
Many-Valued Logic, Partiality, and

Abstraction in Formal Specification

Languages

REINER HÄHNLE, Chalmers University of Technology, School of
Computer Science and Engineering, 41 296 Gothenburg, Sweden,
E-mail: reiner@chalmers.se

Abstract

The purpose of this article is to clarify the role that many-valued logic can or should play in formal
specification of software systems for modeling partiality. We analyse a representative set of specifica-
tion languages. Our findings suggest that many-valued logic is less useful for modeling those aspects
of partiality, for which it is traditionally intended: modeling non-termination and error values. On
the other hand, many-valued logic is emerging as a mainstream tool in abstraction of formal analyses
of various kinds, and we suggest that specification languages feature many-valued abstraction logics.

Keywords: Formal specification, many-valued logic, partial functions, abstraction

1 Introduction

The purpose of this article is to clarify the role that many-valued logic can or should
play in formal specification of software systems,1 which is often mentioned as one of
its major applications.

Many-valued, or, to be more precise, three- and four-valued logics have long been
used to model partiality in formal specification languages [4, 8]. For instance, one of
the oldest and most important three-valued logics, Kleene’s strong connectives [43],
was introduced to model non-terminating recursive functions. Modeling partiality in
formal specification and verification is often mentioned in texts on many-valued logic
as a justification to use multiple truth values [35, 48, 52], although rarely discussed
in detail. Many well-known formal specification languages, including VDM-SL [39],
RSL [30, 31], Z [40], and the recent OCL [59], use many-valued logic or undefined
values to model partiality. There is also a suggestion to include multiple truth values
in Hoare logic [11]. On the other hand, some specification languages do not use
undefined values, notably Larch [34], JML [45], B [1], and Alloy [33].

There is a considerable amount of literature on the subject of partiality in formal
specification. Attempts to classify various approaches to partiality can be found, for
example, in [3, 25, 27, 33].

In this paper we make the following contributions: first, in Section 2 we discern
three fundamentally different aspects of partiality phenomena. Following that, in
Section 3 we summarize the different kinds of many-valued logic that are used for
modeling various kinds of partiality. In the course of this discussion we exhibit a

1We exclude from our discussion the use of many-valued logic for modeling partiality in mathematics, linguistics,

and philosophy.

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–20 0000 c© Oxford University Press

2 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

loss of semantic precision while going from propositional connectives to first-order
quantifiers and we make an explicit connection between the analysis of logic programs
done in the 1980s and three-valued logics with least fixed point operators. Section 4
contains an overview of how many-valued logic is utilized in a fairly representative set
of specification languages. Our analysis entails that many-valuedness seems not the
right tool for modeling partiality in a concise way, at least not in the present state
of affairs. There are no new technical results in this section, but we are not aware of
a similarly complete discussion in the literature. In Section 5 we review two-valued
approaches and argue that at least for the specification of structured software they are
superior to many-valued modeling. Our contribution here is a clarified semantics of
underspecification. We also demonstrate that in behavioral specification this approach
makes guards unnecessary even in most partial definitions. Finally, in Section 6 we
argue for inclusion of abstraction in specification languages as the natural counterpart
to refinement in cases where precision is traded in for lower computational complexity.
In this context one can motivate many-valued logics as a compositional approximation
of concrete or nondeterministic behavior without loss of precision. Section 7 concludes
the paper.

2 Three Aspects of Partiality

A closer look at the usage of partiality that one encounters in software specification
reveals that there are at least three different partiality phenomena. It is important
to analyse and distinguish them carefully:

Non-termination A subcomputation needed for the evaluation of an expression does
not terminate.

Error value A computation has an erroneous result, because it was called with an
illegal value. Prototypical examples are 1/0 and top([]). An illegal value is not
intended to occur, but if it does, one has to handle it. Trying to evaluate 1/0

typically will terminate, but there is no reasonable result value. In the context of
program execution, a runtime error is generated or an exception is thrown.

Nondeterminism A different situation arises with nondeterminism. In contrast to
error values, indeterminate values typically are intentional. An expression like
pop([]) could be an error, but it could just as well be loosely specified : it has
a defined value (for example, []), but it is left to an implementation to fix that
value. (This suggests that error values can also be handled by underspecification,
see Section 5.1.)

Nondeterminism is closely connected with abstraction [21, 22] and refinement [1].
An abstraction of a program or a machine can often be seen as an nondeterministic
concrete execution. Many-valued logic has recently been used to improve the
precision of abstractions [16, 54, 38], see Section 6 below.

3 Many-Valued Logics in Formalization of Partiality

We begin with a brief review of the kind of many-valued logics that are used in the
literature for the purpose of modeling partiality. The basic idea in using three-valued
logic is that atomic propositions may yield a truth value undefined, which we denote

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 3

with the symbol ⊥ in this paper. Three-valued logic now provides the meaning of
formulas whose atomic propositions are three-valued.

3.1 Propositional Logic

Three-valued propositional connectives are represented by disjunction in Table 1.
Other types of connectives can be obtained by duality, residuation, etc. All con-
nectives behave classically on classical truth values. Strong Kleene disjunction [43]
can be defined as the join of the truth order lattice F < ⊥ < T . It is optimistic in
the sense that if any of its arguments determines the result of the operation, then
the other arguments are discarded, whether undefined or not. Kleene’s motivation
was to model possibly non-terminating recursive functions, where one dovetails the
simultaneous computation of both arguments.

Strong Kleene

∨ F ⊥ T

F F ⊥ T
⊥ ⊥ ⊥ T
T T T T

Bochvar

∨ F ⊥ T

F F ⊥ T
⊥ ⊥ ⊥ ⊥
T T ⊥ T

McCarthy

∨ F ⊥ T

F F ⊥ T
⊥ ⊥ ⊥ ⊥
T T T T

Belnap

∨ F ⊥ T

F F F T
⊥ F ⊥ T
T T T T

Table 1. Three-valued matrices for disjunctions used for modeling partiality.

Bochvar’s connectives [10] (also known as Weak Kleene) yield undefined as soon
as any subexpression is undefined. This principle of evaluation is called strict. It is
pessimistic in the sense that an undefined value that occurs anywhere in a computation
compromises the result, no matter what other subcomputations may give.

A sequential disjunction introduced by McCarthy [49] mixes weak and strong Kleene
and represents the idea that if the truth value can be determined after evaluation of the
first argument, then the result is computed without looking at the second argument.
Many programming languages contain operators that exhibit this kind of behavior.

Finally, the result of Belnap’s [6] disjunction when computed over at least one non-
classical argument is the join of the information order semi-lattice, where ⊥ < T ,
⊥ < F . The idea here is to propagate defined values as soon as they appear in a
subcomputation. In the following we denote the least upper bound in this lattice
with t.

All four connectives have rather different justifications that seem to depend on the
application at hand. The situation becomes even more complex, however, when we
look at first-order logic.

3.2 First-Order Logic

Most specification languages are (at least) first-order, so that one can talk about
objects and their relations. It is possible to model many properties in a purely rela-
tional way, but it is cumbersome to write, for example, x = r ∧ div(m, n, r) instead
of simply x = (m/n). Therefore, most specification languages allow complex terms.2

2One notable exception is Alloy [33], which trades off expressivity for simplicity and so avoids the problems

discussed in this subsection.

4 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

While relations simply may not hold or may be empty, and there is no conceivable
use of partially defined constants, complex terms that represent applications of partial
functions may be undefined. Standard first-order logic interpretations are total on all
functions. In order to model partial functions, one has to reconcile the semantics of
functions and predicates, independently of whether three-valued logic is used on the
propositional level or not. Therefore, almost all specification languages employ an
undefined value for terms. We use the same symbol ⊥ as before.3

Most languages define term evaluation to be strict, that is, the value of a term is ⊥
iff the value of any subterm is ⊥. This is even true for several languages that contain
non-strict three-valued connectives (we come back to this issue later). A tricky issue is
the semantics of the equality predicate, notably, when both arguments are undefined.
Again, this is discussed in the examples below.

It is not much disputed to exclude ⊥ from the domain of first-order models during
evaluation of quantifiers. But in the case of three-valued logics, one still has to define
the semantics of quantifiers when the formula in the scope evaluates to undefined at
one or more locations. Unfortunately, it seems difficult to do this in a precise and
simple way. In classical logic it is possible to see a universal (existential) quantifier
as an infinitary conjunction (disjunction). If one generalizes this construction, then
both Bochvar and strong Kleene connectives give rise to three-valued quantifiers.
The first, which we call strict quantifiers, have the drawback that a formula such as
∀m.(m 6= 0→ ∃n.(m = 1/n)) evaluates to ⊥, simply because the existential formula
is undefined at n = 0. On the other hand, quantifiers based on strong Kleene logics
may cause higher effort in formal proofs of statements involving them. For example
the shortest proof theoretic characterization of val(∀x.φ(x)) = ⊥ is “val(φ(c)) = ⊥,
where c is a skolem term, and val(φ(t)) ∈ {F,⊥} for any ground term t” [36], which
yields a duplication of φ as compared to the classical case.

An even more precise modeling would lift the idea behind McCarthy’s connectives
to the first-order level and allow one to specify an evaluation policy that matches
the underlying application. One specifies an order on the semantic domain that
corresponds, for example, to a given loop or iterator traversal. Then, however, we
leave classical first-order logic and enter the realm of generalized quantifiers [60]. This
seems not to be realized in any specification language.

3.3 Computational Logic

In practice, even first-order logic is not sufficient to model interesting properties of
programs, because it is not expressive enough to characterize inductive data struc-
tures. To achieve this, perhaps the most straightforward means is to extend first-order
logic with least fixed points [23]. There are many ways to set this up syntactically. We
use λ abstraction to define predicates p from the domain D of a fixed point variable
n into {F, T} via least fixed points. To define p : D → {F, T}, we form an expression
of the form λn : D.φ(p), where p occurs positively in the scope φ. The least fixed
point formula for p is then written as p⇐ λn : D.φ(p). Evaluation is done as usual by
approximation with ordinal powers, starting with the empty relation as the interpre-

3In many-valued specification languages (for example, RSL, OCL) ⊥ denotes the same value in terms and formulas

alike. This is explained by the fact that software specification languages stand closer to the programming language

tradition than to the logic tradition. In the former, there is no distinction between formulas and terms, one has

simply expressions with different type.

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 5

tation of p. The value of a fixed point formula is computed as the join of the values
at each approximation stage in the Boolean truth lattice F < T .

Example 3.1

A predicate that characterizes even numbers might be defined as follows:

even : int→ {F, T}
even ⇐ λn : int (n = 0∨

n 6= 1 ∧ ∃v : int.(n = v+2 ∧ even(v)))
(3.1)

Evaluating this definition gives val(even(2)) = T , val(even(1)) = F , val(even(0)) = T
as expected for the arguments that can be computed with a finite approximation, but
it also gives val(even(−1)) = F . Hence, non-terminating arguments are conflated
with arguments on which the predicate does not hold.

In order to remedy this situation, one can use three-valued logic. Recursively defined
predicates are declared three-valued, in the example even: int→ {F,⊥, T}. The def-
initions of predicates are left unchanged, but evaluated with three-valued semantics.

This three-valued semantics should be designed in such a way that the behavior on
terminating arguments is unchanged, but the semantic value ⊥ serves as an indicator
for non-termination. In the example, we would like to have val(even(−1)) = ⊥. In
order to guide the search for an appropriate semantics we use the observation that
recursive definitions of predicates such as even can be written in Prolog as follows:

even(0).

even(n) :- n -\- 1,

v is n - 2,

even(v).

Now, the least fixed point of the Prolog program coincides with the semantics of
the fixed point formula (3.1). Three-valued semantics of Prolog with exactly the
properties that we want has been studied in the 1980s [29] Hence, if one transfers the
definitions of three-valued operators from Prolog to first-order logic with least fixed
points, then one obtains strong Kleene semantics for propositional connectives and
for quantifiers, and Belnap semantics for combining the results of the recursive calls.
The idea behind the latter is to fix the truth value of an expression as soon as the
evaluation reaches a defined value.

Unlike in the classical case, approximation with ordinal powers is based on pred-
icates that are ⊥ by default. In the example, val(even(x)) = ⊥ for all x. More
precisely, if κ is an ordinal, then ⇐κ φ denotes κ times unfolding of φ and is defined
as follows (where V is the fixed point variable in φ):

val(⇐κ φ) =

⊥ κ = 0
val(φ{V 7→ val(⇐β φ))} κ = β + 1
⊔

β<κ val(⇐β φ) κ limit ordinal

Based on this we define fixed point semantics as val(⇐ φ) =
⊔

β∈O val(⇐β φ), where
O is the set of all ordinals. This semantics gives the desired result. In Fig. 1 the
beginning of the (infinite) semantic evaluation tree of even(-1) is shown, which illus-
trates how only ⊥ values are propagated to the top-level based on the Belnap/Kleene
semantics.

6 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

∨

F ∧

T T ⇐β

⊥ ...

⊥

· · · ...

⊥

· · ·

Fig. 1. Evaluation tree of even(-1).

In this subsection we showed that it is possible to use a three-valued fixed point logic
to characterize the situation when a subcomputation needed for formula evaluation
does not terminate. The main problem with this approach is that the semantics is
much more difficult to comprehend than the classical “false unless defined” approach,
even though it is more accurate than the latter. We have not seen it realized in any
specification language. Even in logic programming, despite its technical advantages,
three-valued semantics has not caught on.

4 Many-valued Logic and Partiality in Formal Specification

Languages

In Section 3 we described how many-valued logic is used to model various aspects
of partiality in software specification. Pure logic, however, is rarely directly used
in formal specification, because its syntax is not rich enough. Typically, logic-based
specification languages feature built-in concepts for types, standard data structures
(such as numbers, collections, or strings), local definitions, procedures, etc., as well as
syntactic sugar. Even specification languages that have a strong relation to logic are
often based on a set-theoretic semantics. For example, OCL can easily be mapped
into a slight extension of first-order logic [5], the UML standard is based on a set-
theoretic semantics [53]. This notwithstanding, several major specification languages
feature three-valued logic, and all specification languages have to address the various
aspects of partiality. In the rest of this section we analyze the treatment of partiality
in a representative set of specification languages which have in common that they all
feature undefined values and partial functions.

4.1 The Z Notation and its Derivates

The Z notation has been developed by the Oxford Programming Group since the
mid 1970s, based on work by Jean-Raymond Abrial. A definitive version appeared
in 1992 [57], and in 2002 Z was standardized by the ISO [40]. Two other important
specification languages were strongly influenced by Z: the languages B [1], created
also by Abrial, and Alloy [33]. The B language is not a “general purpose” specification
language, but part of an integrated formal development concept. Alloy does not strive
to be as expressive as other specification languages, but is intended to be simple and
efficient. In particular, it is based on the relational fragment of first-order logic.

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 7

Function application is modeled by relational join (in the sense of database theory,
that is, composition of relations), so the value of functions on undefined arguments
is simply the empty set. The complications described in Section 3.2 need not be
addressed then.

All three languages were used in substantial industrial and academic projects. The
Z notation is a large language. It possesses a formal semantics, and the work of
the (mostly academic) Z community had considerable impact on the field of formal
methods.

Z does not use three-valued logic, rather, formulas have classical two-valued se-
mantics. There is an undefined value ⊥ for terms, which are evaluated according
to strict semantics. Predicates containing an undefined subterm have in any case a
defined (classical) truth value, but this value is unknown [57, p40f]. It is not quite
clear whether this means that the semantics of Z is not compositional on expressions
that may contain undefined subterms, or whether evaluation is simply impossible as
soon as a critical expression is encountered, which would put it closer to underspec-
ification (discussed in Section 5.1). There is a predicate dom available that allows
one to ensure definedness of an expression provided that the undefined values can be
characterized in Z. If a formula is supposed to have a unique value, then explicit
qualification of critical expressions is necessary. The disadvantage is that it can bloat
the specification. It also tends to overemphasize exceptional behavior.

4.2 Common Algebraic Specification Language (Casl)

The Common Algebraic Specification Language (Casl) is an informal standard of
the algebraic specification community. Developed since the mid 1990s, a definitive
version appeared recently [7, 19]. The main target of Casl is specification of abstract
software designs and their requirements. It has relatively little impact outside of the
algebraic specification community. Casl is based on clear mathematical concepts and
comes with a formal semantics [19].

Like Z, Casl has classical formula semantics and admits an undefined value for
terms, which are evaluated according to strict semantics. There are, however, two
important differences. The first is that atomic propositions containing an undefined
value are always evaluated to F . The second is an exception to that rule, namely, the
equality predicate which yields T in the case when both arguments are undefined [7,
p48]. This is called strong equality and a consequence of the design decision in Casl

to model partial recursive functions as closely as possible.
This choice of semantics can have unintuitive consequences. The expression 1/0 = 0

evaluates to F as expected, but it is less clear whether 1/0 = 2/0 should evaluate to
T . In general, equations such as 1/n = 2/n do hold for this single value of n, where
both sides are undefined, even if they differ semantically for all other values.

Since propositions containing an undefined value evaluate to F , care must be taken
with predicate definitions. For example, if < is intended to be a total order, then
the totality axiom for < must be restricted to defined arguments. This can be seen,
for example, with 1/0 ≥ 2/0 and 1/0 < 2/0 which evaluate both to F , because they
contain undefined arguments. Strict evaluation stipulates then T for ¬(1/0 < 2/0).
If the totality axiom is not relativized by restricting the arguments of < to defined
values, then one can immediately derive a contradiction. As a consequence, in order

8 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

to avoid unintended overspecification one needs to restrict all predicate definitions to
defined values.

4.3 VDM-SL and RAISE Specification Language (RSL)

The Specification Language of the Vienna Definition Method (VDM-SL), developed
since the early 1970s, was the first major effort to design a specification language
being as systematic and usable as a programming language, and as such was very
influential. Important versions of VDM-SL were issued in [8, 24], and in 1996 it was
standardized by the ISO [39]. A formal semantics is not part of the definition.

The Specification Language of the Rigorous Approach to Industrial Software En-
gineering (RAISE) project is called RSL and can be seen as an attempt to address
certain shortcomings and limitations in VDM-SL. Development started around 1987,
and a definitive version appeared in [30, 31]. Unlike VDM-SL, RSL has a formal
semantics [50], although the manuals feature only an axiomatic semantics in the form
of a collection of proof rules that implicitly determine the derivable specifications.

Together, VDM-SL and RSL constitute over 30 years of experience in designing for-
mal specification languages. Both methods have been extensively applied in industrial
case studies.

For our analysis it is interesting that both languages have an undefined value for
terms and formulas. In the following we concentrate on RSL. There, the undefined
value is called chaos. The value chaos is outside of the normal type system, for
example, it is not a value of the set Bool, but the proof rules implicitly specify how
expressions that contain chaos values are to be evaluated. Propositional connectives
are evaluated according to McCarthy semantics, and terms are evaluated according
to strict semantics. In some cases, it is not easy to find the relevant proof rule, for
example, evaluation of quantifiers on chaos is not obvious from [30].

Like in Z, undefined values are used in RSL to model non-termination as well as
error values, but there is also a third use: unbounded nondeterminism, such as choos-
ing an arbitrary element from an infinite set, results in chaos as well. In contrast
to this, bounded nondeterminism lets the result of an evaluation depend on the eval-
uation strategy of an nondeterministic operator and results in a non-compositional
semantics.

4.4 Object Constraint Language (OCL)

The Object Constraint Language (OCL) is part of the Unified Modeling Language
(UML). As such it has been standardized by the Object Management Group (OMG).
Development of OCL started around 1995 and it was included for the first time in
the UML 1.1 standard [51], the latest version being 2.0 (partly described in [59]).
Since version 2.0, a formal (set theoretic) semantics is part of the OCL standard. The
language is strongly typed.

The main motivation for OCL was the need to make the semantics of UML meta-
models more precise, and the first application was to write constraints for UML meta-
models that would guarantee well-formed UML models as instances of the metamodel.
The recent adoption of Model Driven Architecture (MDA) by the OMG gives OCL
a boost, because it requires a language that is more expressive than the diagram-

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 9

matic parts of UML. Potentially, OCL has higher visibility in mainstream software
development than any other formal specification language before.

Compared to other specification languages, OCL is small. In fact, it was a design
goal that the language is easy to read and to learn even for people not familiar with
formal notations. The concrete syntax allows postfix/dot notation for function appli-
cation as it is familiar from object-oriented programming languages. This convention
is even in place for operations on collections and sets of objects, where an arrow ->

is used instead of a dot. For example, the expression

Set{1,2} -> any(n|P(n))

with type integer selects any number from {1, 2} such that the boolean predicate P
is satisfied. Assume that P (n) is n>3, then according to OCL semantics, the result is
undefined.

Any complex OCL expression can contain undefined values, so the semantics uses
undefined values throughout (like in other specification languages, the difference be-
tween formulas and terms in OCL is merely their type). The rules are as follows:

• All operators with the exception of certain boolean ones are evaluated according to
strict semantics. In particular, equality is undefined whenever one of its arguments
is undefined, therefore “undefined = undefined” yields undefined.

• Boolean connectives or, not, and, implies are evaluated according to strong
Kleene semantics, but not xor, which is strict like =.

• There is an if-then-else operator that is evaluated sequentially (first on the
condition). Hence, “if True then True else undefined” gives True, on the
other hand “if undefined then True else True” gives undefined.

• The semantics of quantifiers is not directly defined in [59] and leaves room for
two interpretations: since quantifiers are not listed as exceptions to strict evalua-
tion, they might be considered as strict; in this case, the value of the expression
“Set{0,1} -> exists(n|1/n=1)” is undefined, which seems quite odd. Another
interpretation rests on the possibility to define quantifiers such as exists(n|p(n))
via the iterate construct:

iterate(n; result: Boolean = False | result or p(n))

This would result in a strong Kleene quantifier semantics and the expression above
then yields True.

Like other specification languages, OCL behaves non-compositionally in the presence
of nondeterminism.4 For example, the result of “(Set0,1 -> any(n|True)) < 1”
can be either True or False.

In summary, OCL’s three-valued semantics is a mix of strict, strong Kleene, and
McCarthy semantics. It is not always clearly motivated or even defined (the whole
discussion of undefined values in [59] comprises half a page). The result of an evalua-
tion is not straightforward to interpret and can be surprising. One can observe that
practitioners who write OCL constraints tend to ignore the many-valued aspects.

4In OCL, all nondeterminism is bound, because only finite objects can be constructed as arguments.

10 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

4.5 Analysis

Let us now attempt an analysis of the preceding case studies. We start by noting:

All formal specification languages that we looked at so far are semantically evaluated

with an explicit undefined value. The main difference was whether this holds for all
expressions or only for terms. We claim that in both cases, explicit undefined values

create more problems than they solve. Let us look at the two possible setups in turn:

Semantics has undefined values for all expressions: we note that three-valued
logic sometimes simplifies the formulation of properties, but the particular log-
ics that are used always complicate the semantics, at least for the languages we
have looked at. In order to explain the validity status of a specification, the user
needs to know non-standard formula semantics. The OCL semantics is even more
complicated than the solution in RSL. As shown in Section 3.2, modeling with
first-order many-valued quantifiers has limitations. In all languages that we in-
vestigated, definitions of three-valued constructs at the very least are in need of
clarification and better motivation. With the current state of affairs, usability is
compromised and, based on our experience with OCL, authors of specifications
tend to ignore many-valuedness. As one practitioner remarks: “All but the most
expert readers will be ill-served by formal expositions which make use of devious
tricks” [3].

Classical formula semantics5,but strict semantics for undefined terms: the
problems of formulas with non-standard semantics are avoided at the price that
one must coerce undefined-valued term semantics into two-valued atomic propo-
sitions. This can be done either with a non-compositional semantics (as in Z) or
with a false-by-default rule (as in Casl). We think that certain aspects of partial-
ity indeed have a non-compositional nature, but would suggest a different setup
detailed in Section 5.2. The false-by-default rule creates many practical problems,
in particular, in connection with strong equality (see Section 4.2). It also involves
a serious loss of precision when moving from the term to the formula level.

In both versions, definedness predicates are needed in practice frequently to avoid
overspecification, and this can bloat specifications.

A further problem of strict term semantics: one tends to use terms for specifying
operators that are close to implementational features, but these are often not
evaluated strictly, as for example, Java’s conditional Boolean operators (&&, etc).
This would suggest sequential rather than strict semantics for terms.

Either version does not achieve the level of precision that is required in practice. This
is because in all languages that we investigated, the undefined value is used undiscern-
ingly for two or even all three different aspects of partiality listed in Section 2. But in
real applications the source of undefinedness matters very much. Of course, one can
introduce different undefined values, but then the semantics becomes even more com-
plex. In addition, none of the languages we checked accommodated many-valuedness
in inductive definitions as suggested in Section 3.3.

In conclusion, many-valuedness as found in contemporary specification languages,
whether only for terms or also for formulas, seems not the right tool for modeling

5Note that in this setup there is a semantical difference between formulas and terms.

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 11

partiality in a simple, yet precise way.6 Whether it is possible to come up with
a useful three-valued semantics that is simple to work with, admittedly is an open
question. Given that so much time and effort have been spent without convincing
results, one may have doubts.

5 Modeling Partiality with Two-Valued Semantics

We criticized many-valued approaches to modeling partiality, but it is clear that par-
tiality must be principally addressed. Next to many-valued logics, partiality has been
modeled with intuitionistic logic, non-monotonic logic, plus a number of dedicated
logics [9]. These approaches are mainly targeted at applications in philosophy, lin-
guistics, and mathematics. Besides, the resulting logics are even more difficult to use
than many-valued logics. Therefore, we turn to an alternative that is very close to
classical logic.

5.1 Underspecification

The Larch family of specification languages [34] avoids using many-valued semantics,
as does the proposal by Gries & Schneider [32] (who trace the idea back to [20]). The
trick is to use underspecification, that is, whenever an “undefined” term such as 1/0
occurs, it is given a definite, but unknown value from its domain.7 All functions are
total just as in classical logic.

Let us now give a semantic characterization of validity in such a logic, which is more
precise than the one in [32]. It is best to phrase it in the framework of first-order
interpreted reasoning. In an interpreted first-order model (D, I) the interpretation of
function and predicate symbols by I is not arbitrary, but underlies certain restrictions.
Perhaps the most common example are equality models, where the equality predicate
is interpreted as equality on D. It is common to have a mix of interpreted symbols

(for arithmetic, set theory, etc.) and free symbols, whose semantics can optionally be
restricted by adding axioms for them. The peculiarity of underspecification is that
some function symbols are at the same time interpreted (on the part of the domain
where they are defined) and free (on the part of the domain where they are not
defined, that is, underspecified).

There are now several possibilities to define the semantics of first-order logic with
underspecification that differ at the exact spot, where we choose to plug in the infor-
mation on when a function is not defined. First, one can equip models with partially

interpreted function symbols, for example, “/” is interpreted as division exactly on
those argument values where it is defined and nothing is stipulated for other values.
Then all other semantic notions, such as truth and validity, can be kept. While sim-
ple, this setup does not allow to characterize formulas that are true in a model up to
underspecified arguments. To do this requires a little more work:

Assume that I(f) : Df → Rf is underspecified on Uf ⊆ Df .8 We consider Uf to be

6We stress that our analysis does not necessarily apply to modeling partiality in natural language or general

mathematics.
7This is exactly the opposite position of Casl [7, p48]: “For instance, the (value of the) term choose(empty)

may be undefined. This is more natural than insisting that choose(empty) has to denote some arbitrary but fixed

element of Elem.”
8In general, Uf could be an undecidable set, but in typical applications it is decidable and can be easily charac-

12 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

part of the signature of f . For example, let I(/) be a total function on int× int that
is underspecified on int× {0} ⊆ int× int. A choice function for f is a total function
cf : Uf → Rf . Let C be a tuple of choice functions cf , one for each function f in the
signature of φ. Now we define truth in a model I of a formula φ with respect to C:
all definitions with the exception of term evaluation are standard and simply ignore
C. The evaluation of terms in I with respect to C is as follows:

valI,C(f(t1, . . . , tn)) =

I(f)(valI,C(t1), . . . , valI,C(tn))
if 〈valI,C(t1), . . . , valI,C(tn)〉 ∈ (Df − Uf)

cf (valI,C(t1), . . . , valI,C(tn)) otherwise

A formula φ is true in a model I if it is true in I with respect to all possible tuples of
choice functions C. All other semantic notions are as usual.

For example, ∃n.(1/0 = n) is true in I(/) from above, because for each possible
choice function c/ it is possible to find a witness element, namely c/(1, 0). On the
other hand, valI,〈c/〉(1/0 = 0), valI,〈c/〉(1/0 = 1), etc., give false for almost all choice

functions c/.
9

Proof theoretically, this logic is very easy to handle. It is sufficient to protect rewrite
rules for underspecified functions with appropriate domain restrictions. For example,
the equation (−x)/y = −(x/y) must be guarded against y being 0, because it is
invalid in this case. One could write, for example, ∀x, y.(y 6= 0→ (−x)/y = −(x/y)).

It is a major advantage of the underspecification approach to partiality that all
classical inference patterns are valid. In particular, the law of excluded middle still
holds. In addition, all axioms involving only total (that is, fully specified) functions
and predicates are valid without any restriction (in contrast to the situation described
at the end of 4.2). For example, the axiom of totality for an ordering predicate ≤ is
exactly as usual, because it contains no underspecified functions.

Mechanical deduction for the resulting logic is as easy as for classical logic, which is
very important for tool support. Underspecification has been implemented in several
systems including [2, 3].

The main critique against underspecification is, ironically, that it can lead to
overspecification in certain situations. It is completely intended that, for example,
∃n.(1/0 = n) is valid (see above). This simply reflects the fact all functions are total,
and it is harmless as such. One must, however, be more careful with recursive defini-
tions. Jones [42] pointed out that, for example, the “even” predicate (3.1) has a de-
fined (although unknown) value for even(−1) and, hence, even(−1) = even(−3) = · · ·.
While this is still harmless, [47] gave a similar example that causes inconsistency by
forcing the interpretation of a predicate at an underspecified argument to be smaller
than any negative integer. In general, recursive definitions must be protected against
undefined arguments in order to avoid unintended overspecification. For example, the
recursive definition of the even predicate (3.1) could be patched as follows:

even ⇐ λn : int (n = 0∨
n 6= 1 ∧ n > 0 ∧ ∃v : int.(n = v+2 ∧ even(v)))

terized by suitable axioms.
9The valuation of underspecified terms is very similar to valuation of formulas with free variables using variable

assignments in the usual way.

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 13

But underspecification constitutes only one half of the strategy used in recent ap-
proaches to behavioral specification of programs.

5.2 Behavioral Specification

In behavioral specification one specifies the behavior of concrete or abstract programs
by stating pre- and postconditions that characterize how they transform program
states (sets of variables).

Behavioral specification allows to protect [47] postconditions by adding a precon-
dition that excludes those states that cause non-termination or undefined values. We
agree with [3] who states that “in our experience, most real-life specifications that
do make essential use of undefined terms are just wrong—they do not say what their
author intended.” In other words, non-termination and error values are mainly un-

intended behavior of implementations. They should be handled as far as possible on
that level. A program that raises a run-time exception for certain inputs should not
be modeled with a specification containing partially defined expressions. Rather, the
specification should characterize the inputs that cause normal, respectively, excep-
tional behavior and, in each case, specify the resulting behavior with totally defined
expressions.

We clarify this idea using the Java Modeling Language (JML), developed since 1997
by Gary Leavens, but in the meantime a community effort. JML is strongly influenced
by Larch [34], and is based on classical logic. Its syntax is derived from side-effect
free Java expressions. A formal semantics is currently not available for JML. The
development is still in flux (recent snapshots are provided in [45, 46]), but there is a
large number of partial implementations in analysis and verification tools [14].

If undefined expressions occur, JML suggests underspecification to deal with them
[45, p58f]. (In contrast to this, an implementation of a JML runtime assertion checker
[17, Sect. 3.2] suggests a rather involved semantics on terms with explicit undefined
values that evaluates the smallest containing Boolean expression either to F or to T ,
depending on the nature of the undefined value.) In JML, different clauses specify
normal and exceptional behavior of programs. The correctness notion of JML includes
that programs must terminate when called in a state that satisfies the precondition.

Example 5.1

The “even” predicate (3.1) specified as a Java method with JML might look like this:

/*@ public normal_behavior

@ requires n>=0;

@ ensures \result == (n div 2 == 0);

@ also

@ public exceptional_behavior

@ requires n<0;

@ signals (IllegalArgumentException); @*/

public boolean even(int n);

Non-termination is simply unintended, incorrect behavior and an implementation is
expected to return an exception for arguments, where “even” is undefined.

The behavioral style of specification is supported by model oriented specification
languages such as Z and VDM-SL, but it can be useful to look at logical languages.

14 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

In program logics that permit actual correctness proofs, one can go one step further.
From a logical point of view behavioral specification languages and Hoare logic can
be seen as an instance of dynamic logic [37]. In dynamic logic, each program p gives
rise to multi-modal formulas [p]φ (respectively, 〈p〉φ) which state that p is partially
(totally) correct with respect to a postcondition φ.

Such a logic was realized in the KeY tool [2] for the target programming language
Java Card [58]. In this setting one may state partial correctness of “even” by

∀n : int. ([even(n);] (result↔ (div(n, 2) = 0))) .

The meaning of this formula is: “for all inputs n, if even(n) terminates normally (with-
out exception), then its result is ’true’ iff div(n, 2) = 0 holds.” The partial correctness
modality makes a claim only for terminating runs. Whenever even(n) terminates n
must be non-negative, so the expression in the postcondition is defined. In this way,
the partial correctness modality automatically protects against underspecification in
the postcondition.

Similarly, the operational semantics of programs embodied in the calculus used
for program verification protect specifications in postconditions against undefined
values. Assume, for example, that during a verification proof the subgoal formula 〈i =
1/i; 〉φ is encountered. Its meaning is “the assignment i = 1/i terminates normally
and afterwards the formula φ holds.” Then the program logic’s calculus rules for
assignment and arithmetic operators generate two new subgoals (simplified):

1. i 6= 0→ φ{i 7→ div(1, i)}

2. i = 0→ 〈throw new ArithmeticException();〉φ

The calculus rule that characterizes the operational semantics of Java’s division op-
erator creates a case distinction according to whether the second argument is null and
throws an exception if this happens to be so. Whether the two subgoals can be proven
depends on the postcondition φ and on whether the exception is caught, but in no
case an undefined logical term is generated. In particular, the expression div(1, i) is
protected by the guard i 6= 0.

The only way that undefined terms can be introduced (if not already present in
the postcondition) is via quantifier elimination and other substitution rules such as
equality. In the few cases, where undefined terms occur, they are handled by under-
specification.

The separation of programs and specifications by modalities or other program logic
constructs has also the advantage that unintentional overspecification [47] is not likely
to occur provided that the specification language is not too expressive.

6 Abstraction

In the previous section we advocated program logics and underspecification for mod-
eling non-termination and error values, in particular, for verification purposes. We
did not discuss nondeterminism, refinement, and abstraction so far. Most model ori-
ented formal specification languages, including Z, B, and VDM-SL, have support for
a (language-specific) refinement of specifications. In principle, one has two specifi-
cations, an abstraction A and an implementation I , plus some kind of conservation

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 15

relation that guarantees that the intended models of A are also models of I . Hence,
the important relation is A |= I . The specification frameworks define necessary and
usually mechanically checkable conditions for this relation to hold.

In abstract interpretation [21], however, the opposite direction of this relation is
of interest. The starting point is a system I with a state space that is too large10

for current verification technology. An abstraction a maps I into a system with less
states in such a way that valid properties of a(I) are still valid for I . The abstraction
a(I) is often expressed in a less expressive language than I is, but not necessarily.
Each proper abstraction loses information in the sense that there are properties valid
in I , but not in a(I). A proper abstraction is thus always an approximation.

In model checking [18] one can only handle finite state spaces, so abstraction is
unavoidable when I has infinitely many states, but even finite-state systems must
often be abstracted in order to become feasible. Until recently, two-valued logics
and models were used in abstract model checking, with simulation as the abstraction
relation. The need for a third value arises when checking non-universal properties
or, more generally, properties expressed in temporal logics closed under negation [12].
Simulation is not sufficient to express this.

In order to model partial state spaces one introduces a third truth value understood
as “unknown” on the level of propositions (many-valued terms do not suffice). A
typical example is the notion of state-wise preservation in model checking [22]: here,
a system I is a finite Kripke structure with propositional signature Σ and states
sI : Σ → {F, T}; properties about I are written in temporal logic. Denote with
‖φ‖I (sI) ∈ {F, T} whether φ holds in sI or not. A canonical abstraction a identifies
those states in I that are indistinguishable, that is, they have the same valuation and
are connected to the same predecessors and successors. This abstraction does not
lose any valid properties, but it is very restrictive. A much more common situation is
that two states s′I , s′′I , are indistinguishable with exception of propositions p1, . . . , pn,
that is, s′I(pi) 6= s′′I (pi) for 1 ≤ i ≤ n and s′I(p) = s′′I (p) on any other p. If one
identifies {s′I , s

′′
I } with sA in the abstract structure A, then some defined value must

be assigned to sA(pi). This is where many-valued logic enters the picture. We may
set sA(pi) = ⊥ for 1 ≤ i ≤ n, and evaluate ‖φ‖A (sA) in strong Kleene logic. As a
consequence, one has ‖φ‖A (sA) = ⊥ whenever there are concrete s′I , s′′I such that
‖φ‖I (s′I) 6= ‖φ‖I (s′′I).

The point is that many-valued logic offers a compositional approximation of con-
crete behavior without loss of precision. This situation is ubiquitous in formal veri-
fication, abstract model checking [12, 16], and static analysis [54]. We illustrate this
with a brief example: consider a finite state machine model of an elevator button.
Each state has boolean values for the variables ButtonPressed, LightOn, and Reset.
The first two are self-explanatory, the third is true iff the button has been reset. In
a typical specification of the button behaviour, once the button is pressed in a re-
set state, the lightOn-set-LightOff-reset sequence is identical whether the button is
pressed again or not. Using three-valued logic, where ⊥ is assigned to ButtonPressed

preserves all essential safety properties as compared to the two-valued formulation,
but results in a considerably smaller state space. This is, because several states that
are identical up to the value of ButtonPressed can be conflated.

10If I is denoted in a first-order language, the state space is generally infinite, but as the number of states of a

system is exponential in the number of its variables, even finite systems are often too large in practice.

16 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

Regarding implementation of many-valued model checking, some authors advocate
many-valued reasoning [15], while others suggest to translate many-valued to two-
valued logic [44]. In either case, the modeling language is many-valued.

In the paper [38] a class of lattice-based logics is suggested for setting up abstrac-
tion with improved precision for static analysis and verification. Here we suggest a
somewhat different class of logics, also motivated by abstraction.

The idea of state-wise preservation sketched above suggests to interpret abstract
truth values as the union of concrete truth values:

Union of
concrete values Abstract value

{T} ←→ T
{F, T} ←→ ⊥
{F} ←→ F

If we order the abstract values as {F} < {F, T} < {T}, then the lattice meet and join
give exactly the intended evaluation of conjunction and disjunction (strong Kleene
logic).

Generalizing this situation we can view abstract truth values as representing a
collection of concrete truth values. Collections are commonly implemented as sets,
multisets, or sequences. Taking sets gives strong Kleene logic as has just been shown.
Now let us go from sets to multisets of truth values. A concrete application scenario
might be as follows: assume one makes experiments, where one can test for the
presence of a negative or of a positive feature. An experiment may not be conclusive.
Assume further that at most p affirmative and n negative experiments are performed.
In the abstract space we want to compute the support for a logical combination of
features. A truth value is now a multiset m : {F, T} →

�
, where m(F) ∈ {0, . . . , n}

and m(T) ∈ {0, . . . , p}. A truth value m1 is smaller than m2 iff m2 has stronger
support for truth than m1 and less support for falsehood. This induces a lattice with
the following join (disjunction):

(m1 tm2)(T) = max{m1(T), m2(T)} (m1 tm2)(F) = min{m1(F), m2(F)} .

The lattice has (p+1)(n+1) elements, the least element ⊥ is ⊥(T) = 0,⊥(F) = n and
the greatest element > is >(T) = p,>(F) = 0. For the special case n = p = 1 and
non-empty multisets, the three-valued abstraction based on set union is obtained.
The special case n = p has been investigated under the name SHn-logic in the
literature [41, 55]. It would also be interesting to follow the connection to the theory
of bilattices [28].

A further refinement can be obtained by taking finite sequences of classical inter-
pretations. Abstract truth values are then from {F, T}n. The componentwise order
gives rise to product logics and has a structure that is isomorphic to the n-valued set
lattice. An abstract truth value can be interpreted as modeling a collection of agents.
This logic was used in [26] for n = 2.

We conclude that a family of many-valued logics can be naturally motivated for ap-
plications in abstraction. These logics are based on certain distributive lattices. This
is important for two reasons: first, it is obvious how to lift these logics to the first-order
case; second, there are particularly efficient automated reasoning techniques available
for propositional [56] and first-order logics [36] based on distributive lattices. There
are also efficient model checking techniques for multi-valued temporal logics [13].

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 17

We add that it is possible to handle even nondeterministic behavior within ab-
straction. Instead of resorting to a non-compositional semantics as in OCL (see
Section 4.4), one could approximate nondeterministic predicates with strong Kleene
logic as pointed out above.

7 Conclusion

In this paper we analysed which role many-valued logic should play in formal speci-
fication of software, which is often mentioned as one of its major applications.

We gave an overview on how many-valued semantics is used in a representative
selection of formal specification languages to model various aspects of partiality, where
we clearly differentiate between non-termination, error values, and non-determinism/
abstraction. In all but one of the investigated specification languages, only non-
termination or error values are addressed. In no case, different truth values are
introduced for different purposes.

Multiple values are essentially used to emulate partial functions within classical
logic, which is based on total functions. We exhibited numerous problems, including
semantical complexity, unintuitive semantics, semantic inadequacy of quantifiers, lack
of justification, danger of overspecification. At the same time, definedness predicates
cannot be avoided.

We argued that at least for the specification of structured software, two-valued
approaches based on underspecification of total functions are superior. To this end,
we clarified the semantics of underspecification in the presence of interpreted function
symbols. We also argued that in behavioral specification with program logics one can
get rid of most partial definitions without explicit protection conditions. We stress
that our analysis does not necessarily apply to modeling partiality in natural language
or general mathematics.

Finally, we suggested that modern specification languages should not only support
refinement, but also its counterpart abstraction, which includes nondeterminism. In
contrast to partially defined functions it is absolutely crucial to have additional truth
values on the level of propositions for modeling conflicting behavior of concrete sys-
tems. In this context one can motivate a family of lattice-based many-valued logics.
Strong Kleene logic is obtained in the most simple case and all logics extend to the
first-order case. We emphasize that many-valued logics offer a compositional approx-
imation of concrete or nondeterministic behavior without loss of precision.

To summarize, we think that many-valued logic is largely obsolete for modeling
those aspects of partiality, where it was traditionally thought be useful; on the other
hand, many-valued logic is emerging as a mainstream tool in formal analyses of various
kinds, and specification languages should feature many-valued abstraction logics.

Acknowledgments

I thank Agata Ciabattoni and Matthias Baaz for the invitation to the ESF Exploratory
Workshop on The Challenge of Semantics, where these ideas were first presented.
Discussions with Martin Giese, Steffen Schlager, and Peter Schmitt were very helpful.
Andreas Roth supplied important references. Wolfgang Ahrendt and Martin Giese
thoroughly read draft versions and made numerous suggestions for improvement. The

18 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

comments of the anonymous reviewers helped to make the paper much clearer.

References

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, August 1996.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H.
Schmitt. The KeY tool: integrating object oriented design and formal verification. Software
and System Modeling, 4(1):32–54, 2005.

[3] R. D. Arthan. Undefinedness in Z: Issues for specification and proof. In William Farmer, Manfred
Kerber, and Michael Kohlhase, editors, Proc. Mechanization of Partial Functions Workshop,
affiliated to CADE-13, New Brunswick, pages 3–12, 1996.

[4] H. Barringer, J.H. Cheng, and C.B. Jones. A logic covering undefinedness in program proofs.
Acta Informatica, 21:251–269, 1984.

[5] Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating the Object Constraint Lan-
guage into first-order predicate logic. In Proceedings, VERIFY, Workshop at Federated Logic
Conferences (FLoC), Copenhagen, Denmark, 2002.

[6] Nuel D. Belnap Jr. A useful four-valued logic. In J. Micheal Dunn and George Epstein, editors,
Modern uses of multiple-valued logic, pages 8–37. Reidel, Dordrecht, 1977.

[7] Michel Bidoit and Peter D. Mosses. Casl User Manual, volume 2900 (IFIP Series) of LNCS.
Springer-Verlag, 2004. With chapters by T. Mossakowski, D. Sannella, and A. Tarlecki.

[8] Dines Bjørner. The Vienna development method (VDM): Software specification and program
synthesis. In M. Paul, E. K. Blum, and S. Takasu, editors, Proc. International Conference
on Mathematical Studies of Information Processing, Kyoto, Japan, volume 75 of LNCS, pages
326–359. Springer-Verlag, August 1978.

[9] Stephen Blamey. Partial logic. In D. M. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 4, pages 261–353. Kluwer, Dordrecht, 2nd edition, 2002.

[10] D.A. Bochvar. On a three-valued logical calculus and its applications to the analysis of the
paradoxes of the classical extended functional calculus (in russian). Matématičeskij Sbornik,
4:287–308, 1939. Translated by Merrie Bergman, History and Philosophy of Logic 2, (1981),
87–112.

[11] Viviana Bono and Manfred Kerber. Crash in program and logic. In Gethin Norman, Marta
Kwiatkowska, and Dimitar Guelev, editors, Proc. AVoCS: Automated Verification of Critical
Systems, School of Computer Science, The University of Birmingham, 2002. Tech Report TR
CSR-02-6.

[12] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal log-
ics. In Nicolas Halbwachs and Doron Peled, editors, Proc. 11th International Computer Aided
Verification Conference, volume 1633 of LNCS, pages 274–287. Springer-Verlag, 1999.

[13] Glenn Bruns and Patrice Godefroid. Model checking with multi-valued logics. In Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
volume 3142 of LNCS, pages 281–293. Springer-Verlag, 2004.

[14] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K. Rus-
tan M. Leino, and Erik Poll. An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer, 2005. Online First.

[15] Marsha Chechik, B. Devereux, and Steve Easterbrook. Implementing a multi-valued symbolic
model checker. In Proc. Fourth European Joint Conferences on Theory and Practice of Soft-
ware (ETAPS): Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Genova, Italy, LNCS. Springer-Verlag, 2001.

[16] Marsha Chechik, Steve Easterbrook, and Victor Petrovykh. Model-checking over multi-valued
logics. In Proc. Formal Methods Europe, Berlin, Germany, LNCS. Springer-Verlag, 2001.

[17] Yoonsik Cheon. A runtime assertion checker for the Java Modeling Language. Technical Report
03-09, Department of Computer Science, Iowa State University, April 2003. The author’s Ph.D.
dissertation. Available from archives.cs.iastate.edu.

Many-Valued Logic, Partiality, and Abstraction in Specification Languages 19

[18] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[19] CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2900 (IFIP Series)
of LNCS. Springer-Verlag, 2004.

[20] Robert L. Constable and Michael J. O’Donnell. A Programming Logic, with an Introduction to
the PL/CV Verifier. Winthrop Publishers, 1978.

[21] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth ACM Symposium
on Principles of Programming Language, Los Angeles, pages 238–252. ACM Press, New York,
January 1977.

[22] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2):253–291, March 1997.

[23] Anuj Dawar and Yuri Gurevich. Fixed point logics. The Bulletin of Symbolic Logic, 8(1):65–88,
2002.

[24] John Dawes. The VDM-SL Reference Guide. Pitman, 1991.

[25] Marie Duž́ı. Do we have to deal with partiality? Miscellania Logica, Tom V:45–76, 2003.

[26] Steve Easterbrook and Marsha Chechik. A framework for multi-valued reasoning over incon-
sistent viewpoints. In Proc. 23rd International Conference on Software Engineering, pages
411–420. IEEE Computer Society Press, May 2001.

[27] William M. Farmer. A partial functions version of Church’s simple theory of types. The Journal
of Symbolic Logic, 55(3):1269–1291, September 1990.

[28] Melvin Fitting. Bilattices are nice things. In Proc. PhiLog Conference on Self-Reference, Copen-
hagen. The Danish Network for Philosophical Logic and Its Applications, 2002.

[29] Melvin C. Fitting. A Kripke-Kleene semantics for logic programming. Journal of Logic Pro-
gramming, 4:295–312, 1985.

[30] C. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The Raise
Development Method. Prentice Hall, London, 1995.

[31] Chris George, Peter Haff, Klaus Havelund, Anne E. Haxthausen, Robert Milne, Claus Bendix
Nielson, Søren Prehn, and Kim Ritter Wagner. The Raise Specification Language. Prentice
Hall, New York, 1992.

[32] David Gries and Fred B. Schneider. Avoiding the undefined by underspecification. In Jan van
Leeuwen, editor, Computer Science Today: Recent Trends and Developments, volume 1000 of
Lecture Notes in Computer Science, pages 366–373. Springer-Verlag, New York, NY, 1995.

[33] Software Design Group. Micromodels of Software: Lightweight Modelling and Analysis with
Alloy, February 2002. Draft.

[34] John V. Guttag, James J. Horning, S. J. Garland, K. D. Jones, A. Modet, and Jeanette M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag, New York, 1993.

[35] Reiner Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International
Series of Monographs on Computer Science. Oxford University Press, 1994.

[36] Reiner Hähnle. Commodious axiomatization of quantifiers in multiple-valued logic. Studia
Logica, 61(1):101–121, 1998. Special Issue on Many-Valued Logics, their Proof Theory and
Algebras.

[37] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, October 2000.

[38] Michael Huth and Shekhar Pradhan. Consistent partial model checking. In Proc. Workshop
Domains VI, September 16–19, 2002, Birmingham, volume 73, to appear, 2004.

[39] International Organisation for Standardization. Information technology—Programming lan-
guages, their environments and system software interfaces—Vienna Development Method—
Specification Language—Part 1: Base language, December 1996. ISO/IEC 13817-1.

[40] International Organisation for Standardization. Information technology—Z Formal Specification
Notation—Syntax, Type System and Semantics, 2000. ISO/IEC 13568:2002.

[41] Luisa Iturrioz. Operators on symmetrical Heyting algebras. In T. Traczyk, editor, Universal
Algebra and Applications, volume 9 of Banach Center Publications, pages 289–303. PWN–Polish
Scientific Publishers, 1982.

20 Many-Valued Logic, Partiality, and Abstraction in Specification Languages

[42] Cliff B. Jones. Partial functions and logics: A warning. Information Processing Letters, 54(2):65–
67, April 1995.

[43] S.C. Kleene. On a notation for ordinal numbers. Journal of Symbolic Logic, 3:150–155, 1938.

[44] Beata Konikowska and Wojciech Penczek. Model-checking for multi-valued computation tree
logics. In Melvin Fitting and Ewa Or lowska, editors, Beyond Two: Theory and Applications of
Multiple-Valued Logic, volume 114 of Studies in Fuzziness and Soft Computing, pages 193–210.
Physica-Verlag, 2003.

[45] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java. Technical Report 98-06y, Iowa State University,
Department of Computer Science, 2003. Revised June 2004.

[46] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, and Joseph
Kiniry. JML Reference Manual, November 2004. Draft revision 1.98.

[47] Gary T. Leavens and Jeannette M. Wing. Protective interface specifications. Formal Aspects of
Computing, 10(1):59–75, 1998.

[48] Grzegorz Malinowski. Many-Valued Logics, volume 25 of Oxford Logic Guides. Oxford University
Press, 1993.

[49] John McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–69. North Hol-
land, 1963.

[50] Robert Milne. Semantic foundations of RSL. Technical Report RAISE/STC/REM/11,
STC/STL, Harlow, UK, March 1990.

[51] Object Modeling Group. Object Constraint Language Specification, version 1.1, September
1997.

[52] Giovanni Panti. Multi-valued logics. In Dov Gabbay and Philippe Smets, editors, Handbook
of Defeasible Reasoning and Uncertainty Management Systems, volume 1: Quantified Repre-
sentation of Uncertainty and Imprecision, chapter 2, pages 25–74. Kluwer, Dordrecht, October
1998.

[53] Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD
thesis, Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.

[54] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3):217–298, May 2002.

[55] Viorica Sofronie-Stokkermans. Priestley duality for SHn-algebras and applications to the study of
Kripke-style models for SHn-logics. Multiple-Valued Logic. An International Journal, 5(4):281–
305, 2000.

[56] Viorica Sofronie-Stokkermans. Automated theorem proving by resolution for finitely-valued

logics based on distributive lattices with operators. Multiple-Valued Logic, 6(3–4):289–344, 2001.

[57] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in
Computer Science, 2nd edition, 1992.

[58] Sun Microsystems, Inc., Palo Alto/CA. Java Card 2.0 Language Subset and Virtual Machine
Specification, October 1997.

[59] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your Models Ready
for MDA. Object Technology Series. Addison-Wesley, Reading/MA, August 2003.

[60] Dag Westerst̊ahl. Quantifiers in formal and natural languages. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, Vol. IV: Topics in the Philosophy of Language,
chapter 1, pages 1–131. Reidel, Dordrecht, 1989.

Received June 13, 2005.

