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Chapter 1

Relevant Mathematical
Background for Metastasis

1.1 Golden Ratio

The first written accounts of what we now refer to as the golden ratio were
given by Euclid (325-265 BCE) in book 6 of his The Elements[3] and it has fas-
cinated mathematicians and others ever since. Mathematically, the golden ratio
(typically denoted with the letter Φ) can be described as an infinite sequence of
equal ratios, given below. See figure 1.1 for a more visual representation.

Φ = (a : x)
= (x : (a− x))
= [(a− x) : (x− (a− x))]
= . . .

To obtain a real value for Φ we need to solve a quadratic equation using some
simple algebra:

Φ =
a

x
=

x

a− x

a2 − ax = x2

a2 − ax− x2 = 0
a2

x2
− ax

x2
− x2

x2
= 0

Φ2 − Φ− 1 = 0

We obtain the following two solutions, choosing the positive one as our value
for Φ.
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Figure 1.1: diagram demonstrating the proportions of the golden ratio (not to
scale)
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5 + 1) = Φ ≈ 1, 618034 . . .
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(
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5− 1) = −Φ−1 ≈ −0, 618034 . . .

The negative solution has the interesting property of being equal to the negative
of the reciprocal of Φ.

The golden ratio enjoys other curious properties such as,

Φ− 1 = Φ−1

and

Φ =

√
1 +

√
1 +

√
1 + . . .

1.2 Fibonacci Sequence

The Fibonacci sequence first appeared in 1202 in Italian mathematician Leonardo
Pisano’s (1170-1250, he nicknamed himself Fibonacci) Liber Abaci [4]. The main
purpose of this book was in fact to explain the use of Arabic-Hindu numbers
(as well as other material Fibonacci had picked up in his travels). The sequence
can be simply defined as follows.

u1 := u2 := 1
ui := ui−2 + ui−1, i = 3, 4, 5, 6, . . .

1, 1, 2, 3, 5, 8, 21, 34, 55, 89, 144, . . .

If we examine the sequence composed of the ratios of adjacent Fibonacci num-
bers,

fn =
un+1

un
=

1
2
,
2
3
,
3
5
,
5
8
,

8
13

, . . .

we find that,

3



lim
n→∞

fn = Φ

which is to say that this ratio approaches the golden ratio.

The golden ratio and the Fibonacci sequence crop up in an almost uncountable
number of aspects of mathematics, architecture, art, and music.

1.3 The Modulator of Le Corbusier

Le Corbusier (born Charles-Edouard Jeanneret-Gris, 1887-1965) was a famous
Swiss architect[5], who was very much interested in the golden ratio and Fi-
bonacci sequence with respect to architecture. He was particularly interested
in how these three things were interrelated along with the dimensions of the
human body. Furthermore, Xenakis worked with him as an architect during the
1950’s and was certainly influenced by his interest in such topics.

...
295,9
182,9
113,0
69,8
43,2
26,7
16,5
...

Figure 1.2: excerpt from the table of Le Corbusier’s modulator values

The so-called “Modulator” of Le Corbusier, which appeared in his 1950 book
Mod I, in particular plays a role in Xenakis’ compositions. Baltensperger com-
ments that the modulator “kann als ein Versuch der ‘Moderne’ gewertet werden,
eine auf menschliches Mass bezogene, mathematische Ordnung in die Architek-
tur wieder einzubringen.” Le Corbusier was primarily interested in designing
buildings, which were inherently fitting to the human form. The modulator is
based upon the length 113cm, which is half the height of an average man with
his arm extended straight above his head (226cm according to Le Corbusier).
The actual modulator is in fact a geometric sequence, consisting of this base
value with a multiplying factor of the golden ratio. See figure 1.2 for an ex-
cerpt of the values. The idea was to design buildings using these values, the
intent being that the resulting structures would be better designed for human
occupation and use.

The modulator, although curious and interesting, does seem to be contrived.
It is not certain whether the base unit for the modulator might be adjusted
for the various average heights that different cities, nation, regions, and time
periods enjoy. The base unit at best is arbitrary, but none the less demonstrates
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Le Corbusier’s obsession with the golden ratio in architecture. The modulator
appears to be more form than function. None the less, the creation of such a
measure shows the importance to him of the consideration of the human form
in architecture. Time Magazine, while listing him as one of the most influential
people of the 20th century[6]:

Le Corbusier was the most important architect of the 20th century.
Frank Lloyd Wright was more prolific—Le Corbusier’s built oeu-
vre comprises about 60 buildings—and many would argue he was
more gifted. But Wright was a maverick; Le Corbusier dominated
the architectural world, from that halcyon year of 1920, when he
started publishing his magazine L’Esprit Nouveau, until his death in
1965. He inspired several generations of architects—including this
author—not only in Europe but around the world. He was more
than a mercurial innovator. Irascible, caustic, Calvinistic, Corbu
was modern architecture’s conscience.
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Chapter 2

Musique Stochastique

2.1 What is Musique Stochastique?

Musique Stochastique (hereafter referred to as ST, Xenakis’ own term) can be
literally translated from French as “stochastic music”. It is not simply one
composition, but rather a system, which given arbitrary parameters produces a
composition. Xenakis composed 9 works using the system, but an almost infinite
number could have been created (and today still could be created). Seven of
these were produced in 1962, all but one with numerically coded titles. The
following table (adapted from [1] p.439) lists them, as well as, for those that
have one, their common names.

code number name / notes
ST/48 – 1,240162
ST/10 – 1,080262
ST/4 – 1,080262 (string quartet edition of above ST/10)
ST/4 – 1,030762 Morsima – Amorisma
ST/10 – 1,030762 Amorsima – Morisma
ST/10 – 3,060962 Atrées
ST/CosGauss Polytope de Cluny

Additionally, parts of two others works were produced with the aid of the ST
system: Eonta in 1964 and Stratégie in 1962.

2.1.1 Numeric Title System

Upon seeing the numerical names of the these works for the first time, they seem
strikingly strange. However, they have a precise meaning; each numerically
coded title takes the form “ST/i – v,d” where i is the number of instruments, v
is the version, and d is the date of creation in the form day, month, year (each
with 2 digits).
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2.1.2 What does “stochastic” mean?

Baltensperger characterizes (p.563) stochastic, “als moderner Sammelbegriff,
umfasst in der Mathematik und Statistik alles, was mit Wahrscheinlichkeit-
srechnung zu tun hat. Sie beschäftigt sich mit der mathematischen Analyse
zufälliger Ereignisse und trägt damit zur Instrumentalisierung der erkannten
Gesetzmässigkeiten zum Zwecke statistischer Untersuchung bei.” This descrip-
tion of stochastic as a concept of mathematics (more specifically statistics) can
easily be seen as being consistent with the more technical nature of ST, for
the application of probability theory deliberately plays a large role in its inner
workings.

It is also interesting, however, to consider the meanings of the word outside of the
statistical setting. The origin of the word ’stochastic’ comes from the “Greek
stokhastikos, from stokhastes, diviner, from stokhazesthai, to guess at,
from stokhos, aim, goal.”[2] Such origins are perhaps particularly poigniant
due to the fact that Xenakis spent most of his early life in Greece and spoke
modern Greek fluently. Stochastic from a mathematical viewpoint is generally
regarded as a way to systematize random events according to some sort of
overriding pattern. The origins of the word imply something more active than
the mathematical usage. The focus falls on the attempt to divine meaning, to
determine in some sort of supernatural way what is happening.

2.2 Aspects of Composition

2.2.1 Note Length

Note length is determined by a random generation process following an expo-
nential distribution,

f(x) = δ · e−δx

where δ is the ’density’. Mathematically, this density is equal to the inverse of
the average note length. Qualitatively, a larger value will produce on average
shorter notes and a smaller density, longer ones. The resulting note length
can be any value greater than or equal to zero. However, as can be seen in
probability density graph in figure 2.1, the longer lengths quickly become very
unlikely.

Recall that a probability density function gives only the relative likelihood of
all outcomes. Paradoxically each outcome has an equal probability of 0 in oc-
curring, because there is an infinite number of outcomes, which are all possible.
To obtain the probability that the outcome is between two values (say l0 and
l1), the density function must be integrated, in this case giving,

P (x) =
∫ l1

l0

δ · e−δxdx
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Figure 2.1: probability density of the exponential distribution for δ = 2.5 and
δ = 4.5

2.2.2 “Note Clouds”

So-called “note clouds” consist of several randomly determined notes (Tonpunk-
ten). Two aspects of the notes contained in each cloud are determined sepa-
rately: density and pitch.

Cloud Density

Within the composition, there can be an arbitrary number of clouds, each with
its own density (µ). For an entire composition, one average density parameter
(µ0) is chosen. All of these values are measured in number of notes per second.
The density of individual clouds follows the Poisson distribution (figure 2.2),
which is essentially a discrete version of the exponential distribution discussed
in the previous section. A Poisson distribution is given by,

P (k) =
µk

0

k!
e−µ0

where k is the number of events to occur in a predetermined time period.

The density of is in fact not directly determined, but could be determined if
necessary from k. When composing individual clouds, we are interested in
discrete note counts, not continuous rates of production. For example, suppose
it were stipulated that a 5 second cloud must perform at a rate determined
from an exponential distribution (say with an average of 2.1 notes per second).
Suppose that distribution produced a density of 2.3 notes per second for our
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Figure 2.2: the Poisson distribution with µ0 = 2.5 and µ0 = 4.5

cloud. That would require the placement of precisely 11.5 notes. In order
for this to actually work, the numbers would have to be rounded or otherwise
adjusted to whole numbers. It is considerably simpler to just use a discrete
Poisson distribution with a u0 density parameter of 2.1 to begin with.

Cloud Pitch

The second aspect required for constructing note clouds is their pitch (γ). The
pitches of the notes in the cloud are determined by a starting pitch along with the
intervals between each pair. Baltensperger does not describe how the starting
pitch is chosen, but it is presumably chosen in some random manner befitting
the instrument to be playing the cloud. The intervals are determined according
to a linear probability distribution (figure 2.3),

Θ(γ)dγ =
2
a
(1− γ

a
)dγ

where a is maximum interval value specified by the composer. Additionally, a
simple random variable equivalent to the flipping of a coin is used to determine
whether the interval is rising or falling.

Such a linear distribution is used so that the intervals tend towards smaller
values, but not so strongly as with an exponential distribution. Furthermore,
the maximum interval limit helps reduce the production of sequences that are
unnatural sounding or difficult to play.
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2.2.3 Glissando Speed

ST (and other works of Xenakis) often make use of glissandos. In ST the
parameter for their speeds is determined according to a normal distribution
(figure 2.4),

f(v) =
1

a
√

2π
· e−

v2

2a2

where a is the so-called “aggregate temperature” parameter. The inspiration for
the use of the distribution as well as the name for the parameter is kinetic gas
theory, something Xenakis would have come across in his studies in engineering.
Statistically speaking, this number is also known as the standard deviation or
square root of the variance.

2.2.4 Dynamics

Dynamics are divided into four distinct zones: ppp, p, f, and ff. From these four
zones, there are 64 sequences of size 3, but only 44 are musically distinguishable.
Each possible combination is given an equal probability ( 1

44 ) of being used for
a given portion of the composition, resulting in a uniform distribution.

2.2.5 Instrument Choice

First, the composer must separate all timbres into similar classes, which are then
given a unique number. Next, according to a linear distribution, a percentage is
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Figure 2.4: normal distribution with a = 1 and a = 2

determined for each class. This percentage dictates the proportion of the total
notes in the composition that group will play. Which particular notes are played
by each instrument are then randomly determined.

A metaphor concerning of a bag of marbles best illustrates this process. The
bag starts out containing n marbles, one for each note that needs to be played
throughout the composition. Marbles are then randomly distributed according
to the proportions determined for each group, taking into account the physical
constraints (pitch, length, dynamics) of the instruments.

2.3 Composition Process

The composition process can be briefly described in 8 phases divided between
two parts:

First Part: Preparation

1. Original ideas (Conceptions initiales)

2. Definition of the planned sound elements (Définition d’êtres sonores)

3. Macro-composition: Definition of the transformations (Définition des trans-
formations)

4. Micro-composition: Definition of the complete mathematical model

5. Sequential programming of the model (Programmation séquentielle)

Second Part: Production
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6. Execution of the calculations (Effectuation des calculs)

7. Transcription of the numerical results onto a score (Résultat final symbol-
ique)

8. Sonic Realization (Incarnation sonore)

2.4 Implementation Software

The logical flow of the software is described below.

• Preparation (compute constants and tables)

• Sequences (repeat until there are enough sequences)

– Length (exponentially distributed)

– Average Density (Poisson distributed)

– Timbre Distribution / Orchestration

– Notes1 (repeat until there are enough notes)

∗ Placement (exponentially distributed)
∗ Instruments (”marbles in bag”’)
∗ Pitch (linearly distributed)
∗ Glissando Speed (normally distributed)
∗ Length (exponentially distributed)
∗ Dynamics (uniform distribution)

• Transcription to Score

The ST system was written using the FORTRAN programming language and
not in function paradigm, but instead used a plethora goto statements (so-called
“spaghetti code”). Perhaps counterintuitive to a musician (but not to a com-
puter scientist), the system computed compositions in a sequential manner (one
instrument at a time). This presumably reduced the complexity of programming
such a system, although similarly limited the system’s ability to compose one
segment or instrument with knowledge of another. Furthermore, the computa-
tion of a piece was not (and could not) be performed in real time. The system
printed out sequences of numbers as it computed the composition. Afterwards,
human labor had to be used to convert and transcribe these pages and pages of
numbers into a music score, at which point it was only then able to be played
and heard.

1To prevent the case where a note is generated that cannot be played on the given in-
strument, all produced notes are checked against a table of acceptable length and dynamics.
Should a note be problematic, it is simply discarded, and a new one regenerated.
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2.5 Implementation Hardware

Most of the various compositions were produced in 1962, using an IBM 7090
mainframe computer. At the time it was quite cutting edge and used primarily
in large corporations and government agencies. It came equiped with a 460kHz
processor, 32kB of RAM, and occupied the better part of a large room[7]. The
price tag for one at that time was approximately $3,000,000, although the vast
majority were leased monthly for $70,000 (roughly $450,000 using today’s dol-
lars). It was no doubt an expensive and unusual undertaking at the time.

2.6 Closing Comments

Every composer who has ever lived and written one or more works at some
point died or will someday. Their admirers as well as their critics certainly will
always wonder, what else could have been written? What would it have been
like? Good? Bad? Revolutionary? And this is the same for Xenakis. However,
assuming the hardware and software were available (or some sort of porting
possible), a new ST piece could be created today. Even though nobody would
have ever heard it before, it would be immediately recognizable as something
by Xenakis. It would certainly be his composition, because it was his ideas and
effort that gave rise to this composition. Xenakis is one of the forefathers of the
electronic meta-composition—something truly revolutionary.
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