
Preparing Windows Installer 
Installations for Deployment

by Corwin Oakman

©2005 Altiris Inc. All rights reserved.

 



ABSTRACT

www.altiris.com

This white paper discusses repackaging legacy .EXE installations into Windows
Installer (.MSI) format and customizing .MSI installations using transforms. 
It includes useful techniques for determining if installations were authored 
with Windows Installer, and offers suggestions for working with non-standard
.MSIs, as well as building transform (.MST) files to facilitate integration into a
managed environment. The intended audience is IT administrators who have 
a good working knowledge of packaging processes, Windows Installer, and Wise
Package Studio®.



THE CASE FOR 
WINDOWS INSTALLER
TRANSFORM FILES

www.altiris.com

Packaging applications into .MSI format offers many advantages to organiza-
tions including self-healing, rollback and install-on-demand. But often it is difficult
to know if an installation is already in .MSI format and how to proceed with it.
For instance, you may have an .EXE-based (legacy) installation that needs to be
converted into .MSI format. In this case, Wise Package Studio’s SetupCapture
can be used to repackage the application setup into a manageable and 
distributable .MSI package. 

In other cases, you may have an installation that is already in .MSI format, but
requires customization to satisfy your organization’s requirements. In this case,
the .MSI is not a candidate for repackaging with SetupCapture; rather it should
be “transformed” into an .MST file. SetupCapture can customize the installation
by creating a silent installation or eliminating applications for specific depart-
ments in your organization, for example. 

Why can’t .MSI files be repackaged? In some cases, repackaging a Windows
Installer installation can lead to application failure. Some applications, such as
Microsoft® Office 2000, have hard-coded product IDs that only work with the
original Office setup routine. The repackaged .MSI does not have the same 
configuration information, such as Product Code and Component IDs, as the
original Microsoft Office .MSI. If you attempt to run any of the Microsoft Office
tools, you’ll get an error message similar to “This application must be installed 
in order to run.” 

Another reason that .MSI files should not be repackaged is because the
Windows Installer patch and upgrade technology relies on Package IDs and
Product Codes. If you repackage an .MSI, the Package ID and Product Code
will change. When the vendor releases a patch, or .MSP, for the product, the
patch may not get applied in cases where the Package ID or Product Code of
the vendor’s original installation is not found. 

A better approach to customizing .MSIs is to create a transform file. Wise
Package Studio’s InstallTailor creates transforms by allowing you to choose
installation options and generate an .MST file based on your choices. The
process is quick and uses the vendor’s installation, which makes the installation
process more reliable. 



HOW TO DETERMINE IF
YOUR APPLICATION IS 
IN .MSI FORMAT

www.altiris.com

Every application that will be prepared for deployment should be tested to
ensure the quality of the software and the compatibility with your environment.
This initial testing phase is an opportune time to determine if the installation is
Windows Installer based. If so, you can create a transform of the .MSI using
Wise Package Studio’s InstallTailor. If the installation is EXE-based, you can use
Wise Package Studio’s SetupCapture to prepare the application.

If the vendor’s installation media such as a CD or a download file includes an
.MSI, you can use that file to generate your transform. You may need to include
.CAB files from the media as well. Some vendor CDs that include .MSI files use
external, uncompressed source files. You will notice directories on the CD like
“Program Files” or “PFiles”, and “Windows”. You should copy those directories
off the CD and keep them with your .MSI at all times, otherwise the MSI will not
install without them. Another option is to perform an Administrative Installation
which will extract the application’s source files from the .MSI. 

Is it Really an .MSI? 
Often, the vendor media will not include an .MSI, but that doesn’t mean the
installation is not Windows Installer based. After you install the application, use
the Registry Editor (regedit.exe) to view
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall.
The Add/Remove Programs Control Panel is driven by these entries. Legacy, or
non-.MSI applications, will have names listed as sub-keys of Uninstall. If your
application is listed with a plain text name, it can be repackaged. 

Windows Installer based installations will list their product code GUID as a 
sub-key of Uninstall. You can easily view the contents of these GUID entries 
to see if your application has placed an uninstall entry there. If you find your
application’s name listed as a GUID, check the “Uninstall String” value. If it 
references MSIEXEC.EXE or an .MSI file of some kind, you are dealing with 
an .MSI installation, which means you can create a transform. 

In this example, the installation is a legacy or non-.MSI application because the value in the registry’s
UninstallString lists the name of the application



FINDING THE MISSING .MSI

www.altiris.com

In this example, the file is a true .MSI because the UninstallString references MSIEXEC.EXE. 

As stated in the previous section, just because you don’t see an .MSI on the
vendor’s media doesn’t mean the installation is not an .MSI. Most installation-
building software has the ability to “wrap” the .MSI within a setup executable.
This is useful for pre-installing runtimes like Windows Installer or the Microsoft
.NET Framework. Since administrators control the state of the desktops in their
environment, we do not need to pre-install runtimes.

If you have already verified that you have a Windows Installer installation, 
you can easily locate the source installation file. First, restart the vendor’s 
installation. When the first dialog comes up, do not proceed with the installation.
Leave the installation open in the background and perform a search on the
machine for “*.MSI”. The .MSI that the vendor is using will have been extracted
to a temporary location such as the %TEMP% folder or another location. Copy
that .MSI and any associated .CAB files to a new folder. You now have an .MSI
file with which you can build an .MST file.



INTERMEDIATE
TRANSFORM CREATION
TECHNIQUES AND
TROUBLESHOOTING

www.altiris.com

If the .MSI you are customizing was extracted using the above techniques, 
and you experience problems running the .MSI or running InstallTailor, the 
vendor may have placed a check to verify the installation was launched from the
setup executable. Sometimes these checks are superfluous as the installation is
verifying the runtime pre-install has occurred. 

It takes a bit of detective work to determine what is stopping the .MSI from
installing without the executable. Look for custom actions or launch conditions
that seem to have any tie-in with preventing the .MSI from installing. Launch
conditions will be easier to find because the message displayed when the 
condition fails will match the error received when attempting to install the .MSI.
Custom actions will be harder to trace. Look for custom actions with names 
that would hint toward setup executable checking. Trial and error will sometimes
be necessary.



ADVANCED TRANSFORM
CREATION TECHNIQUES

www.altiris.com

.MSI files from some vendors are reliant on a setup executable for other 
reasons. Some .MSI files contain no internal dialogs and update the executable
based dialogs with custom actions. These custom actions will fail if the setup
executable is not running. There is no simple solution to this. However, there are
known custom actions to remove from .MSI files exhibiting this behavior.
Removing those custom actions will give you a much greater chance of 
successfully freeing the .MSI from its setup executable requirements. 
Exercise caution in removing more than the actions listed below, as you could
inadvertently remove a custom action that is required to install or configure 
parts of the application.

The custom actions are: 
• ISVerifyScriptingRuntime
• ISStartup
• OnCheckSilentInstall
• OnGeneratingMSIScript
• OnMoving
• OnFeaturesInstalling
• OnInstallFilesActionBefore
• OnInstallFilesActionAfter
• OnFeaturesInstalled
• OnMoved
• OnGeneratedMSIScript
• ISRebootPatchHandler

Often the vendor’s setup executable will install a scripting runtime before 
running these .MSI files. The runtime facilitates running the custom actions 
listed above, as well as other custom actions in the .MSI. This runtime must be
present on the target machine before installing these .MSI files.

Sometimes the setup executable will pass properties and installation options to
the .MSI using command line parameters. These properties can be discovered
and used in your .MST file. To facilitate this, enable Windows Installer verbose
logging to view the command line in a log file. Enable the Logging policy in the
Group Policy editor under Computer Configuration > Administrative Templates >
Windows Components > Windows Installer to activate Windows Installer logging.
Set the Logging value to iwearucmpvo. The logging policy will create a log file
for any Windows Installer process that runs on the computer. The log files are
stored in the Temp folder, usually %TEMP%, and use the MSI?????.log naming
convention.



www.altiris.com

Enable logging in the Group Policy Editor in order to discover properties and installation options that
the setup executable is passing to the .MSI.

After running the vendor’s installation, find the log file in the Temp folder. It should be
the .LOG file with the most recent date. Open the log file, and search for “Command
Line.” The first result will be near the top of the log, and will contain any options
passed on the command line. The command line will always contain the properties
CURRENTDIRECTORY, CLIENTUILEVEL, and CLIENTPROCESSID. 

An Example Command Line entry from a log file:
MSI (c) (08:B8) [14:58:45:027]: Command Line: ADDLOCAL=ALL
CURRENTDIRECTORY=C:\Testing CLIENTUILEVEL=0 CLIENTPROCESSID=2568

These properties should not be included in your transform. Any other property listed
on the command line can be used.



APPLYING THE
TRANSFORM

www.altiris.com

Once developed, the .MST file must be deployed with the .MSI file. The 
recommended method is to use the Windows Installer TRANSFORMS property.
You could also use the command line switch, /T, but there have been documented
problems using that switch in some instances. 

Example command line:
Msiexec.exe /I “\\path\File.MSI” TRANSFORMS=”\\path\File.MST” /QB

/Q, /QB, or /QN will be necessary to deploy the .MSI if there are no dialogs 
to display in the User Interface sequence. For more information about command
line switches, see the ‘Command Line Options’ help topic in the Windows 
Installer SDK. 



SUMMARY

www.altiris.com

Almost any .MSI file can be transformed and run without its setup executable.
Following the guidelines above and gaining experience with non-standard .MSI
files will make the process of creating a transform much easier.

For further reading about transforms, and other topics introduced in this document,
please see the following Windows Installer SDK topics:

• About Transforms
• Applying Transforms
• TRANSFORMS Property
• Command Line Options
• Administrative Installation


