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Circuit designers are usually able to think rrllore easiTy about thle circuit behavior of capacitors than
inductors. Inductance is the dual of capacitance; exchange v and i in capacitor equations and they apply
to inductors. This dualism can be extended to circuit laws too, and the three most basic laws of circuits
have magnetic counterparts. We will derive and examine them.

Electric and Magnetic Dualism
We learn early that the voltage across a capacitor cannot change instantaneously because it takes time for
current to change the charge and hence the voltage. The dual for inductors is that the current in an
inductor cannot change instantaneously because it takes time for the voltage across an inductor to change
it. The v-i relationship for a capacitor is:
i=C—
dt
whereas for an inductor, v and i are interchanged, resulting in:
V= Lﬂ
dt
The basic equations relating C and L to geometric properties also have an analog for resistance or, rather,
its inverse, conductance, G. The three equations are:

c= A
I

g

6=

I
where, £is permitivity (or dielectric constant), 1 is permeability, ois conductivity, A is areaand | is
length or thickness. For the three basic circuit elements, the form of their equations is identical, differing
only in the material parameters: &, w4, or o. The L quantity is permeance, or per-turn-square inductance,
the inductance of a single turn. There is no capacitance analog for this aspect of inductors, and the full
inductance equation is:

L=N20
No analogy exists in capacitors because electric fields do not couple as magnetic fields do. Except for
fringing, electric field lines are constrained to stay largely between capacitor plates. But magnetic fields

form closed magnetic loops instead and any closed conductive loop within the magnetic-field loop is
coupled to it.

Some analogous electric-magnetic circuit quantities are:

Electric Circuit Quantity Magnetic Circuit Quantity
Current, i Magnetic flux, ¢

Voltage, v "MMF", N4/

Conductance, G Permeance, L
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The magnetic flux is like current in that it "flows" in closed loops through materials of high permeability
(such as iron or ferrite) just as current flows through materials of high conductivity (conductors.) MMF,
which historically stood for "magnetomotive force,"” is not a force but a magnetic quantity analogous to
voltage. (I think of it instead as "magnetomotive field" potential.) A current flowing through N loops or
turns of a coil produces a "scalar magnetic potential™ (the correct name for this quantity) that is related to
the flux by the analog of Ohm's Law — a magnetic Ohm's Law (MQL):

@= LI(Ni) MQL

MQL is analogous to Ohm's Law when expressed using conductance:
| =G~ QL

N A/can be viewed as the electric-circuit current, i, referred to the magnetic circuit, where it is N times
stronger. N A/causes flux to flow in a closed magnetic loop, and the amount depends on the per-turn-
squared inductance, L, around the loop.

MQL can also be expressed from the point of view of the electric circuit, as electric terminal quantities,
where @is referred to the electric circuit, by factor N, as the flux linkage, A:

A=NDp=(N°M) G=L0
where, inductance, L, is the permeance times the turns squared. A and charge, q, are both electric circuit
quantities, and each relates electrically to L or C through the relations:

A=LWU

q=C«¥

Neither A nor g are magnetic circuit quantities (though A is related to inductance) and are quantities used
in electric circuit analysis. A is referred to the magnetic circuit (using referral factor N) as ¢, just as
current is also referred using N. When both quantities are combined in inductance:

A N 2% _ N2

i (NO)/N NG

Magnetic Kirchoff’s Laws
Kirchoff’s current and voltage laws also have magnetic analogs. The outline of their derivations will be
given here. Let's start with the analog of Kirchoff’s current law (KCL). For electric circuits, KCL is: the
sum of the currents of a node is zero. Or, mathematically expressed:
>i=0 KCL
node

In other words, nodes do not accumulate charge; what comes in must go out. To derive the magnetic
analog (MKCL), we begin with one of the four basic fields equations of Maxwell, Gauss's Law:
fsBOhda =0

where, B is the magnetic-field density vector (in units of VI&/m?) followed by a unit normal vector and
integrated over the area, a, of the closed surface.

For those not familiar with vector calculus this says that a closed surface (imagine a flat cylinder) with a
magnetic field of flux density B going in one end of it and coming out the other end (perpendicular to the
surface) must be zero. In other words, the amount of B-field coming out must equal the amount going in
to the closed surface somewhere else. Like nodes of a circuit, the closed surface "node™ must have as
much flux coming out of it downstream from the direction of flux flow as goes in upstream.



When the geometry of the magnetic circuit is simple — and for many practical magnetic problems, it is —
the above equation reduces to:
YBA=Y@=YL[Ni)=0 MKCL

||n0de||

The magnetic flux:
¢=BLA

The flux density, B, over cross-sectional area A, is the total flux through that area. These expressions for
magnetic flux must sum to zero. In other words flux, like current, can only exist along closed paths. That
is why most magnetic cores have closed paths for the flux, such as E-cores, pot cores, or toroids. Open
cores, such as drum cores, contain the flux over only part of the magnetic circuit, which is then
completed through air or whatever ambient medium the core is immersed in.

Kirchoff’s voltage law states that the sum of voltages around a closed loop is zero. By convention,
voltage drops (+ to —) are positive and sources or rises (- to +) are negative:

>v=0 KVL
loop

The magnetic analog is derived from the relevant part of another of Maxwell's equations, Ampere's Law
(in part):
fc H [l = [ J Ohda = i

To envision this equation, imagine a closed loop enclosing a planar surface, like a circus hoop, through
which magnetic flux flows. Around the periphery of the hoop itself flows current, i. The equation can be
simplified for simpler geometry to:
SHO=NO
loop
where, N accounts for multiple loops in series with current i flowing around them. H is the magnetic field
intensity or strength, in units of A/m, and I is the circumference of the loop.

The magnetic field quantities B and H are related by the permeability:
B = uH

Applying this materials relation to the above equation:

B B[A ®
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And by MQL.:
YonG
L

Because the sum of the magnetic Nldrops around the loop must equal the source on the right side of the
equation. Therefore:

YNO=0 MKVL

loop



where, Niilon the right is included as a source. In practice, this means that all of the wire loops through
which the magnetic flux loop travels have a net N[ilof zero. For example, if a transformer has a 10-turn
primary and a 5-turn secondary, and if 1 A is flowing in the primary, then 2 A must flow in the secondary
in a direction that cancels the Niof the primary. If the secondary winding is left open this does not
happen. But then, the condition for MKVL is that the current loops be closed loops. If closed, as in a
transformer and not a coupled inductor, then MKVL can be used to calculate the resulting currents, and is
the basis for the familiar transformer turns-ratio equations. For turns ratio:

N
n=_P
NS
then,
v i
n= _p = _S
Application

The magnetic form of the basic circuit laws is useful when designing magnetic devices. When they are
used as black-box components, the behavioral equations for transformers and inductors derived from
them can be used instead, and they are not needed. However, a good designer has some insight into what
is "in the box."

In transformer design, the primary (the source winding) of N, turns and current i, creates a B-field in the
magnetic core. Ferrite and powdered-iron core databooks give, for each core, the effective values of flux-
path cross-sectional area, A, and path length, I. They also give relative permeability, u (1= o, where
Lo 00.4MtpH/m [01.26 pH/m) and alternatively, the more useful quantity, permeance, L, for each air-gap
width. Additionally, saturation values of B in the form of magnetic power-loss curves, are given. From
this data and MQL, the number of turns can be calculated for a given loss from:
g = L C(N )

A
where, B is the maximum B value. Core size affects A and L values while maximum B values depend on
the core material. N is also a design parameter, which can be set for a maximum B at maximum i.

MKVL is applied when a core has an air gap. The gap has a different w (for air, [J ) than the core
material. MKVL is applied by summing the source N[iIfrom the driven winding and the magnetic
potential drops around the flux loop. These drops are in the core and the air gap. Each "conducts" the
same flux (analog of current) but with different permeance. Permeance, L, is the analog of conductance;
1/L is reluctance, the analog of resistance. Then applying MKVL:

NO=[—2 +_ 2
I—core Lgap

E-cores have three "legs". Nllis applied to the center leg, and two flux loops, one per outer leg, result in
two magnetic circuits. MKVL can be applied to each circuit, with common source.

The three basic magnetic circuits laws are the foundation for analysis and design of magnetic circuits.
The examples given here are but a start. A more complete treatment of the subject can be found in the
beginning chapters of most motor textbooks.
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