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The Two Envelopes Problem

Rich Turner and Tom Quilter

The “Two Envelopes Problem”, like its better known cousin,
the Monty Hall problem, is seemingly paradoxical if you are not
careful with your analysis. In this note we present analyses of
both the careless and careful kind, providing pointers to common
pitfalls for authors on this topic.

As with the Monty Hall problem, the key is to condition on
all the facts you have when you crank the handle of Bayesian
inference. Sometimes facts unexpectedly have to provide you
with information: and you have to take them into account.

This point is well known, and most explanations of the para-
dox point this out. However authors then tend to make a num-
ber of mistakes. Firstly they claim the conventional analysis
corresponds to using a uniform-improper distribution. This is
wrong: it corresponds to a log-uniform improper distribution.
Secondly they claim the root of the paradox is in the use of an
un-normalisable distribution. This is merely a conjecture and the
toy examples provided here suggest that improper distributions
may be found which do not result in the paradox.

The “Two Envelopes Problem”’s ultimate lesson is that infer-
ence always involves making assumptions and any attempt
to blindly use “uniformative” priors as a method for “avoiding”
making assumptions can run into trouble. After all the innocu-
ous uniform (or log-uniform) prior corresponds to a very strong
assumption about your data.

0.1 The problem

You are playing a game for money. There are two envelopes on a table.
You know that one contains $X and the other $2X, [but you do not
know which envelope is which or what the number X is]. Initially you
are allowed to pick one of the envelopes, to open it, and see that it
contains $Y . You then have a choice: walk away with the $Y or return
the envelope to the table and walk away with whatever is in the other
envelope. What should you do?

0.2 The Paradox

Clearly, to decide whether we should switch or stick we want to com-
pute the expected return from switching (〈R〉) and compare it to
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the return from sticking (trivially, $Y ). Initially, the chances of choos-
ing the envelope with the highest contents P (C=H) are equal to the
chances of choosing the envelope containing the smaller sum P (C=L),
and they are both 1

2
. A careless analysis analysis might then reason

that the expected return from switching is therefore:

〈R〉 =
1

2
Y × P (C=H) + 2Y × P (C=L) (1)

=
1

2
Y × 1

2
+ 2Y × 1

2
(2)

=
5

4
Y (3)

This would mean we expect to gain 1
4
Y from switching on average.

This is paradoxical as it says “It doesn’t matter which envelope you
choose initially - you should always switch”.

0.3 A thought experiment

So goes the usual explanation of the paradox. Where’s the flaw in the
analysis?

In particular, a key question we have to resolve is does observing
the contents of the first envelope provides us with useful in-
formation. If it does not, then it will not matter whether we stick or
switch [just as it didn’t matter which envelope we chose to start with].

First I’m going to pursuade you that observing the contents does
provide you with useful information. Then I’m going to show you how
to use Bayes’ theorem to correctly use this information to compute the
optimal decision.

Imagine you make your first choice, and open up the envelope only
to discover that it contains a bill - the envelope is charging you money
- Y is negative. Not only is this annoying, it is also very unexpected.
Who said we could lose money playing this game? If we use the above
analysis for the new situation, we should now stick and not switch. So
the paradox - that we should switch regardless of Y - (partly) melts
away if the assumption that Y is always positive is broken. Put another
way: if Y can be negative or positive then we’d have to observe Y before
we decided whether switch. The moral of the story is that we should
pay closer attention to our assumptions and, in particular, to what Y
is telling us.
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0.4 Condition on all the infomation

So we made a mistake: When computing the expected reward above
we should have taken into account [technically, condition on] all the
information we have available to us at the time. Equation 1 should
therefore have read:

〈R〉 =
1

2
Y × P (C=H|Y ) + 2Y × P (C=L|Y ) (4)

We didn’t do this because we naively we thought the amount of
money that the envelope contained didn’t provide any useful informa-
tion (ie. P (C=H|Y ) = P (C=H), conditional independence). However
the thought experiment above shows us that this is not necessarily true,
and moreover whether it is or not depends on our assumptions. The
cure is that we should work through the analysis stating the assump-
tions explicitly. The way to incorporate these assumptions explcitly is
to use Bayes’ theorem:

P (C=i|Y ) =
P (Y |C=i)P (C=i)

P (Y )
(5)

P (C=i|Y ) =
P (Y |C=i)P (C=i)

P (Y |C=H)P (C=H) + P (Y |C=L)P (C=L)
(6)

We have already noted that the probability that P (C=H) = P (C=L) =
1
2

and so the factors of 1
2

in the denominator and numerator all cancel
and we can plug the result into the formula for the expected reward:

〈R〉 =
1
2
Y P (Y |C=H) + 2Y P (Y |C=L)

P (Y |C=H) + P (Y |C=L)
(7)

=
1

2
Y

1 + 4γ(X)

1 + γ(X)
(8)

The expected reward therefore depends on γ = P (Y |C=L)
P (Y |C=H)

and we are

now forced to state our beliefs about the two distributions:P (Y |C=L)
and P (Y |C=H) to calculate the expected reward.

0.5 Uniform beliefs

At first sight a sensible distribution - in the sense that it is non-
commital - is a uniform prior between two limits, Ymin and Ymax say:
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p(Y |C=L) =
1

Ymax − Ymin

(9)

=
1

Z
(10)

p(Y |C=H) =
1

2Ymax − 2Ymin

(11)

=
1

2Z
(12)

For the sake of clarity let’s think about the situation where Y is
always greater than zero (Ymin = 0). What are the possible values for
γ?

Well, if 0 < Y < Ymin then γ = p(Y |C=L)dY
p(Y |C=H)dY

= 1/2, so: 〈R〉 = 3Y/2

and we should always switch. This makes sense - it is twice as likely
that the envelope contains the lower amount in this case, so switching
should yield 2

3
× 2 + 1

3
× 1

2
, which it does.

However, if Ymin < Y < Ymax then γ = 0 and 〈R〉 = 1
2

- we must
have chosen the envelope containing the larger amount, the expected
reward from switching is therefore $ 1

2
and so we should stick.

There is no paradox.

0.6 Improper uniform beliefs

We might now say, “well, I’m very unsure about what value Y would
take and therefore I’ll make Ymax extremely large, and take the limit
Ymax → ∞”1. This turns out to be a terrible assumption for any
practical situation. As we take this limit p(Y |C=L) and p(Y |C=H)
become very ill matched to any possible real data in such a way
that this causes problems. All data we observe will lie beneath Ymax

(as it’s tending to infinity). However, in this regime we “believe” it
is twice as likely that the envelope contains the lower amount, and
so we switch whatever we see. Put another way, in order to stick we
would have to observe a Y which is larger than Ymax, but we’ll never
encounter an envelope containing more than infinity dollars 2 so we’ll
always switch.

Although we tried to make the most non-commital assumptions
possible - we ended up making very definite, absurd assumptions which

1In this limit the uniform distribution is un-normalisable and such distributions are
called “improper”

2although there are numbers greater than infinity, it’s tough to write legal cheques for
these amounts
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makes sensible inference impossible. 3

Before we move on, it’s worth mentioning that it might have been
tempting to set γ equal to one in the above case. After all, in the limit
both p(Y |C=L) and p(Y |C=H) are (improper) uniform distributions
between zero and infinity. We would then have γ = 1 and recover the
old result 〈R〉 = 5Y/4. However, setting the two densities equal is not
consistent with the assumption that one envelope contains an amount
twice that in the other. This assumption demands one density be half
of the other (and to have twice the range). So the original analysis
does not correspond to assuming a uniform improper distribution (as
some authors claim).

To conclude, it’s impossible to use this particular improper distribu-
tions without being careful (or else we introduce a contradiction with
our other assumptions) and even if we are careful they correspond to
absurd assumptions (where we switch unless Y is greater than infinity).

0.7 The log-uniform beliefs

If the γ = 1 case does not correspond to pair of uniform distributions
p(Y |C=H) and p(Y |C=L), does it correspond to another choice? The
answer, somewhat suprisingly, is yes. To see this we need to do some
more work to simplify the form of γ. We can do this by realising
that specifying p(Y |C=L) immediately specifies p(Y |C=H) (due to the
doubling constraint). We can derive a relation which relates the two via
manipulation which is easy to skrew up (as, for example, many authors
on this paradox do - even in publications). Here’s one way to make sure
you get the right result: We want to sum up all the probability at Y ′

in the old distribution which gets mapped to Y = 2Y ′ in the new
distribution. So we write down:

p(Y |C=H) =

∫ ∞

0

p(Y ′|C=L)δ(2Y ′ − Y )dY ′ (13)

=

∫ ∞

−∞
p(U/2|C=L)δ(U − Y )dU/2 (14)

= p(Y/2|C=L)/2 (15)

This makes intuitive sense: A chunk of probability in the old dis-
tribution p(Y ′|C=L)dY ′ is mapped to a region centred at Y = 2Y ′

but it is smeared out to extend over a length 2dY ′ so the density at
p(Y |C=L) must be half that of p(Y/2|C=L).

3Note, however, that as we take the limit the paradox (that we should always switch
regardless of Y ) does not rear it’s ugly head.
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If γ equals one then this means: p(Y |C=L) = p(Y |C=H) = p(Y/2|C =
L)/2 for all Y , which holds when p(Y |C=L) = 1/Y . This is a uniform
distribution on log Y and says, “I have know idea about the scale of
Y . I think Y is as likely to be between 1 and 10 as it is to be between
10 and 100”. This seems more sensible than the uniform prior before -
for one thing, it decreases with Y .

However, this distribution is not normalisable (without introducing
a lower and upper cut-off and then γ is not 1 for all Y ). Limiting
arguments fail for the same reason they did in the uniform case: in
the region where both the distributions are non-zero, you should al-
ways switch. So taking Ymax to infinity pushes the regime where you
should stick to a place where no data will land. Again, the limit corre-
sponding to the improper distribution corresponds to a terrible set of
assumptions.

Does using an improper distribution always lead to the paradox?
Perhaps, but we haven’t proved it. More over the intuition from the
above examples is that it wasn’t the improper nature of the distribution
which lead to the paradox (as some authors glibly state) - it was the
fact that they corresponded to stupid assumptions. I could imagine
there are distributions which corresponded to reasonable assumptions
in the limit where they become un-normalisable. 4

0.8 A sensible approach

Is there a sensible approach? In a word yes. However, it will depend
on what assumptions you want to make. In a way the previous dis-
cussion is a red-herring: you might be quite happy to use a uniform
distribution, or a log-uniform distribution - and everything will be ok
so long as you think carefully about the choice for the ranges (am I
playing with a friend for his poket money, or am I through to the fi-
nal stages of a game-show called “Who wants to be a billionaire”?). 5

One final alternative (which does not have hard cut-offs) is to place an
exponential distribution over Y :

P (Y |C=L) = λ exp(−λY ) (16)

1/λ is the characteristic length scale over which the density decays.
From eqn. 8 we should switch when:

4Another point noted by authors is that the improper distribution above has an infinite
mean value - this may correspond to another undesireable assumption too.

5One alternative is to place a prior over the ranges and integrate them out:
P (Y |C=L) =

R
P (Y |C=L, Ymin, Ymax)P (Ymin, Ymax)dYmindYmax
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1

2
≤ γ(Y ) (17)

= 2 exp(−λY/2) (18)

So we switch when Y ≤ 2
λ

ln 4 ' 3
λ
, which is proportional to the

characteristic length scale, as expected.
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