:
(defun histogral (x) ($\beta+x \cdot\{\rightarrow 1\}$))
(histogran $[a b a c \in b c d \pm \bullet b \geq b g d \in d a]$)
$\Rightarrow\{A \rightarrow 4 \mathrm{~B} \rightarrow 4 \mathrm{C} \rightarrow 2 \mathrm{D} \rightarrow 3 \mathrm{E} \rightarrow 3 \mathrm{~F} \rightarrow 2 \mathrm{G} \rightarrow 1\}$
This version of the β-syntax may be underatood operationslly as a very general kind of interprocessor communication. If we think of a fino-grained multiprocessor where a processor is assigned to every element of a xapping, then the index of a xapping pair is a processor label. If for some p there is a pair $p \rightarrow g$ in d and a pair $p \rightarrow r$ in x, it means that the processor labeled p has a datum r and a pointer to another processor q. The βf operation sends the datum r to processor g . Of course, many such messages may be sent in parallel; the combining function f is used to resolve any message collisions at each destination. (This idea of a combining function that resolves collisions recurs in many places throughout the language, almost everywhere parallel data movement is involved. Recall, for example, the function ranion presented above in moction 4.2.)

Note the following eimilarity between the two forms of β ayntax: $(\beta f x) \Rightarrow v$ if and only if $(\beta f \cdot\{\rightarrow q\} x) \Rightarrow\{q \rightarrow v\}$. Operationally apeaking, ($\beta f \cdot\{\rightarrow q\} \quad x$) causes all the values of x to be sent to processor q and combined there, whereas ($\beta f x$) causes all the values of x to be cent to the host (or to a neutral corner, if you please) and combined there. It is this relationship that prompted ue to use β for both purposea.

4.4 Other Functional Operations

Early in the development of Connection Machine Lisp there was a raft of other functional operators as well, which consumed a fair portion of the Greek alphabet. We heve found that " α " and " β " along with the domin, enumerate, xunion and a very few other functions seem to constitute a comfortable set of primitives from which many other parallel operations are easily constructed. This is of course similar to the experience of the APL community, except that we have rettled on a different set of primitives.

Consider for example the function order that takes any xapping and imposes an ordering on ite values (thereby producing an equivalent xector):

(defun order (x) (β (enumerate x) x))

(The binary function 0 merely aignals an error when it is called:

```
(defun (kreat x)
    (error "Combining function erroneously called -
        -0[ on argument list " - % ]"
        x))
```

It is conventionally ueed to indicate that collisions should not occur.) Compare ordor, which produces an arbitrary ordering (that is, an ordering at the discretion of the implementetion) to sort, which imposes an ordering according to a user-apecified binary ordering predicate.

A ueful operation defined in terma of β in tranaport, which unet a unary Liap function to compute new indices from old oner:

(dofun traneport ($\mathbf{f} \boldsymbol{x}$)

($\beta \mathrm{f} \alpha(\mathrm{g} \cdot(\mathrm{doman} \mathrm{x})$) x$)$)
(Actually, this definition is not correct. To render traneport into legitimeto Common Linp eyntax, we must first explain that

(dofun transport ($1 ; x$)
(conbine $f \alpha($ iuncall $g \circ(d o m a n i n)) x)$)
Similarly, ($\beta f x$) \equiv (raduce ${ }^{\prime \prime} f x$). The fact that Common IIsp, like most Liep dialecte, has eeparate function and variable namespaces makes the use of functional arguments awkward. All remaining code in this papor adheree to Common Lisp syntax.)

Here are come examplee of the use of tranaport.

```
(defan doable \((x)(+x x)\) )
(trantport \#' \#'double '[a b e d])
```


Compare this to a aimilar use of the APL expansion function:

| | | | $7 p 1$ $0)$ 3 4 5 6 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0 | 4 | 0 | 5 | 0 | 6 | | |

Whereas APL requires vector elementa to have contiguous indices, and muat therefore ped the expanaion with seroes, Connection Machine Lisp allowa a xapping simply to have holes.

The inverse of the index-doubling operation ahown just above is a contraction operation with combining:
(defun halve (x) (floor $\times 2$))

In this example, every element in $\left[\begin{array}{lllllllllllllllll}1 & 2 & 3 & 4 & 5 & 8\end{array}\right]$ is traneported to an index equal to half (rounded down) of ite original index. The net effect is to combine adjacent pairs. This effect is rather more difficult to achieve in standard APL.

```
(dofun rotate (x j)
    (trensport *'0
                            *'(lanbda (k) (mod (-k j) (longth x)))
                            x))
(dofun shift (x j)
    (transport #'e #(lambde (k) (-kj)) x))
```



```
(shift '[a b c de t] 2)
    =>{-2->a -1 b b O->c 1->d 2->@ 3->f}
```

APL provides an function \uparrow equivalent in effect to rotate, but hae nothing quite like ehift, which can renumber the indices of a vector so as to begin at any origin, even a negative origin. Such shifted vectors are handy on occasion, as in the definition of scan presented further below.

The function inverse computes the inverse of a xapping considered as a mapping; for overy pair $p \rightarrow q$ in the argument, a pair $\rightarrow p$ appears in the result. As usual, a combining function must be provided against the pomibility of duplicate values o.

```
(doimn Inverse (f x)
    (conbine f x (domaim x)\) ;i.e., (\betai x (domain x))
(inverse #'的 [a b c d]) = {a->0 b->1 c->2 d->3}
(inverse #'+ '[a b c b]) => {a->0 b->4 c->0}
(Inverse #'max '[a b c b]) # { {a->0 b->3 c->2}
(inveree #'nin [[a b c b]) # {a->0 b->i e->2}
```

The function compose computes composition of two xappings considered as mappinge; for every pair $p \rightarrow q$ in the first argument, there must be a pair $q \rightarrow r$ in the second argument, and the pair $p \rightarrow r$ appears in the result.

```
(dotun compose ( \(x\) y) \(\alpha(x\) ref \(y \bullet x)\) )
```



```
    \(\Rightarrow\{p \rightarrow 3 q \rightarrow 4 r \rightarrow 3 \in \rightarrow 6\)
```

As in APL, it is helpful to have a primitive operstor iote to generate xectors of a given length.
(iote 10) $\Rightarrow\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 5 & 6 & 8\end{array}\right]$
Note that $\left[\begin{array}{lll}0 & 123456789\end{array}\right]$ is the same data atructure $a s\left\{\begin{array}{llllll}012 & 3 & 5 & 678 & 9\end{array}\right.$.

4.5 Examples Using Matrice

Wo take a primitive the treanpose operation. H x is a xapping whose values are all xappinge, then (tranepose x) is aleo a xapping whoe values are xeppinge, and (trenspose x) contains a pair $y \rightarrow y$ whone xappiag y contains a pair $q \rightarrow r$ just in case x containa a pair $f \rightarrow z$ where xapping z contains a pair $p \rightarrow r$. To put it another wey,
(xrrof (xref (transpose a) j) k) \equiv (xref (xref $x k$) j)
for all j and k, and if one side of the equivalence is undefined then $s o$ is the other aide. Note aleo that
(transpose (tranapose x)) $\equiv x$
as one might expect.
Examples of uaing transpose:

```
(tranapose '[[[llll
    [4 5 6]])
    => [[lll
        [2 5]
        [3 6]]
(transpose '[[[llllll
                                    [4 5 8]
            [7 8]
            [9]])
    A[[\begin{array}{llll}{0}&{4}&{7}\end{array}]
        [1 5 8]
        [2 6]
        [3]]
(tranepose '{e->[1 2] b }->[\begin{array}{llll}{3}&{4}&{5}\end{array}]\textrm{c}->{(0->6 2->7}}
    =>[{A->1 B->3 C->0} {A->2 B->4} {B->5 C->7}]
```

$$
\begin{aligned}
& \text { (tranapose } \cdot\{0 \rightarrow\{4 \rightarrow 14\} \quad 1 \rightarrow\{1 \rightarrow 67 \quad 3 \rightarrow 23\} \quad 3 \rightarrow\{1 \rightarrow 89\} \\
& 4 \rightarrow\{0 \rightarrow 933 \rightarrow 364 \rightarrow 56\}\}) \\
& \Rightarrow\{0 \rightarrow\{4 \rightarrow 03\} 1 \rightarrow\{1 \rightarrow 073 \rightarrow 89\} \quad 3 \rightarrow\{1 \rightarrow 234 \rightarrow 36\} \\
& 4 \rightarrow\{0 \rightarrow 144 \rightarrow 56\}\}
\end{aligned}
$$

Note that the subxappinge of the argument need not all have the eame domain; the argument and result may be "ragged" (or even sparse) matrices. The last result above might be expressed as

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 14 \\
0 & 67 & 0 & 23 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 89 & 0 & 0 & 0 \\
93 & 0 & 0 & 35 & 56
\end{array}\right]^{T}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 93 \\
0 & 67 & 0 & 89 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 23 & 0 & 0 & 35 \\
14 & 0 & 0 & 0 & 56
\end{array}\right]
$$

in mathematical notation, but note that the xappings shown in that example do not represent the sero entries explicitly. The correspondence between the dense and sparse representations may be seen by properly formatting the sparse one:

The support of aparse arrays is one of the strengths and conveniences of the xapping data structure.

The function inner-product takes two functions f and g and two xappings p and q and computes an inner product. This would be written $p f . g \mathrm{~g}$ in APL,$+\times$ being, for example, the standard vector inner product.

```
(defun inner-product (f g boptional (p nil pp) q)
    (11 (not pp)
        *'(lambde (p q) (inner-product i g p q))
            (reduce f \alpha(funcall g \circp \bulletq))))
(funcall (inner-product *'+ #'*) '[\begin{array}{lll}{1}&{2}&{3}\end{array}]
    =>32
(1nnor-product *'max #'min '[\begin{array}{lll}{6}&{2}&{7}\end{array}] '[\begin{array}{lll}{2}&{8}&{6}\end{array}])=>5
```

Note that inner-product is written so as to allow optional currying. One may supply all four arguments at once, or supply only two and get back a closure that will accept the other two arguments and then perform the operation. This technique avoids some of the awkwardness of notation that would otherwise be required when using functional arguments and values in a Common Lisp framework. ${ }^{\text {s }}$

The function outer-product takes one n-ary function f and n xappings, where $n>0$, and computes an outer product; for binary f this would be written $p \cdot . f q$ in APL. (The definition of outer-product is also written 80 as to allow optional currying.)

[^3]```
(defun outer-product (f mrest arge)
 (label: ((op (11at-of-xappinge list-ot-args)
 (1f (null 1ist-ot-xappings)
 (apply i 11st-ot-args)
 \alpha(op (cdr 1ist-ot-xappings)
 (cons -(car list-of-xappings)
 list-of-arge)\)))
 (if (null arge)
 *'(lambda (trest args) (op args '()))
 (Op arg% '()))))
(outer-product #'+(Iota 6) (iote 6)) =
 [[lllllll
 [1:124 4 6 6
 [24
 [\begin{array}{llllll}{3}&{4}&{5}&{6}&{7}&{8}\end{array}]
 [4 5 5 6 7 8 9]]
(outer-product "'substitute
 -[p q]
 -[a b]
 -[(c a b) (b a b)])
 =>[[[(C P B) (B P B)]
 [(C A P) (P&P)]]
 [[(C Q B) (B Q B)]
 [(C&Q) (Q|Q)]]]
```

Here we have a standard matrix multiplication example; compare this to the definition in FP given by Backue [1]. A matrix is represented as a xector of xectors; the second argument is tranapoeed, and then the two matrices are combined by an outer product that usee an inner product as the operation.

```
(defun matrix-multiply (f g toptional (x nil xp) y)
 (if (not xp)
 #'(lanbda (x y) (natrix-multiply f g x y))
 (outer-product (inner-product ig)
 x
 (trenspose y))))
(matrix-multiply %'+带'*
 -[[[1 2] [3 4] [[6 6]]
 -[[[lllllll}
 =>[l[2 3 2 2 1] [4474 4 3] [lllllllll
```

(This result would be expressed as

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 2 & 1 \\
4 & 7 & 4 & 3 \\
6 & 11 & 6 & 5
\end{array}\right]
$$

in mathematical notation.)

### 4.6 A Large Example: Scan

The scan operation, written $f \backslash x$ in APL, computes a vector of the $f$-reductions over all prefixes of a vector $s$. (This operation is also referred to as a "parallel $f$-prefix" computation.) In Connection Machine Lisp, using xectors, we have the examples
$\left(\operatorname{scan} *^{\prime}+\cdot\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 7\end{array}\right]\right) \Rightarrow\left[\begin{array}{llllll}1 & 3 & 6 & 10 & 17 & 19\end{array}\right]$
(scan *** $\cdot\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right] \Rightarrow\left[\begin{array}{llllll}1 & 2 & 6 & 24 & 120 & 720\end{array}\right]$


This operation can be implemented so as to execute in time logarithmic in the number of $\beta$-permutation operations (with no combining needed), iota operations, and $\alpha f$ operations, as followa:

```
(dofun tean (f x)
 (1f (xectorp x)
 (acani f x)
 (let ((q (enomerate x)))
 (\beta@ (Inverse *' q)(scan1 i (}
(defun Ecanl (f x)
 (do ((j 1 (+ j j))
 (z x (over \alpha(funcell I
 - (shift (in z (iota
 (-n j)))
 (-j))
 -2)
 2))
 (% (longth x)))
 ((>=1n) z)))
```

Here acani is the central part of the algorithm; it takes a xector and computes an APL-atyle scan in a number of iterations logarithmic in the length of the xector. (It should be noted that arguably any implementation of the ehift or lota aperation might require time logarithmic in the length of the shifted or generated xector, for an overall time complexity of $O\left(\log ^{2} n\right)$.) The reeult of the call to in is the first $n-j$ elements of $z$; these are shifted $s 0$ as to align with the last $n-j$ elements of $z$ for combining. The renults replace the last $n-j$ elements of $z$ (via the function over).

The main function scan takes care of handling arbitrary xappinge; anon-xector is enumerated to impose an ordering $q$, the reuulting xector is acanned, and the scan results are then projected back onto the original domain.

As an example of the power of the sean operation in a nonnumerical application, consider the problem of lexing, thet is, dividing a character atring into lexical tokens. The easential work of this can be done in time polylogarithmic in the length of the string. Lexing is normally performed by a finito-atate automaton that makes transitions as it reads the characters sequentially from left to right, and the atates of the automaton indicate token boundaries. One can view a character (or a aingle-character string) as a fu:ction that mape an automaton stato into another atate; taking string concetenation to be isomorphic to composition of these functions, atring may therefore aleo be viewed at such a function. We can reprement stato-to-atate functions as xappinga, and their componition by the compose function. Therefore a single acan operation using the conpose function can compute the mapping correaponding to each prefix of a source text; applying each euch mapping to the atart state yields the state of the automaton after each character of the input.

Let us consider a aimple example where atoken may be a sequence of alphebetic characters, atring surrounded by double quotes (where an embedded double quote in represented by two consecutive double quotee), or any of $t,-, *, \infty,\langle\rangle,,\langle\infty$, and $\rangle=$. Spaces, tabe, and newlinea delimit tokens but are not part of any token.

Our automaton will have nine atatea:
n means the last charecter proceaved in not part of a token. This is the initial state.
a. means the character is the firat in an alphabetic token.
$z$ means the character is in an alphabetic token but not first.
< means the character is < or >.

- means the character is the $=$ in $a<-$ or >a token.
* manns the character is 4, -, *, or an that is not part of a <m or >e token.
$q$ means the character is the " that begins a string.
a moant the charactor is part of a string.
- means the character may be the "that ende atring, uniem the next character also is " in which case the atring continues.
(There is no reason why the atates could not have multicharacter names other than concisences of prementation.)

Character are tranaformed into xappings by the following function:

```
(defun character-to-state-mep (ch)
 (if (alpha-char-p ch)
 { {n->2 2->2 2->+2 <
 (ecase ch
 ((*)\+ \\- *)
```




```
 '{n->< a->< z-><<<->< =
 ((%)=)
```



```
 ((年)")
```



```
 ((#\Space #\Hemline *\Tab)
```



```
 #)
```

This function computes the attete of the automston after every character of an input string (represented as a xector of character objects):
(Cefun compute-all-states ( $x$ ) $\alpha$ (xref -(scan "compose $\alpha$ (character-to-state-nap - $x$ )) 'n))
The function lex takes an input string and returns a xector of xectorw; each subxector contains the characters for one token. The first subxector is alwaye empty.

```
(defun lex (x)
 (let* ((s (compute-all-steten x))
 (first \alpha(not (not (nember *s '(a < * q)))))
 (nume (scan **+\alpha(if efirst 1 0)))
 (naskod-nu*s \alpha(if'(eq *s 'n) 0 ^nums))
 (lengthm (over '[0] (histogran maskod-nuns)))
 (origing (inverse
 *'(lambde (x y) 0)
 \alpha(if ofirst -masked-nums 0))))
 \alpha(subeng x vorigins (+ *origins elengths))))
```

The bulk of the work in done by compute-all-states and is nonnumerical in nature. A little bit of numerical trickery involving a am-scan and a histogram is used to perform the actual chopping of the atring.

As an example of the operation of lex, let us consider how the input atring "foo + "a+b" <eber" would be proceesed. This string is rendered as a xector as follows:

```
[\#\I *
```



The intermodiate variables computed by lex have these values in the example:

first $\Rightarrow$ [T MIL MIL HIL I MIL T MIL NIL
MIL MIL T MIL T MIL MIL]
nuas $\Rightarrow\left[\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 5\end{array}\right]$
nasked-nunat $\Rightarrow\left[\begin{array}{llllllllllllllll}1 & 1 & 1 & 0 & 2 & 0 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 6\end{array}\right]$
lengths $\Rightarrow\left[\begin{array}{llllll}0 & 3 & 1 & 6 & 2 & 3\end{array}\right]$
origins $\Rightarrow\left[\begin{array}{llllll}0 & 0 & 4 & 6 & 11 & 13\end{array}\right]$
In masked-nums, entries with the same value correspond to characters belonging to the same token, except that zero values indicate whitespace belonging to no token. Note the use of over to replace the first element of lengths with rero, and the use of a constant function with inverse to force the first element of origins to be zero.

The final computed value is:

```
[{} [#\1 #\0 *\0] [*\+] [#\" #\a #\+ #\b #\"]
 [%\< #\=] [#\b #\a #\r]]
```

If you believe that the implementation actually executes lex in $O\left(\log ^{2} n\right)$ time, then lexing a megabyte of text should take about four times as long as lexing a kilobyte of text (assuming that enough processing resources are available to take advantage of the parallelism specified in the algorithm.)

## 5 A Metacircular Interpreter

Table I presents a metacircular interpreter for a subset of Connection Machine Lisp. It is similar in style to published interpreters for Scheme $[28,26]$ but differs in three respects. First, it uses auch Common Lisp constructs as case and etypecase to discriminate forms. Second, like Common Lisp, it maintains the distinction between ordinary forms (including ordinary variablea) and functional forms (including names of functions). Third, it allows for the body of a lambde expression to be an implicit progn, which Common Lisp also allows and some interpreters of Scheme do not.

Much of the machinery will be familiar to those who know Scheme. The function eval takes an expression and a lexical environment, as usual, but also takes a list of indices whose purpose is explained below. Numbers and strings are treated as self-evaluating. Ordinary variables are looked up in a lexical environment atructure, here represented as an association list in the time-honored fashion. The following non-atomic forms are distinguished:

- (quOTE $x$ ) evaluates to $x$.
- (FUNCTION $f$ ) evaluates $f$ as a functional form by calling ineval.
- (IF $p x y$ ), as usual, first evaluates $p$; then one of $z$ and $y$ is evaluated depending on whether the value of $p$ was non-nil or nil.
- (ALPHA x) represents the construction $\alpha x$. Briefly, this causes many evaluations of of $x$, one for every possible index. (Difficulties with this idea are discussed below.) Dach of these many calls to oval gets a different indices argu-
ment, obtained by conaing the index for that call to eval onto the previous list of indices. Note the uee of a univeral xapping $\{-\}$ to allow eech of the parallal calls to obtain ite own index.
- (BULLET s) repretente the construction ex. The indices list must contain one entry for each $\alpha$ thet is dynamically controlling the current call to evel. The firat entry in the list corresponds to the innermost $\alpha$, which is the one that the bullet of this exprestion should cancel. Therefore the expression $s$ is evaluated (it must produce a xapping) using the reat of the indices, and then the firat index is used to select an element of the resulting xapping.
- Any other list is a function call. The first element il evaluated as a functional form, vilia is called in the usual way to avaluate the argument forms, and then the function is applied to the arguments.

The function fineval constructe clowures from lanbda expressions. Symbols are treeted as primitive operators (this suffices to allow the interpreter to execute properly in Common Lisp).

The function apply processes closures in the usual manner, adding parameter/argument pairs onto the environment of closure before evaluating the body of the lambda expression. The function evprogn handles the evaluation of the body. When the function is a xapping, then many applications must be performed. The function list-xapping-transpose merely takes a list of argument xappings and produces its tranopose, a xapping of lists.

This interpreter is not satisfactory for a number of reasons. One is that the form $x$ in (BULEET $x$ ) is evaluated many times, once for every index being processed by the corresponding $\alpha$. This shouldn't matter in a pure theory, but we are interested in explicating side effects within the language, and prefer a somantics where $x$ is evaluated only once (at least as far as the corresponding $\alpha$ is concerned; sdditional occurrences of $\alpha$ surrounding it might cauce repeated evalustions).

A second objection is that when a form (ALPHL x) is processed an apparently infinite number of recuraive calls to eval are performed, one for every postible index (meaning every poesible Lisp object!), for there is nothing in the syntax of the call to limit it. Theoretical objections aside, this is difficult to implement.

The most telling objection, however, is that this interpreter explains $\alpha$ in terms of itself in such a way that one cannot tell, just to look at the code of the interpreter, whether or not $\alpha$ actually processes anything in parallel. This is similar to the difficulties noted by Reynolde [19] for any interpreter that defines a construct in terms of iteelf.

In the next section we discuss a number of difficult semantic problems and then present a second metecircular interpreter that avoids defining $\alpha$ in term of itself and also explicates some issues of parallelism and synchrony.

## 6 Conditionals, Closures, Infinities, Side Effects, and Other Hard Things

In section 3 we arrived at a clear operational ides of what aform ought to mean: lote of processors should each execute the same form, and "o" indicatee where each must uee ite own date (or drop out if it has no data in that xapping). What then are we to make of " $\alpha($ if $p=y$ )"? Each proceseor should execute the predicate $p$; thowe that compute a true realt should execute $x$, and those that compute a false reault should execute $y$.


That is the microscopic view. Let us now map this back to the macroscopic view, in terms of xappings. The predicate $p$ is first evaluated (many times, in effect, once for each index) to produce a xapping. Now if side effects were not an issue, we could simply specify that both $x$ and $y$ are also evaluated and then combined according to the truth values in $p ;$ if would then be a purely functional conditional. But side effects are an issue, and we want if to be the usual control construct, not a function. We find that if is best macroscopically explained by postulating that $x$ is evaluated only for indices in which $p$ has true values, and that $y$ is evaluated only for indices in which $p$ has false values. In other words, evaluation of an expression that is under the control of an $\alpha$ must be dependent on a context that is a set (or xet, if you wish) of "active indices."

Suppose that there are nested occurrences of $\alpha$. Then in general the context must be a nested structure. We can let $t$, say, represent the global context where no $\alpha$ is controlling, and in the general case a context is a tree of uniform height composed of nested xappings. Suppose that the value of rebus is a familiar quatrain:

Then in the expression

```
\alpha\alpha(if (eq \bulletrebus 'y) 'q *orebus)
```


the consequent expression ' $q$ is evaluated in the context

```
[[t t nil nil] [t t nil nil]
 [nil nil nil nil] [t t nil nil]]
```

and the alternative expression eorebus (the second occurrence) is evaluated in the context

## [ [nil nil t t] [nil nil t t] <br> [t t t t] [nil nil t t]]

A context, therefore, may be understood to be exactly the places where the controlling predicates have succeeded or failed as necessary to enable execution of the current expression.

It is technically convenient to eliminate the occurrences of nil from contexts (recursively eliminating any resulting empty xappings as well). The contexts just exhibited would therefore actually appear as
$\left\{0 \rightarrow\left[\begin{array}{ll}t & t\end{array}\right] 1 \rightarrow\left[\begin{array}{ll}t & t\end{array}\right] 3 \rightarrow[t \quad t]\right\}$
and
$[\{2 \rightarrow t \quad 3 \rightarrow t\}\{2 \rightarrow t 3 \rightarrow t\}[t \quad t \quad t \quad t]\{2 \rightarrow t 3 \rightarrow t\}]$
respectively. The more complex metacircular interpreter exhibited below will use contexts of this form to determine the indices for which to evaluate an expression. That will take care of the interaction between $\alpha$ and conditionals.

It gets worse. Consider the interaction of $\alpha$ with closures. What does
$\alpha$ (mapcar \#' (lambda ( x z) (list $x$ •y $z$ )) a -b)
mean? Taking the microscopic view, for every index we execute the computation
(napcar "' (lambda ( $x z$ ) (list $x y z$ )) a b)
where $y$ is the value for that index within $y$, and $b$ within $b$. If

[^4]```
a => (three ilve)
y = [little blind]
b = [(kittens monkeys) (mice men)]
```

then the result should be

```
L( (three little kittens)
    (five little monkeys))
    ((three blind aice)
    (five blind men))]
```

But now let us take the macroscopic view:

```
\alpha(mapcar #'(lambda (x z) (list x •y z)) a -b)
```


means the same as

Thus a xapping containing a zillion mapcar operations must be applied to three other zappings. The second is a constant xapping with the value of a, and the third is the xapping named by b. But what is the first xapping? Is it a constant xapping of closures? No, because each closure behaves slightly differently: each uses a different value from y, according to index! We conclude that " α " does not distribute over (lambde . . .) in a simple manner; rather, a clowure must close not only over free lexical variables but also implicitly over the current set of indices.

An intuitive way to underntand this is the following technique for distributing " α^{*} over lambda-expressions:
α (lambda (x, y) body $) \equiv$ (lambda ($\alpha x \alpha y \ldots$) $\alpha b o d y$)
That is, a xapping of closures of the same lambda-expression can be understood to be a simple closure that accepts xappings as arguments and "destructures" them before executing the body in parallel. This can be made more formal:

```
\alpha(mapcar *'(lambda (x y) (list x y \bulletz)) a -b) 三
(\alphanapcar \alpha"'(lambda (x y) (list x y -z)) \alphaa b) \equiv
(\alphanapcar *'(lambda (\alphax \alphay) \alpha(list x y \cdotz)) \alphaa b) 三
(\alphamapcar #'(lanbda (\alphax \alphay) (\alphalist \alphax \alphay z)) \alphaa b) \equiv
(\alphanapcar *'(lambda (qx qy) (\alphalist qx qy z)) \alphaa b) \equiv
(\alphanapcar #'(lambda (qx qy) \alpha(list \bulletqx •qy -z)) aa b)
```

where the penultimate atep is merely a renaming of the "variables" αx and αy to be the otherwise unused names $q x$ and $q y$, and the last step is a factoring back out of α. This mode of understanding is still only vaguely intuitive, because the result of $\alpha{ }^{* \prime \prime}$ (lambda ...) must really after all be a xapping and not a closure. One might go a step further and specify that in a function call where the function is a constant xapping of iuncall operations, any argument that is not a xapping may be a closure that takes xappings as arguments; in other words, we arrange to "transpose" the levels of closureness and xappingness.

The complex metacircular interpreter that we yet promise to show you (please have patience, Gentle Reader) allows exactly that sort of transposition. It turns out that an appropriate representation for closures has four components: the lambda expression, the lexical environment, the context, and the indices, all as of the point of closure. The context and indices information trade off against each other. A closure containing a context c that is a xapping (that is, anything except t) may regarded as representing a xapping whose values are closures whose context parts are the values in c. For concreteness assume that a closure is represented as a 5 -list beginning with the symbol closure:
(closure exp env context indices)
Then we have the following identity:
(xref ' (clowure .exp .env , context .indices) k) 플 -(closure .exp .env . (xref context k) .(cons k indices))

We will take this identity as the definition of a closure containing a context other than t. It can be used to convert such a closure into a xapping, and if the original context is neated the process can be iterated to produce a nested xapping whove structure will be the same at that of the original context and whose leaves will be closures whose contained context is t, that is, ordinary closures. Indeed, we officially modify the definition of xref as follows:

```
(defun xref (x k)
    (etypecase x
        (XAPPING (prinitive-xref x k))
        (CLOSURE
            (yake-clonure
                (closure-exp x)
                (closure-env x)
                    (prinitive-xcef (closnre-context x) k)
                    (cons k (closure-indices x))))))
```

The advantage of this dual representation, as we shall see in due course, is that it allowe ue to apecify certain kinds of synchrony in the complex metacircular interpreter.

Firat, however, let us turn to the matter of infinite xappings. Suppose we were to write
$\alpha\left(+\right.$ (randon 8) ${ }^{(x)}$
This seems clear enough; we wish to add a random number (from 0 to 7) to each element of the xapping x. But shall a aingle random number be chosen, and that result added to every element of x ? Or ahall there be distinct computations of random numbers for anch element of x ? Our distribution law atates that the previous expresaion means the same as
($\alpha+$ (α random $\alpha 8$) x)
and this clearly calle for many instances of the randon function to be applied to many instances of 8 , thereby producing many random numbers to be added. But how many? There is no problem with the addition operation if x is finite; the rule about the intersection of domains in a function call causes only a finite number of calls to + to occur. But the code calla for an infinite number of calls to randon to occur, one for every possible Lisp object. This is difficult to implement effectively. The reason is that randon has a side effoct. (If it did not, we could aimply make one call to it and then effectively replicate the result. That is what we did earlier when we claimed that ($\alpha+\alpha 2 \alpha 3$) \Rightarrow $\{\rightarrow 5\}$.)

We have inventigated two ways out of this problem. One is to uee lasy xappings: in that case

```
(arandon \alpha8) }=>{.(\mathrm{ (lanbda () (randon 8))}
```

more or less. This approach has the disadvantage that side effects can occur out of order, sometimes unexpectedly late in the progrees of the program. (This eame problem can occur with futures in Multilisp [10]. Indoed, a lesy xapping is in effect merely a collection of futures, all of a particular form.) For instance, in the code fragment α (foo (bar)) we cannot guarantee that all side effocte caused by calle to 100 occur after all side efiocts caused by calls to bar. Nevertheloss, we have implemented (on a singlo-proceseor aystem, the Symbolics 3600) an experimental version of Connection Machine Lisp with lazy xappings and have found it tremendously complicated to implement but useful in prectice.

The other way out is to forbid infinite xappings. Unfortunately, a total ban on infinite xappings greatly reatricta the utility of the α-notation. We could allow juat constant xappinge, but then aide effecte cannot be treated consistently (the example of α (randon 8) could not be made to work, for example), and warts appear such as the domain function not being total.

We have found the following intermediate ponition tractable. We introduce two rules:

- One must not exocute an infinite number of function calle or an infinite number of IF forms.
- An expression beginning with an explicit " α " muat not produce an infinite xapping.

Violations of these restrictions be detected syntactically (by a compiler, for example). They allow infinite xappinge to arise "virtually" in the notation, but an implementation can always arrange never to have to represent them explicitly. One consequence of these rules is that any function call or IF form within the control of a " α " must have as an immediate subform either a form preceded by "." [basis step] or another function call or IF form [induction atep]. Another consequence is that the distributivity of " α " over function calls is partly destroyed in practice.

The metacircular interpreter shown in Table 2 makes use of a special representation for constant xappings, but only for the sake of representing contexts. Infinite xappings can become visible to "user code" only if provided as part of the input to the interpreter.

The code in Table 2 takes advantage of the Common Lisp type specifier hierarchy in two ways. First, the type specifier (MENBER T) specifies a type to which belongs the object t and no other object. Second, the type specifiers CONSTANT-XAPPING and FINITE-XAPPING represent subtypes of the type XAPPING. The function choice is assumed to operate properly on a constant xapping by returning the object that is the value of that xapping at every index.

The code in Table 2 is quite similar to that in Table 1. We remark here primarily on the differences.

The function eval of course takes an additional argument, context, which is the third argument and not the fourth for no good reason other than historical accident. An important invariant to underatand is that the value returned by a call to oval will match the context argument in its overall structure; that is, it will be a copy of the context with suitable values substitituted for the occurrences of t.

The handling of numbers, strings, and quoted objecta is a bit different in that the context must be taken into consideration. The function contextualize in effect makes a copy of the context, substituting the value for each occurrence of t; it thus replicates a value so as to match the context structure. For aymbols, the function lookup performs a aimilar contextualization. (The strange maneuver involving the function lookup-contextualize is discussed below in conjunction with closures.)

The deacription of the proceasing of ALPHA forms no longer usee α in any eseential way. A form (ALPHA x) is procensed by evaluating the subform x in an extended context, one in which every occurrence of t in the current context has been replaced by $\{\rightarrow t\}$, thereby increasing the height of the context tree by one. From this one can ree that the topmost xapping in a neated context atructure correaponds to the outermost controlling α, and a xapping that contains a t corresponds to the innermost α. The function extend-context performs the straightforward mechanics of context extension.

The proceming of (BULLET x) becomes more complicated. If any indices are provided, then one is used as in Table 1. Other-

```
(defun eval (exp env context indices)
    (etypecase exp
        ((OR NUNBER STRING) (contextualize exp context))
        (BYMBOL (lookup exp env context))
        (CDNS (case (car exp)
                (QUOTE (contextualize (cadr exp) context))
                (FUNCTION (fneval (cadr exp) env contuxc inaices))
                    (ALPHA
                    (eval (cadr exp) env (extend-context context) indices))
                    (BuLlet
                            (if indices
                        (xref (eval (cadr exp) env context (cdr indices)) (car indices))
                                    (context-filter (eval (cadr exp) env (trim-context context) nil)
                                    context)))
(IF
    (let ((test (eval (cadr exp) env context indices)))
                                    (let ((truecontext (ifpart t test))
                            (falsecontext (ifpart nil test)))
                            (if truecontext
                                    (1f falzecontext
                                    (merge-results (eval (caddr exp) onv truecontext indices)
                                    (eval (cadddr exp) onv falsecontext indices))
                                    (eval (caddr exp) env truecontext indices))
                                    (if falsecontext
                                    (eval (cadddr exp) env falsecontext indices)
                                    (error "Internal error: failed context eplit for -g" exp))))))
                    (t (apply (ineval (car exp) env context indices)
                            (evlis (cdr exp) env context indices)))))))
(defun fneval (fnexp env context indices)
    (cond ((symbolp inexp) (contextualize inexp context))
            ((and (consp inexp) (eq (car inexp) 'lambda))
                    (nake-closure fnexp env context indices))
                    (t (error "Bad functional form "g" fnexp))))
(defun evlis (argforms env context indices)
    (and argforas
            (cons (eval (car argforms) env context indices)
                    (evlis (cdr argforms) env context indices))))
(dofun apply (fn args)
    (otypecase in
        (sYnBOL (apply in arge))
        (CLOSURE
            (evprogn (cddr (closure-exp in))
                                    (let ((h (context-height (closure-context fn))))
                                    (pairlis (cadr (closure-exp in))
                                    (mapcar "'(lambda (a) (cons h a)) args)
                                    (closure-env In)))
                                    (closure-context In)
                                    (closure-indices in)))
        (XAPPING
            (let ((index-set (get-ininite-context in arge)))
                (construct-xapping index-set
                            (aplis #'(lambda (x)
                                    (apply (xref in x)
                            (mapcar *'(lambda (a) (xref a x)) args)))
                            (ndex-8et)))));
```

Table 2. A. Complex and Not Quite So Metacircular Interpreter for Connection Machine Lisp

(defun evprogn (body env context indices)
(cond ((null (cdr body)) (eval (car body) env context indices))
(t (eval (car body) onv context indices)
(evprogn icdr body) ony context indices))))

```
(defun aplis (fn index-set)
    (and index-set
        (cons (funcall in (car index-set)) ;No parallelism is shown here.
                (aplis in (cdr index-set))))) ;See the text for a discusaion.
```

(defun contextualize (value context)
(etypecase context
((NTMBER I) value)
(CONSTANT-XAPPING (make-constant-xapping (contextualize value (choice context)))
(FINITE-XAPPING α (contextualize velue econtext))))
(defun lookup (exp env context)
(let ((pair (assoc exp env)))
(if pair
(lookup-contextualize (- (context-height context) (cadr pair))
(cddr pair)
context)
(contextualize (syabol-value exp) context))))
(defun lookup-contextualize (j value context)

($=j 0$) (context-ifiter value context))
(t α (lookup-contextualize ($-j$ 1) value econtext))))
(defun trim-context (context)
(etypecase context
(CONSTANT-XAPPING
(if (eq (choice context) t) t
(make-constant-xapping (tria-context (choice context)))))
(FINITE-XAPPING
(if (eq (choice context) t) t
$\alpha($ trie-context econtext)))))
(defun extend-context (context)
(let ((alpha-t (nake-constant-xapping t)))
(label: ((ec (context alphe-t)
(otypecase context
((MENBER T) alpha-t)
(CONSTANT-XAPPING
(nake-constant-xapping (ec (choice context) alpha-t)))
(FINITE-XAPPING α (ec econtext alpha-t)))))
(ec context)))
(defun get-finite-context (fn args)
(coerce (reduce ' (lambda (p q) (α (lambda (x y) y) p q))
(mapcar \#' (lambda (a)
(domain (etypecase a
(XAPPING a)
(CLOSURE (closure-context a))))
(cons in args)))
'LIST))

Table 2 (continued).


```
(defun ifpart (kind context)
    (etypecaze context
```

 ((NOT XAPPING) (if context kind (not kind)))
 (CONSTANT-XAPPING
 (lot (\(z\) (ifpart kind (choice context))))
 (and \(z\) (nake-constant-xapping \(z))\))
 (FINITE-XAPPING
 (let ((z (remove-nils \(\alpha\) (ifpart kind \(\cdot\) context))))
 (and (not (empty \(z)\)) \(z\))))))
 (defun merge-results (x y) (xapping-union "'merge-results x y))
(deifn context-filter (value context)
(if (eq context t) value
(etypecase value
(CLOSURE
(nake-closure (closure-exp value)
(closure-env value)
α (context-iliter -(closure-context value) -context)
(closure-indices value)))
(XAPPING α (context-ifiler ovalue context)))))
(deiun context-height (context)
(etypecage context
((MEMBER T) 0)
(XAPPING (+ 1 (context-height (choice context)))))

Table 2 (concluded).
wise the context is "trimmed" to reduce its height by one. Because a bullet must cancel the innermost α, this reduction must take place near the leaves. The function trim-context performs the straightforward mechanics of context trimming. The function context-filter eliminates any values that are not relevant to the current context.

The processing of an IF form becomes much more complicated. The predicate expression is evaluated in the usual way to produce, of course, a value structure that matches the structure of the current context. From this two new contexts are computed; truecontext is that part of the original context where non-nil values resulted for the predicate, and falsecontext is that part of the original context where nil resulted for the predicate. The function ifpart computes such a context part, its first argument determining whether non-nil or nil values are sought; ifpart might slso return nil if that part is entirely empty, in which case no evaluation should be performed for that arm of the IF expression. (We could have chosen to allow nil to stand generally for an empty context, and defined eval to return nil immediately if its context argument were nil. This would have simplified the code for processing IF forms, but would have complicated other parts of the interpreter. It struck us as needless generality.) If both arms of the IF form are to be evaluated, then the function merge-results, a one-line wonder, is used to combine the two result xappings to yield the value of the IF form. (To see why it works, one must realize that the results to be merged were computed in disjoint contexts; if therefore xapping-union recursively calls merge-resulta, the two arguments given to mergeresults will necessarily also be xappings.)

No special changes are required in the processing of function call forms. The function ineval is also largely unchanged except
for the call to contextualize and that fact that the current context is packaged up as part of a closure. Similarly evlis is changed only trivially. .

The really intereating changes are in apply. When a closure is applied, the body of the lanbda expression is executed in the usual way, but only after extending the lexical environment in an unusual manner. Instead of parameter/value pairs, the environment contains triples. The third element of each pair is information about the closure context, specifically ita height. (The function context-height computes the height of a context. Recall that a context is a tree of uniform height.) This extra piece of information is ueed in the function lookup to deal with the implicit "destructuring" alluded to near the beginning of this section.

The application of a xapping proceeds in three stages. First, the domains of the xapping and the arguments are intersected; the result should be finite. The function get-finite-context computes the indices in this intersection and returns the reault as a list, not as a xapping, to emphasize finiteness and eliminate any semantic confusion that might arise from using a xapping at this point. Second, for every index in this list an element of the function xapping is applied to a list of the corresponding elements from the argument xappings. Finally, the results are used to construct a new xapping that is the result of the application.

The definition of aplis shown in Table 2 does not provide for any parallelism; it performs applications one at a time. Note that aplis is identical in overall structure to evlis; hence its name. We are now in a position to distinguish between parallel argument evaluation and the parallelism in Connection Machine Lisp, as mentioned in section 3. General parallel argument evaluation is obtained by replacing the call (cons ...) in evlis with
the form (pcall \#'cons ...), where pcall is a Multilisp [10] special form that is like funcall in effect but evaluates all of its arguments in parallel. The data-oriented parallelism of applying a xapping-full of functions to xappings-full of arguments is made manifest by making the identical change to aplis:

```
(defun aplis (fn index-set)
    (and index-set
        (pcall #'cons : Allow parallelism.
            (funcall in (car indax-set))
            (aplis in (cdr index-set)))))
```

The primary operational distinction between a xapping of closures and a closure over a context that is a xapping is one of aynchrony. For a closure over a compound context, the code is executed in a synchronous fashion for all indices in that context; but applying a xapping of closures causes all the closures to execute asynchronously in parallel. There are also questions of efficiency and of distributod versus centralized control: Applying a closure involves only one call to eval, not many in parallel, and the computational overhead of interpretation is amaller but centralized. (For some computer architectures there is an advantage to expending additional resources for the interpretation of multiple, distributed copies of the same program.)

Note that the closure over a context could be treated as a xapping in apply and everything would continue to work if aynchrony were not ap isoue. To see this, simply delete the arm of the etypecase for the type CLOSURE, and in the raxt arm replace the guard XAPPING with the guard (OR XAPPING CLOSURE). Thanks to the extended semantics of xref when applied to a closure, interpretation still works properly, but calls are not guaranteed to be synchronous.

7 Unsolved Problems

The interpreter in Table 2 is written so as to maintain a clonure over a context in that form as long as posesible, converting it into a xapping of closures only when forced to. This is done in an effort to maintain aynchrony wherever possible. Control of synchrony, in turn, is desirable for two reasons. First, it gives the user more control over the behavior of the program. Second, we believe that synchronous parallelism in a program is easier to comprehend because control is always at a single place in the program text, rather than at many places simultaneously. We believe, for example, that the maaterly but complex proof by Gries [9] of a relatively small program with only two processes demonstrates the difficulty of understanding parallel programs of the MIMD style. ${ }^{6}$

Consider this apparently straightforward code:

```
\alpha(setf (xref x -j)
```

 (/ (+ (xrof x (- - j 1))
 (xrof \(x \cdot j\))
 (xref \(x(+-j 1)\))
 3))
 With aynchronous execution, this causes every element of a xector x specified by the indices in j to be replaced by the average of itself with its left and right neighbors. With asynchronous execution, however, all sorts of behaviors can occur, because some elements of x might be updated before the old value has been fetched

[^5]for other averaging operations. That is because the thread of execution for one index might reach the setf operation before the thread for another index has performed the necessary fetch; the points of control for different indices may be at different pointe in the program text. This example is particularly devastating if j is an infinite xapping.

We have found the particular approach to aynchrony exhibited by the code in Table 2 to be uneatisfactory in practice, because it depende on details of the operation of the interpreter and of the user program. Consider this expression:

```
\alpha(if op
    (funcall #'(lanbda (x) (foo x - )) .z)
    (funcall *'(lambda (x) (bar x b)) -z))
```

All the calls to the closure that calls $f 00$ will occur aynchronously, as might be expected, and-similarly for the other closure. But in the superficially similar expression
α (funcall (if ${ }^{\circ} \mathrm{P}$

- (lanbda (x) ($100 \times \cdot \mathrm{a}$))
"'(lambda (x) (bar x bb)))
-z)
the calls to the closure that calls foo will occur asynchronoualy, because the merging of the two closure-xappings to produce the value of the IF form requires conversion of each to a xapping of closures.

One possible patch that masks some of theee symptoms is to change the code in apply that handles application of a xapping. The code can examine the elements of the xapping, and collect all the elements that are closures into equivalence classes, where members of the same equivalence class have eql expression, environment, and context components, differing therefore only in their indices lists. All the members of an equivalence class could then be processed by a single call to eval by constructing a new clocure whose context is constructed from their various leading indices.

This patch seems rather hackish to us, however, and no less opaque in ite operation. We would prefer that synchrony be enforced in a more manifest manner, such as a visible ayntactic device.

An obvious point at which to aynchronize is an explicit occurrence of α. We lean toward defining the language in such a way that an expression preceded by α is executed asynchronously for all relevant indices, but resynchronization occurs when assembling the result. For instance, in the expression α (foo (bar -x)) it might be that side effects of some calls to 100 might occur bofore all side effects of calls to function bar had occurred. In contrast, the expreseion $\alpha(100 \bullet \alpha$ (bar *x)) requires that all calls to bar be completed before any calls to $f 00$ occur. The averaging example shown above could then be fixed as follows:

```
\alpha(setf (xref x -j)
    * (/ (+ (xref x (- -j 1))
        (xref x -j)
        (xrof x (+ of 1)))
            3))
```

In this formulation we would expect " α " to be a widely used clich6 meaning "synchronize here." In the example it forces the parallel executions to aynchronize after all divisions are completed but before any values are atored.

This approach to synchronization also partly deatroya the syntactic transformations involving α and ${ }^{\text {; one may always in- }}$ troduce e α in front of an expreseion, but one may not not cancel
it without endangering program correctness. Perhaps this convention is yet too delicate.

The implications of this definition for the structure of the interpreter are not entirely clear to us. The net result may be to shift the introduction of parallelism from apply back into eval, as in Table 1, but this will reintroduce all the problems of recursively calling eval for an infinite number of indicen. We believe that this can be avoided by recasting the interpreter into the continuation-passing style [19,24,25], but that is beyond the scope of this paper.

Stylistically speaking, Connection Machine Lisp is primarily SIMD in its approach (though providing completely general communications patterns with the β operator, as opposed to the fixed communications patterns that have historically been associated with most SIMD machine architectures). Some interpretations of the semantics of α permit some slight asynchrony, but only in the evaluation of many copies of the same expression. However, there is a hook that allows expression of completely general MIMD parallelism: a function call where the function is a xapping whose elements are distinct. For example,
(funcall '[sin cos tan eval] '[0 12 (foo)])
causes the calls
($\sin 0) \quad(\cos 1) \quad(\tan 2) \quad(e v a l \cdot(f 00))$
to proceed in parallel; this is equivalent in effect to writing
(pcall \#'xector (sin 0) (cos 1) (tan 2) (eval - (foo)))
in Multilisp syntax. We have barely begun to explore the expressive power and implementation requirements that arise from this technique.

8 Comparisons to Other Work

In this section we compare Connection Machine Lisp to seven other programming languages.

APL ($13,12,8,4$]. Connection Machine Lisp xappings have state (can be modified using setf of xref), whereas APL vectors are inmutable. The elements of xappings may be any Lisp objects; APL array elements must be numbers or characters. Indices of APL vectors are consecutive integers beginning at 0 or 1; the indices of xappings may be any Lisp objects, and need not be contiguous. (A xapping with n pairs may be represented as a $2 \times n$ APL matrix, of course, but part of the point of xappings is notational and computational convenience.) Connection Machine Lisp has more expressive control structures, namely those of Lisp. Many of the ideas and specific operations in APL are useful in Connection Machine Lisp. The general Connection Machine $\operatorname{Lisp} \beta$ operator has no simple equivalent in APL. APL has multidimensional arrays and a useful set of operations on them; in Connection Machine Lisp we have thus far represented multidimensional arrays by neeting one-dimensional xappings. (We have considered handling multidimensional arrays by letting an index itself be a xapping: a 2×2 identity matrix would then be represented as

$$
\left\{\left[\begin{array}{ll}
0 & 0
\end{array}\right] \rightarrow 1\left[\begin{array}{lll}
0 & 1
\end{array}\right] \rightarrow 0\left[\begin{array}{ll}
1 & 0
\end{array}\right] \rightarrow 0\left[\begin{array}{ll}
1 & 1
\end{array}\right] \rightarrow 1\right\}
$$

The difficulty here is that in this case we would like for two indices to be considered the same if they are equal rather than merely eql; however, the fact that xappings are mutable createx grave difficulties. What if the xector [1 0] used as an index in the identity matrix were mutated to be [1 1]? Remember that no
two pairs of a xapping may have the same index. These nasty issues are the rescon why indices are compared uning eql: the equivalence of indices must remain invariant under mutability of data.)

NIAL [14,20]. Many of the commente about APL apply to NIAL, except that NIAL allowe neated arrays. NIAL, unlike APL, allowe user-defined functions to be used with the reduction and scan operatora, and indeed all operators. NLAL has a cleaner and more convenient syntax for talking about functional operators than a Connection Machine Lisp based on Common Lisp, but a Connection Machine Lisp based on Scheme would have a ayntax as clean as that of NIAL. We think Connection Machine Lisp has a better notation (α and \cdot) for nested uses of the apply-to-all construct (which NIAL calle EACB). Such nested uses do not occur so frequently in NLAL because apply-to-all is implicit in many NIAL operations; this is ponaible because NIAL has a different theory of data structures than Lisp [15,16]. In NIAL data is immutable but variables are mutable. (The remarks about NIAL apply for the most part also to other "modern" APL implementations such as those of IBM, STSC, I. P. Sharp, etc.)

FP [1]. Many of the ideas and notations of FP are easily and usefully carried over into Connoction Machine Lisp, and indeed we have translated eome examples from Backus's paper. Like Lisp, however, Connection Machine Lisp is oriented around variables and less around functional composition; FP does not explicitly name the date to be operated on, but reliee on combinatorlike control of the flow of data. FP is an applicative language; data is immutable.

QLAMBDA [5]. Connection Machine Lisp organizes its parallelism around date structures rather than control structures, and thus may be more suited to a SIMD architecture than to a MIMD architecture; the opposite may be true of QLAMBDA.

Multilisp. Multilisp, like QLAMBDA has parallelism organized around control atructures rather than data atructures. Multilisp introduces parallelism in two ways, one structured and the other extremely unstructured. The structured way allows the elements of a very particular data atructure to be computed in parallel; this data atructure is the list of arguments for pcall. The unstructured way is the use of future, which allows an arbitrary computation (the argument form to future) to proceed in parallel with another computation of arbitrarily unrelated structure (the remainder of whatever computation surrounds the execution of future, that is, the continuation).

KRC (Kent Recursive Calculator) [29]. Lazy xappinga are somewhat similar in their use to the infinite lists of KRC, and eapecially to the set abotraction expressions of KRC. Set abstraction expressions contain additional mechanisms for filtering and taking Cartesian products that lazy xappings do not have; these lend KRC a great deal of expressive power. Xappings have state and may be modified (even lazy xappinga), whereas KRC is an applicative language without side effects.

Symmetric Lisp [6,7]. There is a possible confusion between our notation and that of Gelernter, becauce hire work also involves parallelism in Lisp and usen a notation involving the word aLpial. We regard highly his study of space-time aymmetries in programming languages, but believe that our notation and our approach to parallelism are rather different from his, despite the accident of similar terminology.

9 Implementation Status

A Connection Machine Lisp interpreter that supports constant, universal, and lasy xappinge has been implemented on the Symbolics 3600, a sequential processor, for experimental purposes. It
has been used to test the ideas in this paper and to execute a number of smallish programs (up to fifty lines in size). All of the examples in this papor have been tried out on this interpreter.

An implementation is planned for the Connection Machine Syatem [11], a 1000-MIPS, fino-grained, masaively data-parallel computer with 65,536 (2^{16}) processors, 32 megabytes (2^{25} bytes) of memory, and a general communications network among the proceseorm. However, we cannot now guarantee exactly when a full implementation of Connection Machine Lisp on the Connection Machine System will be ready.

10 Conclusions

We have designed a dialect of Lisp that we believe will be useful for symbolic processing problems that are ausceptible to solutions with fine-grained, data-oriented parallelism. This dialect features an array-like data structure designed to be processed in parallel using operations of the kind appearing in FP, APL, and NIAL. It also features a notation, aimilar in form to the Common Lisp backquote construct, for expressing parallelism in a manner that facilitates both macroscopic and microscopic views of parallelism.

There remains a design apace of modest size to explore, in which several important design goals are in essential conflict:

- compatible extension of an existing Lisp dialect
- convenience in using functional arguments and values
- consistency between macroscopic (arrays of data) and microscopic (code within individual processors) understanding of parallelism
- a model of data consistent with that of the base language (including that fact that data atructures are mutable)
- a treatment of side effects consistent with that of the base language
- generality of the α-notation, including the rule of distribution over function calls
- control over parallelism and synchrony

We have teated a few points in this design space to determine which results in the most useful language design for practical purposes.

Other topics to explore include the integration of other notions of parallelism into Connection Machine Lisp, such as the future and peall constructs of Multilisp, and which applications in aymbolic computation are suited to this fine-grained, data-oriented style of parallel programming.

11 Acknowledgements

The term "xapping" was suggested to us by Will Clinger.
We are grateful for many comments from Michael Berry, Ted Tabloski, and others within Thinking Machines Corporation, and from the referees.

The ornamentation was taken from a volume of the Dover Pictorial Archive Series: Klimsch, Karl. Florid Victorian Ornament. Dover Publications (New York, 1977).

References

[1] Backus, John. Can programming be liberated from the von Neumann style? A functional atyle and its algebra of programs. Communicatione of the ACM 21, 8 (August 1978), 613-641. 1977 ACM Turing Award Lecture.
[2] Clinger, William, editor. The Revised Revised Report on Scheme; or, An Uncommon Lisp. Computer Science Department Technical Report 174. Indiana University (Bloomington, June 1985).
[3] Clinger, William, editor. The Revised Revised Report on Scheme; or, An Uncommon Lisp. AI Memo 848. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts, August 1985).
[4] Falkoff, A. D., and Orth, D. L. Development of an APL standard. In APL 79 Conference Proceedings. ACM SIGPLAN/STAPL (Rochenter, New York, June 1979), 409-453. Published as APL Quote Quad 9, 4 (June 1979).
[5] Gabriel, Richard P., and McCarthy, John. Queuebased multiprocessing Lisp. In Proc. 1984 ACM Symposium on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/SIGART (Austin, Texas, August 1984), 25-44.
[6] Gelernter, David. Symmetric Programming Languages. Technical Report. Yale University (New Haven, July 1984).
[7] Gelernter, David, and London, Thomas. The Parallel World of Symmetric Liep. Technical Report. Yale University (New Haven, February 1985). Extended abstract.
[8] Gilman, Leonard, and Rose, Allen J. APL: An Interactive Approach, second edition. Wiley (New York, 1976).
[9] Gries, David. An exercise in proving parallel programs correct. Communications of the $A C M$ 20, 12 (December 1977), 921-930.
[10] Halstead, Robert H., Jr. Multilisp: a language for concurrent aymbolic computation. ACM Transactions on Programming Languages and Systeme 7, 4 (October 1985), 501-538.
[11] Hillis, W. Daniel. The Connection Machine. MIT Press (Cambridge, Massachusetts, 1985).
[12] APL\s60 User's Manual. International Business Machines Corporation (August 1968).
[13] Iverson, Kenneth E. A Programming Language. Wiley (New York, 1962).
[14] Jenkins, Michael A., and Jenkins, William H. Q'Nial Reference Manual. Nial Syatems Limited (Kingston, Ontario, July 1985).
[15] More, Trenchard. The nested rectangular array as a model of data. In APL 79 Conference Proceedingo. ACM SIGPLAN/STAPL (Rocheater, New York, June 1979), 55-73. Published as APL Quote Quad 9, 4 (June 1979). Invited address.
[16] More, Trenchard. Rectangularly arranged collections of collections. In APL 82 Conference Proceedings. ACM SIGPLAN/STAPL (Heidelberg, Germany, June 1982), 219-228. Published as APL Quote Quad 19, 1 (June 1982). Invited address.
[17] Owicki, Susan Speer. Axiomatic Proof Techniques for Parallel Programe. PhD thesis, Cornell University, Ithaca, New York, July 1975. Department of Computer Science TR 75251.
[18] Porter, Thomas, and Duff, Tom. Compositing digital images. In Proc. ACM SIGGRAPH '8f Conference. ACM SIGGRAPH (Minneapolis, July 1984), 253-260. Published as Computer Graphics 18, 3 (July 1984).
[19] Reynolds, John C. Definitional interpreters for higher order programming languages. In Proc. ACM National Conference. Association for Computing Machinery (Boston, August 1972), 717-740.
[20] Schmidt, Fl., and Jenkins, M. A. Rectangularly arranged collections of collections. In APL 82 Conference Proceedings. ACM SIGPLAN/STAPL (Heidelberg, Germany, June 1982), 315-319. Published as APL Quote Quad 19, 1 (June 1982).
[21] Schwartz, J. T. Ultracomputers. ACM Transactione on Programming Languages and Systems 2, 4 (October 1980), 484-521.
[22] Shaw, David Elliot. The NON-VON Supercomputer. Technical Report. Department of Computer Science, Columbia University (New York, August 1982).
[23] Steele, Guy L., Jr., Fahlman, Scott E., Gabriel, Richard P., Moon, David A., and Weinreb, Daniel L. Common Lisp: The Language. Digital Press (Burlington, Massachusetts, 1984).
[24] Steele, Guy Lewis, Jr. Compiler Optimization Based on Viewing LAMBDA as Rename plus Goto. Master's thesis, Massachusetts Institute of Technology, May 1977. Published as [25].
[25] Steele, Guy Lewis, Jr. RABBIT: A Compiler for SCHEME (A Study in Compiler Optimization). Technical Report 474. MIT Artificial Intelligence Laboratory (May 1978). This is a revised version of the author's master's thesis [24].
[26] Steele, Guy Lewis, Jr., and Sussman, Gerald Jay. The Art of the Interpreter; or, The Modularity Complex (Parts Zero, One, and Two). AI Memo 453. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts, May 1978).
[27] Steele, Guy Lewis, Jr., and Sussman, Gerald Jay. The Revised Report on SCHEME: A Dialect of LISP. AI Memo 452. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts, January 1978).
[28] Sussman, Gerald Jay, and Steele, Guy Lewis, Jr. SCHEME: An Interpreter for Extended Lambda Calculua. AI Memo 349. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts, December 1975).
[29] Turner, David A. The semantic elegance of applicative languages. In Proc. 1981 Conference on Functional Programming Languages and Computer Architecture. ACM SIGPLAN/SIGARCH/SIGOPS (Portsmouth, New Hampshire, October 1981), 85-92.

[^0]: "Connection Machlne" is a regiatered trademark of Thinking Machine Corporation. "Symbolices 3600" is a trademark of Symbolice, Inc.

[^1]: ${ }^{1}$ That's " ${ }^{\prime \prime}$ illion," not "xillion."

[^2]: ${ }^{2}$ We uee the characters $\rightarrow, *, \alpha$, and β knowing full woll that 2 portable implementation cannot use them (although a nonportable implementation on the Symbolica 3600 does use them). We have experimented with uaing $1,1,9$, and \$, respectively, to replace them (thereby burdening "1" with two purposes), but we find thil acethetically diapleasing, and have found no better alternative that in portable. We will eventually have to ind another eyntax, not only for reasons of portability, but because of an additional, unanticipated problem with the use of " $\beta^{\prime \prime}$: users have taken to ruforring to the process of computing the sum (or maximum, or whatever) over a xapping as "beta-reduction" of the xapping-but that term already hae a very different and long-establiahed meaning within the Lisp community!

[^3]: ${ }^{3}$ This trick is so useful that we briefly considered introducing a lambda-list keyword teurry so that we could write aimply
 (dofun innor-product (1 g ecurry $p q$)
 (reduce $f a($ funcall $g \cdot p \cdot q)$))
 but then we thought better of it.

[^4]: ${ }^{4}$ Too wise you are, / Too wise you be; / I see you are / Too wise for me.
 ${ }^{5}$ Two cues, your / Two queues, Eubie; / Icy ewer / Took youse for me.

[^5]: ${ }^{4}$ The technique of the proof, which in due to Owickj [17], is íret to prove each procene correct in isolation, and then to conelder all poseible interactions by considering all powible (actually, all "intoreating") paire of control pointe within the two procmese. The diffculty of thie technique increacet exponentially (quite literally) with the number of procenee.

