
A Synergy Between Model-Checking and Type
Inference for the Verification of Value-Passing

Higher-Order Processes?

M. Debbabi, A. Benzakour, and B. Ktari

Computer Science Department,
Laval University,
Quebec, Canada

{debabi,benzako,ktari }@@ift.ulaval.ca

Abstract. In this paper, we present a formal verification framework for higher-
order value-passing process algebra. This framework stems from an established
synergy between type inference and model-checking. The language considered
here is based on a sugared version of an implicitly typedλ-calculus extended with
higher-order synchronous concurrency primitives. First, we endow such a syntax
with a semantic theory made of a static semantics together with a dynamic se-
mantics. The static semantics consists of an annotated type system. The dynamic
semantics is operational and comes as a two-layered labeled transition system.
The dynamic semantics is abstracted into a transitional semantics so as to make
finite some infinite-state processes. We describe the syntax and the semantics of a
verification logic that allows one to specify properties. The logic is an extension
of the modalµ-calculus for handling higher-order processes, value-passing and
return of results.

1 Motivation and Background

Concurrent, functional and imperative programming languages emerged as a multi-
paradigmatic alternative appropriate for the development of concurrent and distributed
applications. Such languages harmoniously combine syntactic compactness together
with higher semantic expressiveness. Furthermore, they support functional abstraction
(latent computations) and process abstraction (latent communications). Their expres-
sivity is significantly increased by the higher-order aspect i.e. functions, pointers, chan-
nels and processes are first-class computable values (mobile values). Consequently, they
cover both data and control aspects.

Concurrent and distributed systems are very often subjected to safety requirements.
Accordingly, it is mandatory to have analysis and validation tools whereby one can
formally guarantee the correctness of their behaviors with respect to the expected re-
quirements. Model-checking refers to a formal, automatic and exhaustive verification
technique. It consists of the extraction of a model from a formal description of the sys-
tem to be verified. That model is afterwards checked against a logical or a behavioral
? This research has been funded by a grant from FCAR (Fonds pour la Formation de Chercheurs

et l’Aide la Recherche), Quebec, Canada.

specification. Obviously, from the decidability standpoint, the infiniteness of the model
is a limiting factor to the feasibility of model-checking. One solution, is the application
of abstraction techniques, which aim to abstract an infinite model to a finite one, in such
way that if some property holds for the abstracted model, it also holds for the original
model.

The main contribution of this paper is a new approach for the verification of higher-
order value-passing processes. This approach rests on an established synergy between
model-checking and type inference. Such a synergy is achieved thanks to three ma-
jor results. First, we present an abstraction technique that aims to derive finite models
(transition systems) from concurrent and functional programs. The models extracted
are rich enough to cope with the verification of data and control aspects of concur-
rent and distributed applications. Indeed, starting from a concrete dynamic semantics
of a core-syntax, we derive an abstract dynamic semantics. The computable values that
may be a source of infiniteness are abstracted into finite representations that are types.
By doing so, a large class of infinite models will likely be reduced to finite verifiable
models. Second, we present a temporal logic that is used to express data and control
properties of concurrent and functional programs. Such a logic is defined as an exten-
sion of the propositional modalµ-calculus of Kozen [14] to handle communication,
value-passing and higher-order objects. The logic is semantically interpreted over the
abstract dynamic semantics. Third, we present a verification algorithm based on model-
checking techniques. In fact, since the model is finite, the usual algorithms may be
easily accommodated to the model-checking of our logic. As an example, we present
an accommodation of the Emerson’s algorithm.

Here is the way the rest of this paper is organized. Section 2 is devoted to the pre-
sentation of the related work. Section 3 is dedicated to the presentation of the language
core-syntax considered in this work. In Section 4, we present the static semantics of our
core-syntax. In Section 5, we present the dynamic operational semantics. The latter is
abstracted in Section 6. The syntax and semantics of the verification logic is given in
Section 7. A detailed discussion of the model-checking algorithm is presented in Sec-
tion 8. Finally, a few concluding remarks and a discussion about further research are
ultimately sketched as a conclusion in Section 9.

2 Related Work

The first attempt in the design of concurrent and distributed languages mainly consisted
in extending some imperative languages with concurrency and distribution primitives.
Accordingly, this gave rise to languages such as Ada, Chill, Modula 2 and Occam.
Lately, a great deal of interest has been expressed in concurrent and functional pro-
gramming. This interest is motivated by the fact that functional programming demon-
strated an extensive support of abstraction through the use of abstract data types and the
composition of higher-order functions. Accordingly, plenty of languages (Concurrent
ML [19, 20], Facile [11], LCS [2], etc.), calculi (CHOCS [23, 24],π-calculus [15, 16])
and semantic theories [3, 4, 8, 10, 13, 17, 18] has been advanced.

Verification techniques could be structured in two major approaches: deductive
techniques and semantic-based techniques. Deductive techniques consist of the use of

a logic together with the associated theorem prover. Verification is performed by de-
duction and is usually semi-automatic. Semantics-based verification techniques, also
known as model-checking techniques, consist of the automatic extraction of a model
from the program to be verified. This model approximates the dynamic behaviors of the
program. Afterwards, the model is checked against another model (the specification) or
against a logical specification. Logical specifications are usually expressed as formulae
in modal temporal logics. In [21, 22], the author addresses the verification by proposing
a methodology for generating semantically safe abstract, regular trees for programs that
do not possess obvious, finite, state-transition diagram depictions. One primary result of
this research is that one can, from infinite data sets, generate finite structures for model-
checking. Furthermore, the methodology proposed can deal with various model infinity
sources like computable values, infinite process and channel creation. In [5], the author
addresses the verification by model-checking of a shared-memory concurrent impera-
tive programming language. The author uses abstract interpretation on a true-concurrent
operational semantics based on higher-dimensional transition systems. In [6], the author
addresses the verification of CML programs. He presents an operational semantics for
CML based on infinite domains of higher-dimensional automata. The author uses dual
abstract interpretation to derive finite automata that represent sound but imprecise se-
mantics of programs.

Recently, a surge of interest has been devoted to the verification of higher-order
processes in the presence of value-passing. In [1] the authors address the specification
and verification problem for process calculi such as CHOCS, CML and Facile where
processes or functions are transmissible values. Their work takes place in the context
of a static treatment of restriction and of a bisimulation-based semantics. They put the
emphasis on (Plain) CHOCS. They show that CHOCS bisimulation can be character-
ized by an extension of Hennessy-Milner logic including a constructive implication, or
function space constructor. Towards a proof system for the verification of process spec-
ifications, they present an infinitary sound and complete proof system for the fragment
of the calculus not handling restriction. In [7], the author introduces a temporal logic
for the polyadicπ-calculus based on fixed point extensions of Hennessy-Milner logic.
A proof system and a decision procedure are developed based on Stirling and Walker’s
approach to model-checking theµ-calculus using constants. A proof system and a de-
cision procedure are obtained for arbitraryπ-calculus processes with finite control.

3 Language

In this section, we present the Concurrent ML core-syntax considered in this work.
We have kept the number of constructs to a bare minimum so as to facilitate a more
compact and complete description of our verification framework. The BNF syntax of
the core language is presented in Table 1.

Along this paper, we will writemx1,x2,..., the mapm excluding the associations of
the formxi 7→ . Given two mapsm andm′, we will write m †m′ the overwriting of
the mapm by the associations of the mapm′ i.e. the domain ofm †m′ is dom(m) ∪
dom(m′) and we have(m †m′)(a) = m′(a) if a ∈ dom(m′) andm(a) otherwise.

Table 1.The core syntax

Exp3 e ::= x | v | e e′ | rec f(x) => e (Expressions)
| (e, e′) | e ; e′ | let x = e in e′ end
| if e then e′ else e′′ end
| spawn(e) | sync(e) | receive(e) | transmit(e, e′)
| choose(e, e′) | channel()

Val 3 v ::= c | fn x => e (Values)
Cst 3 c ::= () | true | false | num n (Constants)

4 Static Semantics

Our intention here is to endow our core-syntax with a static semantics. The latter is a
standard annotated effect type system. We introduce the following static domains:

1. The domain ofregions: regions are intended to abstract channels. Their domain
consists in the disjoint union of a countable set of constants ranged over byr and
variables ranged over by%. We will useρ, ρ′, ... to represent values drawn from this
domain.

2. The domain ofsideandcommunication effectsis inductively defined by:

σ ::= ∅ | ς | σ ∪ σ′ | create(ρ, τ) | in(ρ, τ) | out(ρ, τ)

We use∅ to denote an empty effect andς to denote an effect variable. The com-
munication effectcreate(ρ, τ) represents the creation, in the regionρ, of a channel
that is a medium for values of typeτ . The termin(ρ, τ) denotes the communica-
tion effect resulting from receiving a value of typeτ on a channel in the region
ρ andout(ρ, τ) denotes the communication effect resulting from sending a value
of type τ on a channel in the regionρ. The effectσ ∪ σ′ stands for an effect that
represent an upper approximation ofσ andσ′ (effect cumulation). Actually, only
one of the two effects,σ or σ′, will emerge at the dynamic evaluation. We write
σ w σ′ ⇔ ∃σ′′.σ = σ′ ∪ σ′′. Equality on effects is modulo ACUI (Associativity,
Commutativity and Idempotence) with∅ as the neutral element.

3. The domain oftypesis inductively defined by:

τ ::= unit | int | bool | α | τ × τ ′ | chanρ(τ) | eventσ(τ) | τ σ−→τ ′

The termchanρ(τ) is the type of channels in the regionρ that are intended to be
media for values of typeτ . The termτ

σ−→τ ′ is the type of functions that take pa-
rameters of typeτ to values of typeτ ′ with a latent effectσ. By latent effect, we
refer to the effect generated when the corresponding function expression is evalu-
ated. The typeeventσ(τ) denotes inactive processes having potential effect (latent
effectσ) that are expected to return a value of typeτ once their execution termi-
nated.

Table 2.The typing rules

(cte)
τ � TypeOf(c)
E ` c : τ, ∅

(var)
τ � E(x)
E ` x : τ, ∅

(abs)
Ex † [x 7→ τ] ` e : τ ′, σ

E ` fn x => e : τ
σ−→τ ′, ∅

(app) E ` e : τ
σ−→ τ ′, σ′ E ` e′ : τ, σ′′

E ` (e e′) : τ ′, ((σ′;σ′′);σ)

(let)
E ` e : τ, σ Ex † [x 7→ Gen(E , τ, σ)] ` e′ : τ ′, σ′

E ` let x = e in e′ end : τ ′, (σ;σ′)

(pair) E ` e : τ, σ E ` e′ : τ ′, σ′

E ` (e, e′) : τ × τ ′, (σ;σ′)

(seq) E ` e : τ, σ E ` e′ : τ ′, σ′

E ` e ; e′ : τ ′, (σ;σ′)

(if) E ` e : bool, σ E ` e′ : τ, σ′ E ` e′′ : τ, σ′′

E ` if e then e′ else e′′ end : τ, σ ∪ σ′ ∪ σ′′

(rec)
Ex,f † [x 7→ τ, f 7→ τ

σ−→τ ′] ` e : τ ′, σ

E ` rec f(x) => e : τ
σ−→ τ ′, ∅

(obs)
E ` e : τ, σ Observe(E , τ, σ) v σ′

E ` e : τ, σ′

Table 2 presents the static semantics of our core language.
The static semantics manipulates sequents of the formE ` e : τ, σ, which state that

under some typing environmentE the expressione has typeτ and effectσ. We also
define type schemes of the form∀v1, . . . , vn.τ , wherevi can be type, region or effect
variable. A typeτ ′ is an instance of∀v1, . . . , vn.τ , notedτ ′ � ∀v1, . . . , vn.τ , if there
exists a substitutionθ defined overv1, . . . , vn such thatτ ′ = θτ .

Type generalization in this type system states that a variable cannot be generalized
if it is free in the type environmentE or if it is present in the inferred effect:

Gen(E , τ, σ) = let v1..n = fv(τ)\(fv(E) ∪ fv(σ)) in ∀v1..n.τ end

wherefv() denotes the set of free variables. The observation criterion was introduced
in order to report only effects that can affect the context of an expression.

Observe(E , τ, σ) = {ς ∈ σ | ς ∈ fv(E) ∪ fv(τ)}
∪ {create(ρ, τ ′) ∈ σ | ρ ∈ fr(E) ∪ fr(τ) ∧ τ ′ ∈ S T}
∪ {in(ρ, τ ′) ∈ σ | ρ ∈ fr(E) ∪ fr(τ) ∧ τ ′ ∈ S T}
∪ {out(ρ, τ ′) ∈ σ | ρ ∈ fr(E) ∪ fr(τ) ∧ τ ′ ∈ S T}

where ST is the domain of types,fr(E) stands for the set of free channel regions in
the static environmentE . The functionTypeOfallows the typing of built-in primitives
as defined in the Table 3.

Table 3.The initial static basis

TypeOf = [() 7→ unit,
true 7→ bool,
false 7→ bool,
num n 7→ int,

channel 7→ ∀α, %, ς.unitς∪create(%,α)−→ chan%(α),

receive 7→ ∀α, %, ς, ς ′.chan%(α)
ς−→eventς′∪in(%,α)(α),

transmit 7→ ∀α, %, ς, ς ′.chan%(α)× α
ς−→eventς′∪out(%,α)(unit),

choose 7→ ∀α, ς, ς ′, ς ′′, ς ′′′.eventς(α)× eventς′(α)
ς′′
−→eventς′′′∪ς∪ς′(α),

spawn 7→ ∀ς, ς ′.(unit ς−→ unit)
ς′
−→unit,

sync 7→ ∀α, ς, ς ′.eventς(α)
ς′
−→α

]

5 Concrete Dynamic Semantics

In this section, we endow our core-syntax with a dynamic operational semantics. The
latter is now standard and will be defined here as a two-layered labeled transition system
following [12]. First of all, we need to introduce some semantic domains and to extend
the expression syntax to intermediate expressions (expressions that may occur during
the dynamic evaluation). As illustrated in Table 4, we introduce six semantic categories.

Table 4.The semantic categories

CVal 3 cv ::= c | fn x => i | k | ev | (cv, cv) (Computable Values)
Evt 3 ev ::= 〈ec, cv〉 (Events)
IExp 3 i ::= e | cv | cv e | let x = cv in e end

| (cv, e) | cv; e (Intermediate Expressions)
ECon3 ec ::= receive | transmit | choose (Event Constructors)
Com 3 com ::= k?cv | k!cv (Communications)
Act 3 a ::= com | ε | λ(k) | φ(cv) (Actions)

The semantic category CVal is ranged over bycv and corresponds to the domain of
computable values. The semantic category Evt of events is ranged over byev. An event
is a pair consisting of the event constructorec and its argumentcv. An event constructor
ec is a member of the syntactic domain ECon. The semantic category IExp is ranged
over byi and corresponds to the domain of intermediate expressions. The semantic cat-
egory Com is ranged over bycom and corresponds to the domain of communications.

Input communications are of the formk?cv wherek is a channel computable value and
cv is another computable value that will be received on the channelk. Output commu-
nications are of the formk!cv wherek is a channel computable value andcv is another
computable value that will be sent along the channelk. The semantic category Act is
ranged over bya and corresponds to the domain of actions. The silent actionε denotes
internal moves. A creation of a channelk is considered as an action and is writtenλ(k).
A process spawning of a valuecv is considered as an action and is writtenφ(cv).

The operational semantics is structured in two layers, one for expressions in isola-
tion and one multiset of expressions running in parallel. These two layers involve three
transition relations whose definitions are given hereafter.

5.1 Expression Semantics

The first relation, written=⇒ ⊆ Evt× Com× IExp, is a transition relation that is
meant to define the communication potential of events. The rules that define this relation
are presented in Table 5.

Table 5.The semantic rules of the relation=⇒

(transmit)〈transmit, (k, cv)〉 k!cv
=⇒ () (receive) 〈receive, k〉 k?cv

=⇒ cv

(choose1) ev1
com
=⇒ i

〈choose, (ev1, ev2)〉
com
=⇒ i

(choose2) ev2
com
=⇒ i

〈choose, (ev1, ev2)〉
com
=⇒ i

A transition of the formev
com=⇒ i intuitively means that the eventev has the potential

of performing the communicationcom (whensync is applied to the event) and then it
will behave as the intermediate expressioni.

The second relation, written↪→ ⊆ IExp× Act× IExp, is the one that defines the
operational semantics of processes. A transition of the formi

a
↪→ i′ intuitively means

that by performing the actiona, the intermediate expressioni will behave asi′. The
rules that define this relation are presented in Table 6.

5.2 Program Semantics

Now, in order to define the third transition relation we need to introduce the following
semantic functions and domains. We denote byCV [i] the set of channelsk occurring
in an intermediate expressioni.

We view a program as a multiset of intermediate expressions. We let Prog be IExp-
MultiSet i.e. the set of program multisets. The set of channels that occur in a multisetP
is obtained by including the channels in each intermediate expression. The operational
semantics of programs is based on the evolution of the so-called configurations. We
define aK-configuration, and we writeK :: P , to be a pair where the first component
K is the set of all channels allocated up to a certain point, and the second component

Table 6.The concrete operational semantics of processes

(app1) i1
a
↪→ i′1

i1 i2
a
↪→ i′1 i2

(app2) i
a
↪→ i′

cv i
a
↪→ cv i′

(beta1) (fn x => i) cv
ε
↪→ i[cv/x] (beta2) ec cv

ε
↪→ 〈ec, cv〉

(pair1) i1
a
↪→ i′1

(i1, i2)
a
↪→ (i′1, i2)

(pair2) i
a
↪→ i′

(cv, i)
a
↪→ (cv, i′)

(seq1) i1
a
↪→ i′1

i1; i2
a
↪→ i′1; i2

(seq2) i
a
↪→ i′

cv; i
a
↪→ cv; i′

(chan) channel()
λ(k)
↪→ k (spawn1) spawn cv

φ(cv)
↪→ ()

(rec) rec f(x) => i
ε
↪→ fn x => i[(rec f(x) => i)/f]

(if1) i1
a
↪→ i′1

if i1 then i2 else i3 end
a
↪→ if i′1 then i2 else i3 end

(if2) if true then i1 else i2 end
ε
↪→ i1

(if3) if false then i1 else i2 end
ε
↪→ i2

(let1) i1
a
↪→ i′1

let x = i1 in i2 end
a
↪→ let x = i′1 in i2 end

(let2) let x = cv in i end
ε
↪→ i[cv/x]

(sync) ev
com
=⇒ i

sync ev
com
↪→ i

P is a program (a multiset of intermediate expressions). Let Chan be the set of channel
computable values. The domain ofK-configuration ConfK is defined as follows:

ConfK = {K :: P | K ∈ Chan ∧ P ∈ Prog ∧ CV [P] ⊆ K}

The semantics ofK-configurations is given in terms of the labeled transition system
(ConfK ,Com∪ {ε},−→). The transition relation−→ is defined as the smallest subset
of ConfK × Com∪ {ε} × ConfK closed under the rules presented in Table 7.

The functionMsg extracts the set of channels that are transmitted in a communica-
tion.

6 Abstract Dynamic Semantics

In this section, we describe an abstract dynamic semantics derived from the concrete
dynamic semantics viewed in the previous section. The motivation is to abstract com-
putable values that could be a source of infiniteness. These values are abstracted into
finite representations that are types. By doing so, we ensure that a large class of infinite
models will likely be reduced to finite verifiable models.

The abstract semantic categories are illustrated in Table 8. The abstract semantic
category AVal is ranged over bycv and corresponds to the domain of abstract values.
The semantic category AFExp is ranged over byafe and corresponds to the abstract
functional expressions. The abstract semantic category ACst is ranged over byac and

Table 7.The operational semantics of programs

(action) i
a
↪→i′

K :: {|i|} a−→ K ∪Msg(a) :: {|i′|}

(channel) i
λ(k)
↪→ i′

K :: {|i|} ε−→ K ∪ {k} :: {|i′|}
k 6∈ K

(spawn2) i
φ(cv)
↪→ i′

K :: {|i|} ε−→ K :: {|i′, cv()|}

(communication) i1
k?cv
↪→ i′1, i2

k!cv
↪→ i′2

K :: {|i1, i2|}
ε−→ K :: {|i′1, i′2|}

(isolation) K :: P1
a−→ K′ :: P ′1

K :: P1 ∪ P2
a−→ K′ :: P ′1 ∪ P2

Table 8.The abstract semantic categories

AVal 3 cv ::= ac | kchanρ(τ) | ev | afe | (cv, cv) (Abstract Values)
AFExp3 afe ::= fn x => i | τ σ−→τ ′ (Abstract Functional Exp.)
ACst 3 ac ::= c | int | bool | unit (Abstract Constants)
AChan3 kchanρ(τ) ::= k | chanρ(τ) (Abstract Channels)
AEvt 3 ev ::= 〈ec, cv〉 | eventσ(τ) (Abstract Events)
ECon 3 ec ::= receive | transmit | choose (Event Constructors)
AIExp 3 i ::= e | cv | cv e | (cv, e) | cv; e (Abstract Intermediate Exp.)

| let x = cv in e end
ACom 3 com ::= kchanρ(τ)?τ | kchanρ(τ)!cv (Abstract Communications)
AAct 3 a ::= com | ε | λ(kchanρ(τ)) | φ(cv) (Abstract Actions)
Loc 3 l ::= n | n.l where n ∈ IN (Locations)

corresponds to the domain of abstract constants. The abstract semantic category AChan
is ranged over bykchanρ(τ) and corresponds to the domain of abstract channels. This
category includes channel computable values together with the type of channels. The
abstract semantic category AEvt is ranged over byev and corresponds to the domain
of abstract events. This category includes events together with the type of events. The
abstract semantic category AIExp is ranged over byi and corresponds to the domain
of abstract intermediate expressions. The abstract semantic category ACom is ranged
over bycom and corresponds to the domain of abstract communications. Abstract input
communications are of the formkchanρ(τ)?τ and stand for the action of receiving val-
ues, abstracted by their type, on an abstract channel. Abstract output communications
are of the formkchanρ(τ)!cv and stand for the transmission of an abstract value along
an abstract channel. The abstract semantic category AAct is ranged over bya and cor-
responds to the domain of actions. The abstract semantic category Loc is ranged over
by l and corresponds to the domain of locations.

6.1 Expression Semantics

The rules that define the relation=⇒ ⊆ AEvt × ACom× AIExp are presented in
Table 9.

Table 9.The abstract semantic rules of the relation=⇒

(transmit)〈transmit, (kchanρ(τ), cv)〉
kchanρ(τ)!cv

=⇒ ()

(receive) 〈receive, kchanρ(τ)〉
kchanρ(τ)?τ

=⇒ τ

(choose1) ev1
com
=⇒ i

〈choose, (ev1, ev2)〉
com
=⇒ i

(choose2) ev2
com
=⇒ i

〈choose, (ev1, ev2)〉
com
=⇒ i

The (transmit) and (receive) rules are changed to reflect the use of abstract val-
ues. For example, the second one means that the event〈receive, kchanρ(τ)〉 has the
potential of performing the communicationkchanρ(τ)?τ , and then behaves as the ab-
stract valueτ . This means that the possible values received in the channelkchanρ(τ)

are abstracted as their type. This abstraction ensures that large class of infinite mod-
els will likely be reduced to finite models. The rules that define the relation↪→ ⊆
AIExp× AAct × Loc× AIExp are presented in Table 10.

For instance, the rule (beta3) is defined to evaluate the application of a class of
functions that have the same type (τ

σ−→τ ′) to an abstract valuecv.

6.2 Program Abstract Semantics

As the concrete semantics, the program abstract semantics is based on the evolution
of K-configurations. Definitions of the domain ofK-configuration and the semantic

Table 10.The abstract operational semantics of processes

(app1)
i1

a
↪→
l
i′1

i1 i2
a
↪→
1.l
i′1 i2

(app2)
i

a
↪→
l
i′

cv i
a
↪→
2.l
cv i′

(beta1) (fn x => i) cv
ε
↪→
0
i[cv/x] (beta2) ec cv

ε
↪→
0
< ec, cv >

(beta3) (τ
σ−→τ ′)(cv)

ε
↪→
0
τ ′ (chan) channel()

λ(kchanρ(τ))

↪→
0

kchanρ(τ)

(pair1)
i1

a
↪→
l
i′1

(i1, i2)
a
↪→
1.l

(i′1, i2)
(pair2)

i
a
↪→
l
i′

(cv, i)
a
↪→
2.l

(cv, i′)

(seq1)
i1

a
↪→
l
i′1

i1; i2
a
↪→
1.l
i′1; i2

(seq2)
i

a
↪→
l
i′

cv; i
a
↪→
2.l
cv; i′

(spawn1) spawn cv
φ(cv)
↪→
0

()

(rec) rec f(x) => i
ε
↪→
0
fn x => i[(rec f(x) => i)/f]

(if1)
i1

a
↪→
l
i′1

if i1 then i2 else i3 end
a
↪→
1.l

if i′1 then i2 else i3 end

(if2) if true then i1 else i2 end
ε
↪→
0
i1

(if3) if false then i1 else i2 end
ε
↪→
0
i2

(let1)
i1

a
↪→
l
i′1

let x = i1 in i2 end
a
↪→
1.l

let x = i′1 in i2 end

(let2) let x = cv in i end
ε
↪→
0
i[cv/x]

(sync) ev
com
=⇒ i

sync ev
com
↪→
0
i

function Msg remain the same except that the latter is defined over abstract values.
The semantics ofK-configuration is given in terms of the labeled transition system
(ConfK ,ACom∪{ε},−→). The transition relation−→ is defined as the smallest subset
of ConfK × ACom∪ {ε} × ConfK closed under the rules presented in Table 11.

Table 11.The abstract operational semantics of programs

(action)
i

a
↪→
l
i′

K :: {|i|} a−→ K ∪Msg(a) :: {|i′|}

(channel)
i
λ(kchanρ(τ))

↪→
l

i′

K :: {|i|} ε−→ K ∪ {kchanρ(τ)} :: {|i′|}
kchanρ(τ) 6∈ K

(spawn2)
i
φ(cv)
↪→
l
i′

K :: {|i|} ε−→ K :: {|i′, cv()|}

(Communication)
i1

kchanρ(τ)?τ

↪→
l

i′1, i2
kchanρ(τ)!cv

↪→
l′

i′2

K :: {|i1, i2|}
ε−→ K :: {|i′1[cv]l, i

′
2|}

(Isolation) K :: P1
a−→ K′ :: P ′1

K :: P1 ∪ P2
a−→ K′ :: P ′1 ∪ P2

wherei′1[cv]l stands for the termi′1 in which the subterm at locationl will be replaced
by cv.

6.3 Correctness of the abstraction

The correctness of the abstraction is assured since there is an equivalence between the
abstract transition graph and the concrete one. In fact, by unfolding in the abstract graph
each transition containing an abstract term by the equivalent set of transitions composed
by concrete values, we transform an abstract transition graph into a concrete one.

7 A Modal logic for concurrent ML

In this section we introduce a logic that allows one to specify properties of expressions.
The logic we consider may be viewed as a variant of the modalµ-calculus [14], or
the Hennessey-Milner Logic with recursion. In the proposed logic, modal formulae can
also be used to express communication, value-passing and result returns. This logic is
semantically interpreted over the abstract dynamic semantics.

7.1 Syntax

The syntax of formulae is presented in Table 12. We refer to this logic asLµ.

Table 12.The logic

ψ ::= tt | ff |X | ¬ψ | ψ ∨ ψ′ | ψ ∧ ψ′ | (Boolean Expressions)
| <a> ψ | <return(cv)> (Diamond Formulae)
| [a] ψ | [return(cv)] (Box Formulae)
| µX.ψ (Greatest Fixpoint Formulae)
| νX.ψ (Least Fixpoint Formulae)

a ::= k dir cv | ε (Actions)
dir ::= ! | ? (Directions)

The symbols¬, ∨ and∧ respectively represent negation, disjunction and conjunc-
tion. The symbol<a> (resp.<return(cv)>) is a modal operator indexed bya (resp.
by return(cv)) known as the diamond. The meaning of modalized formulae appeal to
transition behavior of a program. For instance, a program satisfies the formula<a> ψ
if it can evolve to someK-configuration obeyingψ by performing an actiona. The
actions can either be the silent actionε or the communication actionsk!cv or k?cv.
Furthermore, a program satisfies the formula<return(cv)> if it can return the value
cv. In the same way, the symbol[a] (resp.[return(cv)]) is a modal operator known
as box. A program satisfies the formula[a] ψ if after every performance of an action
a, each resultK-configuration satisfiesψ. Furthermore, a program satisfies the formula
[return(cv)] if it returns necessarily the valuecv. Variables are ranged over byX.
The formulaeµX.ψ (resp.νX.ψ) is a recursive formula where the least fixpoint op-
eratorµ (resp. greatest fixpoint operatorν) binds all free occurrences ofX in ψ. An
occurrence ofX is free if it is not within the scope of a binderµX or νX. Note that
like theµ-calculus, all occurrences ofX in ψ must appear inside the scope of an even
number of negations. This is to ensure the existence of fixpoints.

7.2 Semantics

Formulae are interpreted over models of the formM = <ST , L>, whereST =
(ConfK ,ACom ∪ {ε},−→), and environment of the forme = [Xi 7→ Pi] which
maps variablesXi to sets ofK-configurations. Semantically, formulae of the logic
correspond to sets ofK-configurations for which they are true. The meaning function
[[.]]Me : Lµ → 2C is described in Table 13. The setC refers to the set ofK-configurations.

Intuitively, allK-configurations satisfy the formulattwhile there are noK-configurations
that satisfyff. The meaning of a variableX is simply theK-configurations that are
bound toX in the environmente. Negation, disjunction and conjunction are interpreted
in a classical way. The meaning of formulae<a> ψ areK-configurationsc that can
evolve, by performing an actiona, to someK-configurationc′ such thatc′ is part of
the meaning ofψ. More accurately, if the actiona is an output communication action
involving a valuecv, then we must ensure the existence of a constantcv′ such that
cv � cv′. The preorder relation� is defined on abstract values as below:

cv � cv′ ⇐⇒ ∃θ.θ(cv′) = cv

Table 13.The semantic

[[tt]]Me = C
[[ff]]Me = ∅
[[X]]Me = e(X)

[[¬ψ]]Me = C \ [[ψ]]Me
[[ψ1 ∨ ψ2]]

M
e = [[ψ1]]

M
e ∪ [[ψ2]]

M
e

[[ψ1 ∧ ψ2]]
M
e = [[ψ1]]

M
e ∩ [[ψ2]]

M
e

[[<ε> ψ]]Me = {c ∈ C | ∃c′.c ε→ c′ ∧ c′ ∈ [[ψ]]Me }
[[[ε] ψ]]Me = {c ∈ C | ∀c′.c ε→ c′ ⇒ (c′ ∈ [[ψ]]Me)}
[[<k!cv> ψ]]Me = {c ∈ C | ∃c′, cv′.c k!cv′

→ c′ ∧ c′ ∈ [[ψ[cv′/cv]]]Me ∧ cv � cv′}
[[[k!cv] ψ]]Me = {c ∈ C | ∀c′,∃cv′.c k!cv′

→ c′ ⇒ (c′ ∈ [[ψ[cv′/cv]]]Me ∧ cv � cv′)}
[[<k?cv> ψ]]Me = {c ∈ C | ∃c′, τ whereTypeOf(cv) = τ . c

k?τ→ c′ ∧ c′ ∈ [[ψ[τ/cv]]]Me }
[[[k?cv] ψ]]Me = {c ∈ C | ∀c′,∃τ whereTypeOf(cv) = τ . c

k?τ→ c′ ⇒ c′ ∈ [[ψ[τ/cv]]]Me }
[[<return(cv)>]]Me = {c ∈ C | ∃n ∈ IN.c

a1→ c1
a2→ c2 . . .

an→ cv}
[[[return(cv)]]]Me = {c ∈ C | ∀cv′,∃n ∈ IN.c

a1→ c1
a2→ c2 . . .

an→ cv′ ⇒ (cv = cv′)}
[[µX.ψ]]Me =

⋂
{C ⊆ C | [[ψ]]Me[X 7→C] ⊆ C}

[[νX.ψ]]Me =
⋃
{C ⊆ C | C ⊆ [[ψ]]Me[X 7→C]}

whereθ is a substitution. Moreover, theK-configurationc′ must be part of the meaning
of the formulaψ in which each occurrence ofcv is replaced bycv′. If the actiona is
an input communication action involving a valuecv, then we must ensure the existence
of a typeτ such thatTypeOf(cv) = τ . And theK-configurationc′ must be part of the
meaning of the formulaψ in which each occurrence ofcv is replaced by the typeτ .

The meaning of formulae[a] ψ areK-configurationsc such that after every action
a, each resultK-configurationc′ is part of the meaning ofψ. The meaning of formulae
<return(cv)> areK-configurationsc that can evolve throughn transitions such that
the resultingK-configuration is the valuecv. In the same way, the meaning of formula
[return(cv)] areK-configurations that when they evolve throughn transitions, the
resultingK-configurations must be the valuecv. The meaning of the fixpoint formulae
is the same as defined in theµ-calculus. Hence the greatest fixpoint is given as the union
of all post-fixpoints whereas the least fixpoint is the intersection of all pre-fixpoints.

8 A Model-checking algorithm

In this section, we present an adaptation of the model checking algorithm proposed by
Emerson and Lei [9]. Table 13 contains an algorithm that determines whether or not a
structureM = <ST , L> is a model for a formulaψ0.

The algorithm follows these three steps:

1. Convert the formulaψ0 to its equivalent PNFψ′
0.

2. Compute the setC ′ of K-configurations in whichψ′
0 holds.

3. if C ′ 6= ∅ thenM is a model forψ0 else it’s not a model forψ0.

Table 14.Symbolic model-checking algorithm

Function MC(ψ′0,M)
var C′, Ci;

begin
case ψ′0 of

tt : C′ = C;
ff : C′ = ∅;
X: C′ = Ci;
¬ψ: C′ = C \MC(ψ,M);
ψ1 ∨ ψ2: C′ = MC(ψ1,M) ∪MC(ψ2,M);
ψ1 ∧ ψ2: C′ = MC(ψ1,M) ∩MC(ψ2,M);
<ε> ψ: C′ = {c ∈ C | ∃c′.c ε→ c′ ∧ c′ ∈ MC(ψ,M)};
[ε] ψ: C′ = {c ∈ C | ∀c′.c ε→ c′ ⇒ (c′ ∈ MC(ψ,M))};

<k!cv> ψ: C′ = {c ∈ C | ∃c′, cv′.c k!cv′
→ c′ ∧ c′ ∈ MC(ψ[cv′/cv],M) ∧ cv � cv′};

[k!cv] ψ: C′ = {c ∈ C | ∀c′,∃cv′.c k!cv′
→ c′ ⇒ c′ ∈ MC(ψ[cv′/cv],M) ∧ cv � cv′};

<k?cv> ψ: C′ = {c ∈ C | ∃c′, τ whereTypeOf(cv) = τ .

c
k?τ→ c′ ∧ c′ ∈ MC(ψ[τ/cv],M)};

[k?cv] ψ: C′ = {c ∈ C | ∀c′,∃τ whereTypeOf(cv) = τ .

c
k!cv′
→ c′ ⇒ c′ ∈ MC(ψ[τ/cv],M)};

<return(cv)>: C′ = {c ∈ C | ∃n ∈ IN.c
a1→ c1

a2→ c2 . . .
an→ cv};

[return(cv)] : C′ = {c ∈ C | ∀cv′,∃n ∈ IN.c
a1→ c1

a2→ c2 . . .
an→ cv′ ⇒ (cv = cv′)};

µX.ψ: Ci = ∅; repeat C′ = Ci; Ci = MC(ψ,M); until C′ = Ci;
νX.ψ: Ci = C; repeat C′ = Ci; Ci = MC(ψ,M); until C′ = Ci;

end ;
return(C′) ;

end .

9 Conclusion

In this paper, we have considered the problem of formal and automatic verification of
data and control aspects for higher-order value-passing process algebra. Our contribu-
tion is a new approach that rests on an established synergy between model-checking and
type inference. Such a synergy is achieved thanks to three results: First, starting from a
concrete dynamic semantics we derive an abstract dynamic semantics. By doing so, we
ensure that infinite models will likely be reduced to finite verifiable models. The source
of infiniteness are the computable values. The solution is to abstract these values into
finite representation that are types. Second, starting from the propositional modalµ-
calculus, we define a logic that handles communication, value-passing , result returns,
and higher-order objects. The logic is semantically interpreted over the abstract dy-
namic semantics. Finally, we propose a verification algorithm based on model-checking
techniques. Since the model is finite and thanks to the soundness of abstract dynamic
semantics, the usual algorithms may be easily accommodated to the model-checking of
our logic. We present an accommodation of the Emerson’s algorithm.

As future work, we plan to investigate abstraction techniques for dealing with other
model infinity sources such as infinite process and channel creation. To that end, we
will take advantage of the pioneering work done by D. Schmidt in [22] on the abstract
interpretation of small step semantics. Furthermore, we are interested in tracking infini-
ties that may arise from arithmetic manipulation. For that, we will explore the emerging
application of Presburger arithmetic to handle this problem. Finally, as a downstream
result of this research, we hope to come up with practical tools that address the verifi-
cation of higher-order concurrent systems.

References

[1] R. M. Amadio and M. Dam. Reasoning about higher-order processes.In Proc. of CAAP’95,
Aarhus, Lecture Notes in Computer Science, 915, 1995.

[2] B. Berthomieu. Implementing CCS, the LCS experiment. Technical Report 89425, LAAS
CNRS, 1989.

[3] D. Bolignano and M. Debbabi. A coherent type inference system for a concurrent, func-
tional and imperative programming language. InProceedings of the AMAST’93 Confer-
ence. Springer Verlag, June 1993.

[4] D. Bolignano and M. Debbabi. A semantic theory for CML. InProceedings of the TACS’94
Conference. Springer Verlag, April 1994.

[5] R. Cridlig. Semantic analysis of shared-memory concurrent languages using abstract
model-checking. InSymposium on Partial Evaluation and Program Manipulation, 1995.

[6] R. Cridlig. Semantic analysis of concurrent ML by abstract model-checking. InInterna-
tional Workshop on Verification of Infinite State Systems, 1996.

[7] Mads Dam. Model checking mobile processes.Information and Computation, 129(1):35–
51, 25 August 1996.

[8] M. Debbabi. Intégration des paradigmes de programmation parallèle, fonctionnelle et
impérative : fondements sémantiques.PhD thesis, Université Paris Sud, Centre d’Orsay,
July 1994.

[9] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus (extended abstract). InProceedings, Symposium on Logic in Computer

Science, pages 267–278, Cambridge, Massachusetts, 16–18 June 1986. IEEE Computer So-
ciety.

[10] William Ferreira, Matthew Hennessy, and Alan Jeffrey. A theory of weak bisimulation for
core CML. ACM SIGPLAN Notices, 31(6):201–212, June 1996.

[11] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concurrent and
functional programming.International Journal of Parallel Programming, 18(2):121–160,
April 1989.

[12] K. Havelund and K. G. Larsen. The fork calculus. In A. Lingas, R. Karlsson, and S. Carls-
son, editors,Proceedings20th ICALP, volume 700 ofLecture Notes in Computer Science.
Springer Verlag, 1993.

[13] M. Hennessy and A. Inǵolfsdóttir. A theory of communicating processes with value pass-
ing. In Proc. 17th ICALP, LNCS. Springer Verlag, 1990.

[14] D. Kozen. Results on the propositional mu-calculus.Theoretical Computer Science, 23,
1983.

[15] R. Milner. The polyadicπ-calculus: A tutorial. Technical report, Laboratory for Foun-
dations of Computer Science, Department of Computer Science, University of Edinburgh,
1991.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Technical report,
Laboratory for Foundations of Computer Science, Department of Computer Science, Uni-
versity of Edinburgh, 1989.

[17] Flemming Nielson and Hanne Riis Nielsen. From CML to process algebra. In E. Best,
editor,Proceedings of CONCUR’93, LNCS 715, pages 493–508. Springer-Verlag, 1993.

[18] Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with fi-
nite communication topology. InConference Record of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’94), pages 84–97, Portland,
Oregon, January 17–21, 1994. ACM Press. Extended abstract.

[19] J.H. Reppy. Concurrent programming with events - the Concurrent ML manual. Technical
report, Department of Computer Science, Cornell University, November 1990.

[20] J.H. Reppy. CML: A higher-order concurrent language. InProceedings of the ACM SIG-
PLAN ’91 PLDI, pages 294–305. SIGPLAN Notices 26(6), 1991.

[21] D.A. Schmidt. Natural-semantics-based abstract interpretation. InProc. 2d Static Analysis
Symposium, Glasgow, Sept. 1995, Lecture Notes in Computer Science 983, pages 1–18.
Springer-Verlag, Berlin, 1995.

[22] D.A. Schmidt. Abstract interpretation of small-step semantics. InProc. 5th LOMAPS Work-
shop on Analysis and Verification of Multiple-Agent Languages, Stockholm, June 1996,
Lecture Notes in Computer Science 1192, pages 76–99. Springer-Verlag, Berlin, 1997.

[23] Bent Thomsen. A calculus of higher order communicating systems. InConference Record
of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, pages
143–154, Austin, Texas, January 1989.

[24] Bent Thomsen. Plain CHOCS. A second generation calculus for higher order processes.
Acta Informatica, 30, 1993.

