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ABSTRACT
Recently, the transaction-level modeling has been widely re-
ferred to in system-level design community. However, the
transaction-level models(TLMs) are not well defined and the
usage of TLMs in the existing design domains, namely mod-
eling, validation, refinement, exploration, and synthesis, is
not well coordinated. This paper introduces a TLM taxon-
omy and compares the benefits of TLMs’ use.
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1. INTRODUCTION
In order to handle the ever increasing complexity of system-

on-chips (SoCs) and time-to-market pressures, the design
abstraction has been raised to the system level in order to
increase design productivity. This higher level of abstrac-
tion generated large interest in transaction-level modeling,
synthesis, and verification [10][12].
In a transaction-level model (TLM), the details of com-

munication among computation components are separated
from the details of computation components. Communica-
tion is modeled by channels, while transaction requests take
place by calling interface functions of these channel models.
Unnecessary details of communication and computation are
hidden in a TLM and may be added later. TLMs speed up
simulation and allow exploring and validating design alter-
natives at the higher level of abstraction.
However, the definition of TLMs is not well understood.

Without clear definition of TLMs, not only the predefined
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Figure 1: System modeling graph

TLMs cannot be easily reused, but also the usage of TLMs
in the existing design domains, namely modeling, validation,
refinement, exploration, and synthesis, cannot be systemat-
ically developed. Consequently, the inherent advantages of
TLMs don’t effectively benefit designers. In order to elim-
inate some ambiguity of TLMs, this paper attempts to ex-
plicitly define several transaction-level models, each of which
is adopted for different design purpose. It also explores the
usage of defined TLMs under a general design flow and an-
alyzes how the TLMs are used in the design domains.
This paper is organized as follows: Section 2 reviews the

related work; Section 3 defines four TLMs; Section 4 in-
troduces the usage of TLMs in different design domains;
Finally, the conclusion is given in section 5.

2. RELATED WORK
The concept of TLM first appears in system level lan-

guage and modeling domain. [10] defines the concept of
a channel, which enables separating communication from
computation. It proposes four well-defined models at differ-
ent abstraction levels in a top-down design flow. Some of
these models can be classified as TLMs. However, the capa-
bilities of TLMs are not explicitly emphasized. [12] broadly
describes the TLM features based on the channel concept
and presents some design examples. However, the TLMs
are not well defined and the usage of TLMs in the existing
design domains is not addressed. [10] [12] also demonstrate
that both SpecC [3] and SystemC [2] support transaction
level modeling using the channel concept.
The TLMs can be used in top-down approaches such as
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proposed by SCE [6] that starts design from the system be-
havior representing the design’s functionality, generates a
system architecture from the behavior, and gradually reaches
the implementation model by adding implementation de-
tails. In comparison to the top-down approaches, meet-
in-the-middle approaches [13] map the system behavior to
the predefined system architecture, rather than generating
the architecture from the behavior. An example of meet-
in-the-middle approach is VCC [5] for architecture estima-
tion/exploration and N2C [1] for interface synthesis. Un-
like above two approaches, bottom-up approaches assem-
ble the existing computation components by inserting wrap-
pers among them. Bottom-up approaches, such as proposed
in [9], focus on component reuse and wrapper generation.
All of above three design practices fully or partly cover the
design from the system behavior to the detailed system im-
plementation, which exhibits great potential of employing
TLMs.
Some other research groups have applied TLMs in the

design. [14] adopts TLMs to ease the development of em-
bedded software. [15] defines a TLM with certain proto-
col details in a platform-based design, and uses it to inte-
grate components at the transaction level. [11] implements
co-simulation across-abstraction level using channels, which
implies the usage of TLM. Each of above research addresses
only one limited aspect of TLMs.

3. TRANSACTION LEVEL MODELS
In order to simplify the design process, designers gener-

ally use a number of intermediate models. The intermedi-
ate models slice the entire design into several smaller design
stages, each of which has a specific design objective. Since
the models can be simulated and estimated, the result of
each of these design stages can be independently validated.
In order to relate different models, we introduce the sys-

tem modeling graph (shown in Figure 1) [8]. X-axis in the
graph represents computation and y-axis represents com-
munication. On each axis, we have three degrees of time
accuracy: un-timed, approximate-timed, and cycle-timed.
Un-timed computation/communication represents the pure
functionality of the design without any implementation de-
tails. Approximate-timed computation/communication con-
tains system-level implementation details, such as the se-
lected system architecture, the mapping relations between
processes of the system specification and the processing el-
ements of the system architecture. The execution time for
approximate-timed computation/communication is usually
estimated at the system level without cycle-accurate RTL
(register transfer level) /ISS (instruction set simulation) level
evaluation [5]. Cycle-timed computation/communication con-
tains implementation details at both system level and the
RTL/ISS level, such that cycle-accurate estimation can be
obtained.
Inspired by [10] [12], we define six abstraction models in

the system modeling graph, which are indicated by circles.
Among them, component-assembly model, bus-arbitration
model, bus-functional model, and cycle-accurate computa-
tion model are TLMs, which are indicated by shaded circles.
Specification model. It describes the system function-

ality and is free of any implementation details. This model
is similar to the specification model in [10] and untimed
functional model in [12]. It can model the data transfer
between processes through variable accessing without using
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Figure 2: The example of specification model

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

v2 = v1 + b*b;
B2

PE2

v1 = a*a;

B1

PE1

cv2

cv12

cv11

Figure 3: The example of component-assembly
model

channel concept, which eases to convert C/C++ language
to SystemC/SpecC language. Specification model is an un-
timed model. Figure 2 displays an example of specification
model. Processes B1, B2B3, and B4 execute sequentially.
B2B3 is a parallel composition of B2 and B3. Variables v1,
v2 and v3 are used to transfer data among processes.
Component-assembly model. The entities at the top

level of the model represent concurrently executing process-
ing elements (PEs) and global memories, which commu-
nicate through channels. A PE can be a custom hard-
ware, a general-purpose processor, a DSP, or an IP. The
channels are message passing channels, which only repre-
sent data transfer or process synchronization between PEs
without any bus/protocol implementation. The communi-
cation part of the model (channel) is un-timed, while com-
putation part of the model (PE) is timed by approximately
estimating the execution on specific PE. The estimated time
of computation is computed by system-level estimator such
as [5]. The estimated time is annotated into the code by
inserting wait statements. Component-assembly model is
the same as architecture model defined in [10] and belongs

20



���
���
���

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

��
��

��
��

cv12

cv11

cv2

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface

Figure 4: The example of bus-arbitration model

to timed functional model defined in [12]. In compari-
son to specification model, component-assembly model ex-
plicitly specifies the allocated PEs in the system architec-
ture and process-to-PE mapping decision. The example of
component-assembly model is displayed in Figure 3. PE1,
PE2 and PE3 are three allocated PEs. cv11, cv12, cv2 are
the message-passing channels.
Bus-arbitration model. In comparison to component-

assembly model, channels between PEs in bus-arbitration
model represent buses, which are called abstract bus chan-
nels. The channels still implement data transfer through
message passing, while bus protocols can be simplified as
blocking and nonblocking I/O. No cycle-accurate and pin-
accurate protocol details are specified. The abstract bus
channels have estimated approximate time, which is speci-
fied in the channels by one wait statement per transaction.
Because several channels may be grouped to one abstract
bus channel, two parameters are added to the interface func-
tions of channels: logical address and bus priority. Logical
address distinguishes interface function calls of different PEs
or processes; bus priority determines the bus access sequence
when bus conflict happens. Furthermore, a bus arbiter is in-
serted into the system architecture as a new PE to arbitrate
the bus conflict. Master PEs, slave PEs, and the arbiter call
the functions of different interfaces of the same abstract bus
channels.
Figure 4 illustrates an example of bus-arbitration model

refined from component-assembly model in Figure 3. The
three channels in component-assembly model are encapsu-
lated into an abstract bus channel representing a system bus.
In order to access the new channel, the bus masters (PE1
and PE2 ), the bus slave (PE3 ), and the inserted arbiter
(PE4) use different channel interfaces.
Bus-functional model. It contains time/cycle accurate

communication and approximate-timed computation. Two
types of bus-functional model are specified: time-accurate
model and cycle-accurate model. Time-accurate model spec-
ifies the time constraint of communication, which is deter-
mined by the time diagram of component’s protocol. For
example, in Figure 5(a), the time is limited in the time range
between 25 and 75. Cycle-accurate model can specify the
time in terms of the bus master’s clock cycles, as displayed
in Figure 5(b). The task of refining a time-accurate model
to a cycle-accurate model is called protocol refinement.
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Figure 5: Time/cycle accurate diagram
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Figure 6: The example of bus-functional model

In bus-functional model, the message-passing channels are
replaced by protocol channels. A protocol channel is time/cycle-
accurate and pin-accurate. Inside a protocol channel, wires
of the bus are represented by instantiating corresponding
variables/signals. Data is transferred following the time/cycle
accurate protocol sequence. At its interface, a protocol
channel provides functions for all abstraction bus transac-
tion. A protocol channel is the same as a protocol channel
of [10]. We call an abstract bus channel containing a pro-
tocol channel a detailed bus channel. It should be noted
that in the bus-functional model, it is not necessary to re-
fine all the abstract bus channels into detailed bus chan-
nels. Some abstract bus channels can be refined while others
are untouched. The refinement process from bus-arbitration
model to the bus-functional model is similar to the proto-
col insertion introduced in [10]. Figure 6 illustrates our
bus-functional model.
Cycle-accurate computation model. It contains cycle-

accurate computation and approximate-timed communica-
tion. This model can be generated from the bus-arbitration
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Models Communication Computation Communication PE interface
time time scheme

Specification model no no variable/channel (no PE)
Component-assembly no approximate message- abstract
model passing channel
Bus-transaction model approximate approximate abstract bus channel abstract
Bus-functional time/cycle approximate detailed abstract
model accurate bus channel
Cycle-accurate approximate cycle-accurate abstract bus channel pin-accurate
computation model
Implementation model cycle-accurate cycle-accurate wire pin-accurate

Table 1: Characteristics of different abstraction models
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Figure 7: The example of cycle-accurate computa-
tion model

model. In this model, computation components (PEs) are
pin accurate and execute cycle-accurately. The custom hard-
ware components are modeled at register-transfer level, and
general-purpose processors and DSPs are modeled in terms
of cycle-accurate instruction set architecture. To enable
communication between cycle-accurate PEs and abstract
level interfaces of abstract bus channels, wrappers which
convert data transfer from higher level of abstraction to
lower level abstraction are inserted to bridge the PEs and
the bus interfaces. Similar to the bus-functional model, it
is not necessary to refine all the PEs to the cycle-accurate
level. Some PEs can be refined while others are untouched.
Figure 7 illustrates a cycle-accurate computation model, in
which only PE3 is refined to a time-accurate and pin-accurate
model.
Implementation model. It has both cycle-accurate

communication and cycle-accurate computation. The com-
ponents are defined in terms of their register-transfer or
instruction-set architecture. The implementation model can
be obtained from the bus-functional model or the cycle-
accurate computation model. The implementation model is
the same as the implementation model in [10] and register-
transfer level model in [12]. Figure 8 displays an example
of the implementation model. PE1 and PE2 are micro-
processors while PE3 and PE4 are custom-hardwares.
Table 1 summaries the characteristics of different abstrac-

tion models. Although models indicated by × in Figure 1
can also be specified, they will not be discussed in this paper
because they are not commonly used.
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Figure 8: The example of implementation model

4. SYSTEM DESIGN WITH TLMS

4.1 Design Flow
The gray solid arrow in Figure 1 represents a well-accepted

design flow. It goes through models A, C, and F, which rep-
resents system functionality, abstract system architecture,
and cycle-accurate system implementation respectively. Among
them, bus-arbitration model divides the system flow into two
stages: system design stage and component design stage.
System design stage selects/generates system architecture
and maps the system behavior to that architecture. Compo-
nent design stage refines/systhezises computation and com-
munication components to the cycle accurate level. In gen-
eral, different design flows include different models. For ex-
ample, [10] goes through models A, B, D and F, [9] goes
through models A, C, E and F, while [12] goes through
models A, B, C, D and F.

4.2 Design Domain Definition
In Figure 1, we use arrows to represent a set of tasks that

generate one abstraction model from the previous one. Fig-
ure 9 shows a general design flow with five design domains
for generating model B from model A.

1. Modeling domain. It deals with languages and styles
of writing models. In other words, it deals with seman-
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Figure 9: A general design flow with five domains

tics of different models used for different design tasks,
such as verification, refinement, and synthesis. System
modeling task can be simplified if the part of model
has been predefined as IP and saved in IP library. An
example of modeling is that designers can specify the
Model A using system level design languages such as
SpecC and SystemC.

The modeling styles of TLMs have been briefly dis-
cussed in section 3. Especially, because communi-
cation is completed separated from computation in
TLM, designers can specify different components of
one model at different abstraction levels. Such a model
is called multi-level model. Both SpecC and SystemC
support TLM modeling. The difference of modeling
TLMs using SpecC and SystemC is discussed in [8].

2. Validation domain. Validation asserts that the model
represents the system properties faithfully. The cor-
rectness of the model can be validated by different
methods such as simulation and formal verification.

Validating TLMs can be performed by simulation. For
example, SystemC provides a Verification Standard
[4] to improve the validation capability with standard
APIs for transaction-based verification tasks. On the
other hand, [7] proposes a formal verification approach
that proves the equivalence of models generated through
automatic refinement.

Furthermore, validating components through simulat-
ing multi-level model can dramatically speed up the
validation time. If we model the component which we
want to validate at the cycle-accurate level, and model
the rest of components at the approximate-timed level,
then simulation time can be dramatically shorter than
the time needed for simulating the pure cycle-accurate
model. Both [14] and [15] work in this direction.

3. Refinement domain. Every time a new design detail
is added, the original model must be rewritten or re-
fined in order to include the new design detail. These
design decisions made by the designers or an automat-
ical synthesis tool can be incorporated into the new
model manually or automatically. An automatic re-
finement for the flow which goes through models A, B,
D, and F in Figure 1 can be founded in [10], which
defines four abstraction models and proposes refining
guidelines. In comparison to our defined models, it has
a bus-functional model (called communication model)

which has cycle/pin accurate communication and ab-
stract computation. The same strategy can be easily
applied to the sequence A, B, C, D and F.

The refinement tasks for the flow which goes through
models C, E, and F can be founded in [9], which refines
model C to E by producing software and co-simulation
wrappers for microprocessors and refines model E to
F by producing hardware wrappers among micropro-
cessors.

4. Exploration domain. In order to aid designers to
make better decisions, the different metrics for poten-
tial design decisions should be estimated, based on the
Model A and the availability of buses, channels, RTOS,
ISS, drivers, arbiters, and other SW/HW components
in the estimation library.

Different TLMs require different estimation supports.
We need to estimate approximate computation time
for PEs in model B, approximate communication time
for abstract bus channels in model C, cycle-accurate
communication time for detailed bus channels in model
D, and cycle-accurate computation time for PEs in
model E. For example, [16] proposes an simulation-
based estimation approach.

Furthermore, in order to speed up the simulation and
enlarge the exploration space, we can perform architec-
ture exploration at bus-arbitration model, which has
both approximate-timed computation and approximate-
timed communication. In order to estimate compo-
nents at such an approximate-timed level more accu-
rately, we can first refine the components to the cycle-
accurate level and achieve cycle-accurate estimation
by simulation or some other methods. Then we an-
notate back this estimation to the component models
at approximate-timed level. Back annotation ensures
very fast simulation with cycle-accurate estimation.

5. Synthesis domain. Synthesis algorithms perform
automatical exploration and produce optimal solution
for given constraints and optimization metrics. Syn-
thesis algorithms relieve designers from making deci-
sion decision. However, designers always can override
the algorithms and make their own decision since new
model generation is separated from decision making.

Synthesis algorithms can be divided into several groups
where each group contains algorithms for transforma-
tion of one model to another.

Component assembly (A->B) contains algorithms
for selecting PEs from PE libraries, mapping of
processes in the specification model to the se-
lected PEs, and selecting real time operating sys-
tems (RTOS) for general-purpose processors or
DSPs.

Communication exploration (B->C) contains al-
gorithms for producing the bus-topology, deter-
mining abstract bus protocols, mapping channels
to the buses, assigning bus-accessing priorities to
the processes in PEs, and determining bus arbi-
tration mechanism.

Protocol refinement (C->D) contains algorithms
that determine the pin-accurate and time-accurate
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bus protocols, and refine time-accurate bus pro-
tocols to cycle-accurate bus protocols if required.

PE refinement (D->F) contains algorithms that
synthesize the processes mapped to cycle-accurate
custom hardware to register transfer models, con-
vert the processes mapped to general-purpose pro-
cessors or DSPs to ANSI-C code which is ready
to be compiled and ready to be linked to the cor-
responding cycle-accurate instruction set models.

PE replacement (C->E) contains algorithms that
select lower level PE models which have pin-accurate
interface to replace the higher level PE models,
and vice versa, and insert across level wrappers
to bridge the lower level PE models and bus-
abstraction channels.

Communication synthesis (E->F) contains algo-
rithms that determine the pin-accurate and time-
accurate bus protocols and synthesize channels
and across-level wrappers to cycle-accurate com-
munication coprocessors.

4.3 Design Flow Styles
The style of design flows may depend on the companies

and system design tools. In any case, it becomes easier with
the usage of well-defined aforementioned TLMs with inter-
mixed application of the three design practices mentioned
in section 2.
The initial version of the design can be designed using

top-down approach. During the implementation process, all
the generated models at different levels are stored in the IP
library. After this step we have a predefined platform which
can be used further.
The changes in the design can be inserted by rewriting

of the specification model. At this stage we have a prede-
fined platform which allows us to apply meet-in-the-middle
approach. Furthermore, we have an accurate estimation of
the system behavior obtained from the initial version of the
design. Now, the designers only need to estimate the new
additions of the system behavior. Hence, the component as-
sembly and communication exploration for the new design
can be easily made using the generated platform.
After generating the bus-arbitration model for the new

version, designers can perform computation or communica-
tion component implementation at the component design
stage. For the components that are not updated, designers
can reuse the pre-designed bus-functional model and imple-
mentation model, instead of carrying out refinement from
bus-arbitration model again. Only the updated components
need to be refined.
On the other hand, if designers want to replace an old

IP by an new IP for the designed system, bottom-up design
can be exploited. Starting from cycle-accurate computation
model of the design, designers can replace an old IP and
its wrapper with the new IP and its wrapper in the cycle-
accurate computation model. Then communication synthe-
sis is performed again for the new IP and its wrapper. Start-
ing with cycle-accurate computation model saves us several
synthesis tasks.

5. CONCLUSION
In order to eliminate the some ambiguity with the transac-

tion level model, this paper attempts to define several TLMs

and present the system level design flow and major design
tasks for generation of each model. The major challenge in
front of us is to define the semantics of each model in de-
tail and formally so that algorithms and tools for modeling,
verification, refinement, exploration, and synthesis can be
developed and deployed in industry.
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