
MMBase: An open-source
content management system

&

J. Becking

S. Course

G. van Enk

H.T. Hangyi

J.J.M. Lahaye

D. Ockeloen

R. Peters

H. Rosbergen

R. van Wendel de Joode

MMBase is an open-source content management system (CMS) with portal

functionality, originally created by the Dutch public broadcaster VPRO. MMBase, which

is particularly suited for multimedia environments, is based on the concept of

presenting objects on different channels. The system is highly platform-independent

and has adopted standards such as Javae, XML (Extensible Markup Language), J2EEe

(Javae 2 Enterprise Edition) and JDBCe. Initially used only by public broadcasters,

MMBase has been adopted by a growing number of organizations. This paper presents

the history of MMBase, introduces its community of users, and discusses its

architecture, focusing on the innovative technical process underlying MMBase and its

organizational structure. We identify and discuss three challenges facing the user

community: the need to motivate and organize both users and developers to

contribute to the development of MMBase, the need to make the software modular,

and the need for more and better documentation of the MMBase core and its

component packages.

MMBase is an open-source content management

system (CMS), maintained and improved by the

MMBase community and initially developed at

VPRO, a Dutch public broadcasting organization.

MMBase is a widely adopted open-source solution in

the Netherlands. Its growing user base includes a

number of well-known and highly respected orga-

nizations: Dutch government departments, the city

of Amsterdam, and broadcasters like VPRO, EO

(Evangelical Broadcasting Organization), Radio 538,

Dutch Internet organizations for education, and

many cultural organizations. Recently, there has

been a growing interest in MMBase from markets

outside of the Netherlands: its adoption by Vodafone

is probably the best example.

CMSes typically separate the concerns of content,

application logic, and visual make-up.
1
In addition

to these characteristics, MMBase shares a number of

characteristics with enterprise content management

(ECM) systems. An ECM system is different from

traditional CMSes in that it ‘‘integrate[s] information

(content) from different sources, form[s] it into a

collection (compound content), provide[s] it to

users and applications, and add[s] value to the

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 381

represented information.’’
2
ECM systems provide

the same functionality as traditional content man-

agement systems, but add two distinct features:

& MMBase is continuously
evolving &

content infrastructure, which allows solution appli-

cations to be built without a large system integration

effort, and content integration, which consolidates

content from various sources to make it easily

accessible to a network of users.
2

The combination of a number of characteristics

makes MMBase unique. MMBase is focused on

structured content. This represents a difference

when compared to a CMS like IBM Content

Manager. The latter has the ability to ‘‘manage

nontraditional, heterogeneous, unstructured data.’’
3

MMBase lacks such functionality and must be

combined with other systems to store and retrieve

other types of data and content. Therefore, MMBase

should be characterized as a CMS and not as an ECM

system.

MMBase is platform- and database-independent.

Many of the bigger companies are highly heteroge-

neous: they have adopted a wide variety of data-

bases and hardware platforms. MMBase supports

this heterogeneity, as it can be used on most of the

available platforms (UNIX**, Linux**, and Micro-

soft Windows**). Platform independence in

MMBase is achieved through Java**,
4
and it can be

used with many commonly used databases (e.g.,

Informix**, DB2*, Oracle**, PostgreSQL**,

MySQL**). Heterogeneity is a significant advantage,

as it allows companies to use MMBase while

maintaining low operating costs by focusing on a

single operating system and database.

MMBase strictly upholds the multitier architecture

of Java’s enterprise edition. Because data, applica-

tion, structure, and presentation are conceptually

separated, MMBase provides modular and replace-

able implementations (i.e., printing, mobile, mail,

flash). MMBase is object-oriented. Content in

MMBase consists of objects, which are described in

XML (Extensible Markup Language) and Java and

are presented in an ‘‘object cloud.’’ This has the

advantage that content has to be stored only once.

However, to many smaller organizations this has the

disadvantage that every form of content must be

described as a component and needs to be stored

according to similar standards. This requires initial

investment of time and effort upon storing the

content. These costs can exceed the benefits,

especially in smaller organizations where the com-

plexities and heterogeneity of content are relatively

low.

MMBase is licensed as an open-source software

project. The license with which MMBase is pro-

tected is the Mozilla** Public License (MPL). This

licensing scheme has several advantages. There is

no licensing fee that needs to be paid for MMBase.

This does not necessarily mean that MMBase is less

expensive than other CMSes, as this depends on the

total cost of ownership (TCO). However, it does

make MMBase attractive, as the licensing costs are

very clearly visible and quantifiable. In addition,

compared to the GPL (General Public License), the

MPL poses less risk to corporate users. One of the

important characteristics of the MPL, as compared

to the GPL, is that it is ‘‘non-viral’’; that is, software

integrated with the MPL does not need to be licensed

under the MPL upon distribution.

MMBase is compliant with the J2EE** (Java 2

Enterprise Edition) platform. Currently, the market

is dominated by two standards, namely .NET** and

J2EE.
5
Although, it is not clear in which direction

the market as a whole will move, it is clear that

these are currently the two most likely standards to

prevail in the future, and their dominance is most

likely to increase.

MMBase supports the concept of multichanneling.

Strict separation between content and layout and the

object-oriented structure facilitate the presentation

of content on various media channels. This charac-

teristic is partly due to the origin of MMBase in the

broadcasting industry. This industry has very

stringent requirements regarding the management

of content and its presentation.
6
MMBase does not

itself store or offer streaming-media facilities.

Streaming media are addressed by storing a refer-

ence to a resource on dedicated streaming servers.

The MMBase media project offers a way to include

information about the streams with these references,

such as bandwidth and type, allowing for filtering of

streams by user preference, and showing fragments

of a stored stream (e.g., ‘‘the first 6 minutes’’).

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005382

MMBase has proved to be very scalable. Some of the

organizations that have adopted MMBase manage

millions of objects in various formats, such as video,

audio, and plain-text documents. An example is

VPRO, which currently has eight million objects

stored.

MMBase is continuously evolving and gaining in

functionality. Partly due to the fact that the software

is open source, new functionality is constantly

added. Everyone in the community is welcome and

encouraged to contribute new add-ons to the

existing system. Newly added functionality includes

poll, chat, shop, and forum services. However, the

voluntary community-like structure also has its

drawbacks, such as ‘‘free-riding’’ (this issue will be

discussed more extensively later in this paper).

MMBase poses a steep learning curve for first-time

users. As mentioned previously, every item of

content has to be stored as an individual object,

which requires relatively high initial investment. In

addition, MMBase consists of many configuration

files whose relation can at times be unclear. First

time users have to learn many syntaxes and

functionalities, for instance ‘‘taglib’’ and edit wiz-

ards. A taglib, or tag library, is a set of actions that

encapsulate functionality. These tags are then used

within JSPs** (JavaServer Pages**). Finally, to

write queries in MMBase is not straightforward and

requires significant analysis. These are among the

reasons why first-time users might experience

difficulties when adopting MMBase and why they

need to make relatively high initial investments.
7

This paper addresses the growth of the MMBase

software and community. First, it addresses the

history of the software, relates the decisions and

happenings at the heart of the software, and briefly

introduces the structure of the MMBase community.

Next, it presents the architecture of MMBase. The

third section presents examples of organizations

that adopted MMBase and describes how software

vendors currently use the package to deliver value

and performance to customers. This section is

primarily based on interviews with stakeholders

who were involved in the adoption and implemen-

tation of MMBase. The fourth and final section

identifies and discusses three challenges facing the

MMBase community and the software itself.

THE HISTORY OF MMBASE

The origin of MMBase can be traced back to VPRO.

VPRO is a Dutch public broadcasting corporation

with more than 320,000 member subscribers. The

corporation is well-known in the Netherlands for its

innovative programs and its focus on creativity.

In 1994, VPRO gathered a group of 20 people to

move the corporation from the analog into the

digital environment. The team created several

products including television programs about digital

issues, CD-ROMs, meetings, and lectures, and they

identified and developed many kinds of online

activities. Within weeks, VPRO was connected to

the Internet, and a Web site was created. The team

also set up a free public modem bank because at that

time Internet access was still relatively difficult for

many viewers. Via the modem bank, visitors could

look at the broadcasters’ Web site to check the

VPRO program schedule or details of their favorite

television shows.

VPRO’s primary goal regarding digital media was to

provide a learning environment for its content

creators, approximately 200 in total. They were

encouraged to explore the environment to find new

ways of expressing themselves and stimulating the

public. This resulted in numerous new and pio-

neering products, many of which were far removed

from the then stereotypical activities of broad-

casters. An example was the design of the VPRO

Web site itself, which appeared in a special online

gallery of the San Francisco Museum of Modern Art.

During this transition to digital content, the techni-

cal staff was challenged to provide and maintain an

infrastructure and toolset that would allow the

content creators to actualize their new concepts. In

1994, the market for Internet tools was still in its

infancy, and few tools of real value were available.

This situation forced VPRO to hire new staff (around

20) to create and maintain a whole range of new

tools; they included programmers, graphic design-

ers, and staff supporting the users of the new tools.

Most of the tools were created in 1994 and ranged

from games for children to new content for tele-

vision and radio. They relied primarily on the CERN

(Conseil Européen pour la Recherche Nucléaire)

server and the Common Gateway Interface (CGI), a

standard for interfacing external applications with

information servers, like Web servers.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 383

However, the VPRO Web site team faced a difficult

capacity problem. All content on the site was based

& The MMBase Management
Committee worked hard to
create a community &

on CGI and was dynamically generated; by contin-

uously promoting the Web site on television, the site

was attracting many visitors, easily reaching

200,000 hits a day. At that time, the infrastructure

was simply not able to deal with this amount of

traffic, and the VPRO Web site faced serious

performance problems as a result. Something had to

be done to address this problem.

Collaboration with Sun Microsystems, Inc.

In late 1994, a solution presented itself when VPRO

was invited to join a testing program initiated by

Sun Microsystems, Inc. for a project called OAK.

OAK is the software language now better known as

Java. At the outset, Sun asked the VPRO team to

write client-side applets. Yet the VPRO team soon

realized there were strong arguments to redesign all

the server-side code in OAK because CGI simply did

not perform well in the UNIX environment. With

CGI, a fork had to be created each time a request

was made to an external program. The team realized

it would be better to ‘‘extend’’ the server and make

the functions part of the server itself. The solution

was to build an architecture based on ‘‘workers’’ and

modules, similar to the usage today of servlets and

persistent beans. These changes created a huge

boost in both performance and flexibility on the

server side for the VPRO projects.

At the time, another concern was the lack of Java

Web servers. VPRO decided to craft a new Web

server called Java HTTPD. By the time Java was

released to the general public, most VPRO-managed

Web sites were already running on server-side Java

platforms.

The creation of MMBase software

In time, all of VPRO’s tools, servers, scripting

language, and database connectors were recoded in

Java and deployed on VPRO’s Java-based server

called James. Typically, the code became unman-

ageable as both the Web and the number of projects

grew. The team decided it was again necessary to re-

work all the code of each major project, an effort

that had, as we will explain, mixed results.

In 1996, during a large Dutch festival which VPRO

covered for radio, television, and the Internet, it

became clear that something in their Internet system

was faulty when the system ‘‘crashed.’’ For three

days the technical staff was unable to stabilize the

servers. VPRO had anticipated such problems when

using new technology in 1994, but not two years

later. The system had to be redesigned, and the

result was the creation of a new extension to James,

to be called MMBase. After months of research the

goals of the extension were defined:

� Create a way to store all content of all projects in a

consistent manner;
� Implement an extensible flexible structure to store

content;
� Create a tool for content creators to add, delete,

and change content;
� Separate content from presentation;
� Create a ‘‘metatag’’ schema (i.e., define a data

model wherein there is meta-data for each object

of any type);
� Ensure that the system works across multiple

machines (i.e., clusters); and
� Make sure no content (audio, video, or graphics)

is destroyed by making it ‘‘Web ready’’—that is,

store all content in a high quality format.

Development of MMBase started in late 1996, and

the first version of the system was in use in 1997.

Back then, MMBase was a module in the James Web

server. As time progressed, more of the identified

goals were achieved, and gradually the outlines of

MMBase as a CMS became visible.

Opening the source code

Parallel to the development and improvement of

MMBase, the VPRO Web site began to gain acclaim

and attract visitors worldwide. These visitors also

discovered the MMBase development team. The

team was proud of its product and created demos,

which it showed to visitors. As a result, a growing

number of requests to use the software arrived.

Apart from being a publicly funded organization,

saying no to such requests went against the VPRO

corporate culture.

In 1999, VPRO took the first steps to make the

MMBase software open source. There were two

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005384

main motivators for this move: Firstly, VPRO had

become dependent on MMBase, but being the sole

creator, maintainer, and user of the software posed a

continuity risk. Opening up the source code would

enlarge the user base and attract others to partic-

ipate in development and maintenance. Secondly,

MMBase was created using public funds which,

VPRO reasoned, should in some way be returned to

the public. Making the code open source was one

way to return benefit to the public domain.

One developer was assigned the task of preparing

some 500,000 lines of source code for its first open-

source release. The primary challenge was to make

MMBase less VPRO-specific and more generic. A

secondary challenge was to ensure platform inde-

pendence. In addition, an open-source infrastructure

was required: a Web site, documentation, main-

tainers, and communication facilities such as mail-

ing lists were set up in just five weeks. And of course

a logo was created, which remains unchanged. The

focus of the Web site and (early) communication

was not on ‘‘selling a product,’’ but on ‘‘spotlighting

the concept.’’

The developers who had worked on MMBase for

almost five years were very aware of the dilemma

they faced. Further improvements of the software

before the first open-source release would mean that

they would continue to be isolated for some time.

They also knew that they would never feel that

MMBase was finished. They therefore decided to

make the release quickly and accept the conse-

quences. They hoped that many other developers

would join them and want to contribute to the

collaborative effort.

The creation and rise of the MMBase community

The first open-source release of MMBase was on

April 3, 2000. The Web site that hosted the first

release is still home to the MMBase community.
8

The software was licensed under MPL.
9
To help

decide which license would be issued with MMBase

and what the community structure would be, the

team studied a number of open-source communities,

especially the Apache** community. The MPL

license was chosen because it allowed more freedom

and opportunity for entrepreneurial initiative com-

pared to the more popular GPL.
10

The rules and

regulations governing the MMBase community were

based on those for Apache; in fact, the Apache

community was approached directly for permission

to do so.

In line with the Apache community, the MMBase

Management Committee (MMC) was set up. The

first MMC consisted of four experienced project

leaders: two from VPRO, one from an independent

software vendor, and one from another public

broadcaster. A year later, a fifth member was added.

Membership in the MMC rotates annually. Each year

the two longest-serving members give up their

position, and two new members are chosen from

among the ‘‘committers.’’ To become a committer a

developer has to be nominated by the current

committers. The committers then vote to decide if a

candidate developer will be awarded committer

status. Once a developer has received committer

status, he or she can add source code directly to the

CVS (Concurrent Versions System).

The MMC worked hard to create a community and

spent much energy in coordination. However, it

soon realized that for the community to mature,

more was required than a robust technical product

and a developers’ community. By late 2001, a

number of organizations were discussing the desir-

ability of creating a foundation that could support

the roles of coordination, marketing, answering

questions, responding to requests for information

(RFIs), and establishing user collaboration and

knowledge exchange. The MMBase Foundation was

established in 2002.

The MMBase Foundation plays a key role in

promoting and informing the public about MMBase

and about open-source software and open standards

in general. A nonprofit institute, its main objective is

to facilitate the MMBase CMS for open-source usage

with the related community, focusing on stability

and innovation. Today the Foundation has grown to

include a few dozen (commercial) partners. It has a

CEO, a board, and an advisory committee of

partners, developers (the MMC), and users.

The Foundation’s primary focus is on the interests of

the users and commercial partners, as the devel-

opers have their own organizational structure, but it

supports the developers where and if necessary. The

Foundation’s main activities can be summarized as

follows:

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 385

� Coordination—Bridging the gap that frequently

arises between developers and users. Further-

more, the foundation creates a long-term vision

for the software in close collaboration with the

developers’ community.
� Moderation—Moderation between the supply of

MMBase software and the demand for it.
� Knowledge transfer—Taking an active role in

disseminating knowledge, giving presentations

about MMBase, organizing events, and providing

training.
� Documentation—Active participation in the crea-

tion of documentation for the developers’ com-

munity, service providers, and users.
� Marketing and promotion—Taking an active role

to ensure steady growth of the MMBase com-

munity.
� Research and development—Stimulating and ini-

tiating research and development projects.
� Collaborative development—Organizing regular

meetings with users and service providers to

stimulate collective development efforts and as-

signments. An example is the annual MMBase

event.

THE MMBASE ARCHITECTURE

This section discusses the basics of the MMBase

architecture. It touches upon five elements in the

architecture: object orientation, implementation

languages, database abstraction, application server,

and publication. The strength and presence of these

elements, making MMBase a flexible and well-

featured CMS solution, are a major reason for its

adoption.

Object orientation

MMBase has made one concept central: namely, that

each content item within the system is viewed as an

object. This means that a person or program is

represented by an object, rather than by a document

describing them. In the world view of MMBase,

content is an object cloud. Behind this simple yet

powerful design is the idea that content stored today

may be required for other uses in the future, on

different channels, so it must be stored in an open

format with relationships to other stored content.

Publishing the content today (or in the future) is

only the next step, not the end goal of the process.

This sets MMBase apart from page-based and

document-based systems that take publishing as

their conceptual starting point.

All of the objects to be mapped into the MMBase

‘‘cloud’’ are defined in XML. The types of objects in

MMBase have an internal definition because no two

databases agree on a clear set of types. All objects in

MMBase can be related to each other. These

relations are also viewed and treated as objects

themselves. The most basic relation is one that

connects two objects but that does not contain any

content. However, frequently it is not enough to

make a relation between two objects. For instance,

when adding news items to a magazine, one also

needs a way of telling in which sequence the news

items should be placed in that magazine. In

MMBase, one can use the ‘‘posrel’’ relation for this

purpose. The ‘‘posrel’’ relation not only connects

two objects, but it also allows users to store an

integer value for this relation in the ‘‘pos’’ field of

the relation. In general, MMBase allows the creation

of relations with whatever fields are needed for any

particular content model. For instance, when con-

necting employees to departments, one can use a

relation that contains an extra string field to store

information on the functions that employees have in

their departments.

Originally, the designers and users of MMBase

required an architecture that allowed them to

change how content was used because standards are

constantly changing, as are user requirements and

ideas for using content. Though MMBase has

undergone many changes over the past eight years,

two fundamental precepts have endured. The first is

the base concept of storing content as objects with

relationships (the result being that even the oldest

installations can be kept compatible). The second

enduring precept is that parts of the proprietary

environment are replaced when clear standards

have emerged and been accepted.

Implementation languages

XML and Java were the first two standards that

became clear starting points for tooling during the

conception of MMBase. All objects in MMBase are

made up of a combination of both data and

functions, and the best tools available for imple-

mentation during MMBase’s development were

XML for data and Java for functions. Both are open,

platform-independent, well-defined standards with

broad support within both the commercial and

open-source community. Over time, both Java and

XML have continued to change; MMBase changes

with them when market forces indicate the time is

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005386

right, for example, the shift from Java Version 1.0.2

to Version 1.4. Taking these two technologies as a

base reduces the learning curve for many people to

join the MMBase community because XML and Java

have a large following and are well understood

within the developers’ community.

Database abstraction

MMBase stores and maintains the object cloud

through a storage manager, and queries the cloud

using a search query handler. These are two more or

less mutually independent abstraction frameworks,

and they are discussed in some detail later. The two

frameworks ensure that users are not confined to

one database, which would result in a vendor lock-

in. They also attract more people to use MMBase

because most companies have one database brand

for all of their systems; whereas, the open source

community uses a number of popular databases

such as MySQL and PostgreSQL.

There are many standards in the database world,

like Structured Query Language 92 (SQL92)
11

and

JDBC
**

(Java Database Connectivity),
12

but almost

all larger databases break or extend these standards

as they see fit. To deal with this problem, MMBase

currently has its own object mapping mixed with

standards such as JDBC to get a completely trans-

parent storage model for its supported databases.

Furthermore, the MMBase clouds can be moved to

any supported database without any change in

content, software, or scripting, and new databases

can be supported if needed by adding new inter-

faces.

The storage-manager framework takes care of the

creation of tables, inserts, and updates. Objects are

mapped to the database depending on whether and

how that database supports object-oriented data

storage. In cases of non-object-oriented databases,

MMBase simulates this structure by duplicating data

in tables, specifically in the tables for the object

types from which other types inherit: ‘Object’ and

‘Insrel’. An alternate implementation is in develop-

ment. This implementation will make use of ‘views’.

Because the storage layer is pluggable, it is possible

to play on the strengths of the database, for instance,

by using the object-oriented features of a database

like Informix. Adapting the storage layer to support

a new database can be done through implementa-

tion of a new Storage Manager class, or through the

configuration of the existing base implementations,

that is, the Database Storage Manager and the

Relational Database Storage Manager. The existing

base implementations include a wide variety of

options, a set of query template strings which allow

& Each content item
within the system is viewed as
an object &

for variation in insert/update/create query syntaxes,

and the mapping of MMBase field types to actual

types in the tables.

Because support for the storage of binary data in

JDBC varies widely among databases (even among

versions of the same database), and because it often

introduces dependency from external (often license-

protected) source code, MMBase allows an option to

store binary data outside the database, on a file

system. This method may also be preferred for

practical reasons (such as a better facility for

backups). Local implementations are still possible,

to extend the layer to include binary data in the

database if there is no proper support in the JDBC

driver for that database.

The query-handler framework is used to retrieve

data from the database. It features query objects that

can be used to model a SQL ‘‘select’’ query. Those

objects can be handled and filled programmatically,

and only on execution of the statement are they

translated to actual SQL. Different databases may

have a slightly variant query handler to perform this

translation. The default implementations shipped

with MMBase support a common-denominator

version of SQL supported by all common databases.

The query objects are used as a key for query result

caching, substantially reducing database load.

The storage-manager framework is accessed only

from the core in MMBase. External programs never

deal with that layer directly, but instead pass their

requests for changes to MMBase through a ‘‘bridge’’

called the MMBase Cloud Interface (MMCI). That

interface also allows the creation of query objects as

outlined earlier. MMBase has created its own

interface, which does not yet conform to the Java

Specification Request 170 (JSR 170) standard.
13

There are a few practical reasons why this is so.

First, the MMCI was created before the JSR 170

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 387

existed. Second, the standard has been received

with significant criticism. Third, changing the MMCI

would require much effort, due to the changes that

need to be made to other products that use the

MMCI, of which the MMBase tag library is a good

example.

Server

Like most CMS systems, when used to support Web

sites, MMBase is paired with a (Java-enabled) Web

server or an application server. See Figure 1 for an

overview of a Web server infrastructure with

MMBase. Originally, VPRO started with James, a

Web server created by the VPRO team. After the

servlet API (application programming interface)

gained acceptance, MMBase was adapted to support

the various versions of that API. Currently, the

servlet API is only a small part of the J2EE
14

specifications, a set that is not always clear because

it covers a large area and is subject to constant

change. However, J2EE is a good partner for

MMBase because it demands a lot of the server

resources that MMBase is running on.

MMBase is a J2EE application. As more of the J2EE

specifications become stable and accepted, custom

layers will be swapped out of MMBase and handled

by the J2EE server. A good example is database

abstraction. Currently, J2EE is not strong enough to

cover the database abstraction now available in

MMBase, but with successive iterations of the

specification, the gap is shrinking. At some point,

MMBase database abstraction may be replaced by

abstractions provided by the J2EE server of choice.

MMBase is used as a Web application on an

application server. Content is stored and maintained

via import components, like the edit wizards or the

XML importer. Different components can be used to

extract content from the MMBase content reposi-

tory. Both internal and external caching mecha-

nisms are available to boost performance.

Publication

Fundamental for a CMS is the manner in which

content is translated to the required published form.

MMBase is often used to create Web sites. Unless

the site in question has a very fixed user-interface

design, tools are required to help the site developers

create the necessary Web pages (or documents,

streams, etc.). The number of frameworks available

on the Internet, both large and small, is almost

limitless; the same applies for the number of in-

house created tools. MMBase started out with its

own scripting language. As with most of these

language types, its support is paramount. Most Web

developers are trained in one or two of the main

scripting systems, for example Active Server Pages**

(ASP), Personal Home Pages (PHP), or JSP, so it is

most efficient to make use of this familiarity. To

enable broad support, a special layer between the

MMBase core engine and the outside world was

added, namely, the MMCI.

Over the years, a taglib has been created for MMBase

for use in combination with other taglib sets or

independently, to create dynamic Web pages filled

with content stored in MMBase back-end servers.

Many example packages are provided in the distri-

bution set, which serves as a starting point for new

developers ofMMBase-drivenWeb sites. See Figure 2

for the role of the MMCI, the taglib, and packages in

the MMBase architecture. (Dove, one of the compo-

nents shown in the figure, is a support class that

Figure 1
Overview of MMBase Web server infrastructure

Operating System

JavaServer Pages

XML Interface

Image ConverterEdit
Wizard

Input of Text,
Images, Sounds
and Movies

Presentation
on Web SiteJSP

Cache
Static
Cache

Java

Application Server

MMBase

Database

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005388

supplies a communication protocol for MMBase.)

Over time, the core developerswill adapt the scripting

tools when new standard solutions to problems

become available (currently the effects of JSP2 and

how to convert to it are being hotly debated).

As shown in Figure 2, the MMBase architecture

consists of five layers: (1) the Database Access layer,

which connects MMBase to a database via the JDBC

interface, (2) the MMBase Core, which maps the

relational database into an object-oriented abstrac-

tion layer, (3) the Security layer, which provides a

pluggable security interface for user authorization

and authentication, (4) the MMCI, which facilitates

communication between the Core and Security layer

and the components, and (5) the components,

which provide the basic building blocks to import

into, edit, and extract from the MMBase object

repository. Packages are MMBase (Web) applica-

tions, which use the components and offer a ready-

to-use item of functionality like a forum, chat, or

e-learning platform.

MMBASE USE CASES
As the MMBase software matured, a growing

number of users, many from the public domain,

began to employ it. One of the first users of MMBase

was the Dutch Evangelical Broadcasting Organiza-

tion (EO). It adopted MMBase for a number of

reasons: (1) MMBase is open, allowing the organi-

zation to make its own modifications to the

software; (2) MMBase is based on Java and XML,

thus it is standards-based and platform-indepen-

dent; (3) MMBase is designed to be flexible; and (4)

MMBase was already successfully used to support

VPRO’s Web site, which meant that it would also

likely fulfill EO’s requirements.

After the EO, many more organizations began to

adopt MMBase. A selection of these organizations

follows. These case studies will primarily focus on

the reasons that led to the adoption of MMBase and

on the lessons that were learned.

Ilse Media

In the late nineties, Ilse was the leading search

engine for the Dutch-language region. In 2000, Ilse

merged with the magazine division of VNU Pub-

lishers, which is now part of Sanoma. The core

competence of Ilse Media lay in search engine

technology; the organization had much less

knowledge of Web site technology. This posed a

challenge because Ilse Media was now being asked

to host the Web sites for all VNU-published

Figure 2
MMBase architecture

Packages

Taglib

R-MMCI
Applica-
tions

Dove Edit Wizards

MMCI (Bridge)

Security

Cloud Context Basic

MMBase Core

Builder Node Transactions Multicast

Database Access

Query Storage Support

JDBC

Components

MMBase interface

Core componentsRDBMS

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 389

magazines in an efficient and cost-effective way. In

the first months of 2001, Ilse Media conducted a

CMS selection process. The programs under review

included Mediasurface**, Roxen, Gauss, Tridion**,

Zope**, and MMBase. MMBase was selected be-

cause it offered the latest technology, such as JSP

templating, object orientation, platform independ-

ence, and XML import and export; it had a robust

and growing installed base in the Netherlands; it

was open source, so that an MMBase implementa-

tion could easily be exported to another CMS; and it

came without licensing fees.

Within a few months, a group of three developers,

one designer, and a project manager was able to

build a dozen Web sites for VNU magazines.

MMBase proved efficient in implementing tailor-

made solutions generated from a generic blueprint.

The main reason for this is MMBase’s object-

oriented architecture, which eases the implementa-

tion of generic building blocks. At the same time,

MMBase offered the flexibility to diverge from and

add to the blueprint where necessary.

In 2002, an important Dutch online news provider,

nu.nl, also decided to adopt MMBase. This project

resulted in a valuable spin-off called Wodan.
15

Wodan is a reverse proxy module for the Apache

Web browser. Web clients retrieve content from the

Wodan module instead of from the Web server. The

module is especially useful in environments where a

large amount of CPU power is required, but where

the pages do not change often.

The city of Amsterdam

In 2000, Amsterdam faced an organizational prob-

lem. The city had an enormous number of Web

sites, which were created and maintained by

numerous people. The infrastructure had become a

convoluted structure in which everything was

connected in multiple ways. Each city district and

department and their related agencies had their own

Web sites based on their own preferences. Further-

more, the city knew from experience that top-down

control to change this structure was unlikely to have

positive effects. Traditionally, the departments are

accustomed to a great deal of autonomy, which they

value highly.

Amsterdam was fortunate to have an IT-conscious

councillor for economic affairs and a capable senior

project manager at its central information facility.

Together, they decided to transform the city’s IT

infrastructure and to make the move to open source.

The main reasons were that open source would

allow the city to maintain independence from a

supplier and would enable the city to share any

written source code with the public. The adoption of

open source was also considered a signal to the

outside world, as it would enhance the openness of

the municipality. The choice to move to MMBase

was based on two factors. First, content in MMBase

is stored in XML. This would enable the city to

switch to another CMS if MMBase proved to be

qualitatively inadequate. Second, the origin of the

system in the broadcasting industry seemed perfect

considering that city council meetings were to be

broadcast on the Web in the future. One of those

directly involved in the decision commented, ‘‘It

seemed flexible and future minded, and for the rest,

it was intuition.’’

For municipal use, the application Web in a Box

(WIAB) was created, anMMBase-based environment

with advanced editing facilities. The first version of

WIAB was released in February 2002 and licensed

with GPL. This decision resulted in some contro-

versy. Although MPL and GPL are both open source

licenses, they are not compatible. A special clause in

GPL forbids developers from incorporating GPL-

licensed source code into software licensed under

MPL.
16

It took a year before the WIAB license was

changed toMPL,which enables theWIAB project and

the MMBase community to benefit from each other’s

activities and improvements. It also ensures that

WIAB can remain compatible with the MMBase core.

In late 2003, a large shared development fund was

established and contributions were provided by

every agency using WIAB. In return, they received a

strong say in the identification and definition of new

requirements for future versions of WIAB. The

system is gradually growing into a real network of

interconnected databases, and the benefits of

interoperability and the opportunities for knowledge

exchange and Web service engineering are gradually

becoming visible within the city as a whole.

Currently, more than 28 independent agencies use

the same components for Internet services, and

seven agencies manage their whole intranet based

on WIAB. The benefits of a developer community

consisting of a large city’s administration and end

users and characterized by high coherence and

common understanding of Web technologies are

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005390

already visible. The first advantage which is not

obvious is the speed of useful metatagging among

civil servants and the fact that one search engine is

available to all agencies without any technical

indexing problems. The organically grown balance

between centralized databases and distributed da-

tabases using multiple retrieval mechanisms is

something any systems architect would like to

accomplish in such a complex political climate.

Integration and compatibility with GIS (geographic

information systems) appears to be easier than

expected.

The initiators also expressed some of the disadvan-

tages. They felt that adoption had necessitated

complex organizational change and the creation of a

culture of interdepartmental collaboration beyond

that which the IT managers were accustomed to

handling. They also mentioned some of the diffi-

culties in setting up the maintenance organization.

This differed from the situation in which a ‘‘simple’’

vendor would have been chosen. Finally, in hind-

sight, it would have been valuable to have known

more about license issues and the fact that one type

can exclude another.

Vodafone
The Vodafone Group commissioned research, de-

velopment, and implementation of a software

application for conferences and events aimed to

support business and public events, providing extra

information and assistance to attendees via mobile

telephone. The content for such a system needs to

be extremely dynamic, and the ability to straight-

forwardly make relationships between content items

is crucial. MMBase proved ideal for these require-

ments. Among the major reasons for Vodafone’s

move to MMBase were the following:

� No commercial license costs
� Proven stability and performance
� Availability of support from MMBase developers’

and software vendor communities
� Low development and maintenance costs, com-

pared to other CMSes

Another motivation for Vodafone was the ability to

combine MMBase with the open-source Xmedia

portal, implemented at various other sites. The

Xmedia portal allows MMBase-controlled content to

be made available over multiple channels, such as

mobile telephone and digital television, and also

provides enhanced security and a service-oriented

architecture.

Vodafone is converting more of its public systems to

MMBase and is currently engaged in a set of pilot

& The open-source
development model is based
on the principle that
knowledge is free and
should be shared &

projects to examine the associated technical and

business issues.

Didactor
The Mediator Group is an innovator in the field of

education and specializes in e-learning technology.

Mediator serves organizations that want to use IT to

support their primary education process. The

Mediator Group wanted to create a simple Web-

based e-learning platform that would free organiza-

tions to spend their innovation budgets on truly

educational innovation. It faced a challenge in

deciding which development platform to choose. It

soon recognized open source as a promising route,

as this would reduce commercial licensing costs for

clients. Mediator approached a number of organi-

zations and asked them to write proposals for a new

platform. They defined three criteria: (1) the plat-

form should be open source, (2) it should be based

on the learning objects methodology, and (3) it

should meet open and didactic standards.

In the meantime, a client asked The Mediator Group

to collaborate on and provide support for an

MMBase implementation. Mediator became in-

volved in the MMBase community and soon realized

that MMBase was suitable to create their generic

e-learning platform. Their main reasons for selecting

MMBase were that it had been developed by media-

rich organizations and that it had a solid user and

developer base. The Evangelical Broadcasting Or-

ganization joined the development effort, as it too

was interested in creating an e-learning platform.

Their combined effort resulted in creation of the

open-source platform Didactor.

Within as well as outside of the MMbase commun-

ity, several parties showed interest in Didactor

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 391

initially. However, very few actually supported

Didactor by co-developing or funding. This resulted

in the odd situation where the founding partners

made large investments in terms of time and budget;

whereas, others simply waited for Didactor to be

finished. This is one of the less positive character-

istics of open-source software, as it supports and

perhaps even stimulates ‘‘free-riding.’’ Software

development depends on companies and individuals

who are willing to do the job.

The platform is developed from a didactic perspec-

tive, which is considered to be one of the most

crucial prerequisites for successful implementation

of e-learning.
17

Furthermore, it is based on the

methodology of learning objects, which is an

important trend in e-learning.
18

The idea underlying

this methodology is that educators can define and

create pieces of knowledge and then group them

into separate objects. These objects are stored in a

database and described with educational meta-data.

This structure allows educators to share objects and

combine them to create lessons or courses.

The Didactor architecture meets international

standards like the IEEE Learning Object Metadata

(LOM) standard
19

and the Sharable Content Object

Reference Model (SCORM).
20

Developers are now in

the process of integrating the flexible generic

language IMS (Instructional Management System)

Learning Design.
21

The Dutch Open University

collaborates with The Mediator Group in this

process. Didactor consists of over 20 didactic

components, which remain close to the components

in MMBase; that is, they use the same forum and

chat components. New modules created in Didactor

are programmed in the same way as the components

in MMBase. New modules are donated to the

community.

Didactor is used by institutes for vocational training,

as well as by companies seeking to redefine their

learning methods. ConQuaestor, which used to be

part of IBM Business Consulting Services, has also

adopted Didactor. The Mediator Group and NETg,

which is part of the Thomson Corporation, formed a

strategic partnership to deliver NETg’s roughly

3,000 e-learning courses through Didactor. The Free

University, one of the leading universities in the

Netherlands, is involved as a research partner in this

project, measuring the efficiency of the platform in a

learning environment.

One of the lessons learned by Mediator, starting

with the development of its components, was that it

was not easy to begin using MMBase. The most

important reason for this was probably the fact that

one cannot simply contact the MMBase vendor.

There is no single point of contact. Corporate users

can only rely on one of the supporting partners, but

this can become problematic when their customers

demand tight time schedules. The open-source

communities, which consist of many volunteers

who participate for various reasons, including fun

and ideology, are less concerned with deadlines

than the corporate users.
22

For Mediator, the

solution for this issue was to become involved in the

community and to build relationships with members

based on trust. This way others will be more

inclined to help Mediator when certain problems are

experienced or deadlines have to be met.

Because Didactor is mission-critical for organiza-

tions, service delivery has become increasingly

important. The main parties supporting the product

are thus in the process of creating a shared service

center. In the shared service center, trained profes-

sionals will manage the Didactor service agreements

and be responsible for Web site hosting, fixing bugs,

making updates available, and providing continuous

service (i.e., ‘‘24/7’’). For the Mediator Group, this is

one of the most important issues affecting any open-

source product: the variety and quality of services

has to be the equal to or even better than that of

proprietary products in order to be able to compete

with them.

CHALLENGES FACING THE COMMUNITY

Three distinct challenges have arisen from the

growth of the MMBase community. The first is how

to deal with the potentially growing number of free

riders. The second is to define and separate the core

from the packages (previously called MMBase

applications). The third challenge is documentation.

These challenges are described in the following

subsections.

Free riders, the other side of openness
The open-source development model is based on the

principle that knowledge is free and should be

shared. Richard Stallman compares the art of writing

software with that of writing a symphony. He argues

that Beethoven could not have written music with-

out building on the ideas of other composers, and

the same is true for software developers. They also

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005392

build on the ideas of other developers, and there-

fore, he argues, it is important for them to share and

have access to software source code.
23

However, having source code freely available also

creates problems. Anyone can download, install,

and modify source code. Some open-source licenses

even allow users to create a proprietary, that is,

closed, version of the software. These factors result

in the potential for organizations to ‘‘free ride’’: they

can take without giving.

Free-riding behavior is not unusual. It occurs in

many open-source communities, and the MMBase

community is not immune. It is not inherently

problematic if a small number of users decide to free

ride. However, a community like MMBase needs to

retain a critical mass of users and software-devel-

oping companies who are willing to participate in

the maintenance and improvement of the software.

The question is, ‘‘How?’’ To understand the value of

such involvement for developers and maintainers

and how such communities can protect themselves,

it is important to understand how participants are

attracted to the community in the first place.

Basically, there are two types of participants: the

commercial vendors that build their business model

on the open-source application (in this case,

MMBase) and the users.

In the past, one would not have expected a

commercial vendor to become a partner in an open-

source community. Freely sharing and contributing

improvements made at their own expense would

seem counter to commercial principles. Tradition-

ally, vendors have had an incentive to keep

modified source code private, as this is a recognized

way to build and protect a competitive advantage in

the software market. However, to date, most

commercial vendors of MMBase-related material

have become partners in the community; most

vendors want to join the community. Several factors

help to explain why:

1. The community’s mediator role in the user

market—Firstly, the MMBase community is well

known in the Netherlands and enjoys a good

reputation. For this reason, many potential users

first approach the community rather than a

commercial vendor to find out more about the

software. The community brings these users—

potential clients—into contact with vendors that

can customize the software to meet the users’

needs. Thus, vendors have an incentive to

collaborate within the community, as it is an

important channel through which to reach

potential customers.

2. The community as source of continuity—Sec-

ondly, some users (including major industry and

government concerns) have made a strategic

decision to use open-source software. They do so

because (for example) they want to reduce

licensing costs and dependency on commercial

vendors. Such users often require commercial

vendors to return any additions or modifications

they contract to the community to ensure con-

tinuity.

3. The community as learning environment for

users—The motivation for users to participate

varies. Many smaller companies want a proven

solution at minimum cost and might hire a

commercial vendor to customize the software or

decide to install the software themselves, using it

as a finished product. However, for these users

there is also an incentive to be involved in the

community. Lack of proactive participation in the

community could lead to a lack of attention from

the developers and maintainers the next time an

update is required or when they need information

or experience a problem.

Thus, a community like that of MMBase has

informal mechanisms to overcome the problem of

free riding. These are not yet predictable processes,

however, and time will tell whether they are solid

enough to continue to motivate vendors and users to

collaborate and invest in the community.

Managing flexibility: the core versus the
packages
During the conception of MMBase, things were

simple. There was one version of MMBase and one

community of developers. These developers knew

everything there was to know about the product.

They were the core developers. New developments

were added directly to MMBase, which slowly

evolved into a monolithic piece of software. This

process remained manageable due to the relatively

small size of the community.

However, as time progressed, increasing numbers of

organizations began to use the product and became

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 393

involved in its development and maintenance. New

functionality was added. Application developers

created new packages for use on top of MMBase.

This sometimes meant that changes to MMBase

were required, and these were integrated into

privately owned versions of MMBase. Frequently,

these changes were not integrated into the official

MMBase releases. Therefore, every time an official

release was made, an exponential time-consuming

migration effort was required to maintain the

changes.

The growing number of developers caused a steady

rise in the number of packages available for

MMBase, which extended the software’s function-

ality. Packages included new editors, a media

package enabling a comprehensive and generic way

to handle audio and video files, and an e-mail

package allowing users to send e-mail directly from

the CMS. Many of these packages were added to the

official MMBase release, causing the official release

to grow to an almost unmanageable size. A growing

number of packages and relationships had to be

managed and stabilized before each new release. As

a result, it became increasingly difficult and time-

consuming to create new releases.

The community of developers realized that a clear

separation was required between the core of

MMBase and the packages built on top of this core

(i.e., a more service-oriented architecture was

needed). The separation was initiated in 2003 and

currently dominates development activities. The

separation has as its main goal the creation of a

smaller, more maintainable core; creating an archi-

tecture that requires fewer changes at the core,

resulting in a more stable core; increasing the

number of official releases of MMBase packages

while shortening the release cycles; increasing

compatibility between releases; increasing coordi-

nation among active developers as a result of more

manageable components; attracting more develop-

ers and teams to participate, as the effort required

for effective participation is decreased; and defining

solid interfaces between the core and the packages,

ensuring that application developers can efficiently

create new packages and improve existing ones.

The road to a complete separation between the core

and packages is not without problems, however.

There are three major problems: The first is

distinguishing the core from the packages; that is,

how to decide what belongs to the core of MMBase

and what should be part of a package. The

underlying problem is the lack of consensus among

developers about what MMBase exactly is. The

developers can be roughly divided into four camps.

The first camp argues that MMBase is an object

database; the second considers it to be a frame-

work; the third views MMBase as a CMS; and the

fourth sees it as a combination of the three. These

different conceptions result in varying opinions

about what belongs in the core and what does not.

For example, if MMBase is viewed as an object

database, much of the source code can be removed

from the core, but from the CMS perspective,

features like workflow and security would have to

be included in the core.

The second problem is that of distribution and

packaging. The challenge is to create a framework

and format for how packages are to be created,

distributed, and installed. The third problem relates

to legacy code and backward compatibility. Part of

the code currently in the MMBase core is legacy

code. Only a limited number of organizations, those

that have used MMBase since the beginning, still

require this code. An example is the scripting

language SCAN that is used to create templates.

SCAN was replaced by the MMBase taglib (a

standard technique to create templates). Yet, as

some organizations still use the SCAN templates,

this code needs to remain available for them.

The community is well aware of the challenges

posed by separation of the MMBase core code from

its packages and is working hard to solve the

problems to achieve a healthy separation between

the two. To this end two projects have been created,

the first of which is cleaning. The goal of this project

is ‘‘refactoring’’ (removing or rewriting old code).

Some code will be moved into packages, redundant

code will be completely removed, and some code

will be rewritten for improved stability, perfor-

mance, and maintainability. Already, much code

has been ‘‘tagged’’ during the last two years.

Tagging involves adding keywords to parts of code

to describe future actions required (e.g., ‘‘rewrite,’’

‘‘add better documentation,’’ and ‘‘remove’’). These

actions can be complex; hence the two-phase

process of tagging and then implementation.

The second project is called packaging. Its aim is to

simplify the installation process and management of

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005394

the packages. The result will be a small core that has

basic functionality. Users would then add function-

ality by installing the packages, supported by a

simple and uniform installation procedure.

Managing reusability: Writing and maintaining
documentation

As the MMBase software matures and becomes

more complex and extensive, the importance of

documentation increases. Lerner and Tirole identi-

fied the creation of documentation as a key

challenge facing many open-source communities:

‘‘Another challenge has been the apparently lesser

emphasis on documentation. . . in at least some

open-source projects.’’
24

This aptly describes the

challenge facing the MMBase community with

regard to documentation. Many developers prefer to

write new source code and create new functionality

and are not intrinsically motivated to write doc-

umentation. Users involved in the community

seldom have the expertise to write the appropriate

level of technical documentation. Moreover, they

may have insufficient knowledge of the software

and its functionality to do so. Nor do the commercial

vendors spending time and money to create new

MMBase software always have the long-term vision

or incentive to invest in writing documentation for

the software they create.

It was only in July 2002 that the MMBase

community was able to motivate its participants

sufficiently to invest in the creation of documenta-

tion. The community initiated the documentation

project to write and maintain the documentation

needed for future MMBase releases. At the start of

the project, the XML Docbook
25

was chosen as the

standard for writing documentation.

The community has since created and institutional-

ized two mechanisms to encourage developers to

participate in the documentation project and moti-

vate them to write new documentation. The first is

the organization of regular face-to-face meetings.

Participating developers have found that regular

meetings have helped motivate them to create and

improve documents. Peer pressure has thus proven

a successful way to compensate for any original lack

of incentive. At the meetings, developers review

existing documents and discuss future directions.

The second incentive is the community’s new policy

regarding releases: new releases are allowed only

when the documentation is up to date. Again, the

idea is to stimulate developers to participate in the

documentation project. As of this writing, the new

policy is undergoing initial trials, so whether it will

indeed stimulate developers to participate is as yet

unproven.

By now, a dozen documents have been written. The

documentation currently available provides suffi-

cient information for new potential contributors and

users to find their way around the MMBase

environment. However, there are still blank spots

and a number of ‘‘to dos.’’ The future will tell

whether the documentation project and the two

incentive mechanisms are sufficient to mobilize a

critical mass of participants to keep the body of

MMBase documentation up to date.

CONCLUSIONS

This paper has discussed how the MMBase CMS was

created and how its community took form. It argued

that the strength of MMBase is that it is stable,

proven, platform-independent, object-oriented, and

open source. The continuous growth of the MMBase

open-source community and the rising number of its

users provides empirical proof of the value of the

characteristics mentioned. Furthermore, these two

trends highlight the need for and importance of an

organizational structure that is able to constantly

adapt and evolve to changing requirements and

demands. To date, the MMBase community appears

to have succeeded in meeting these requirements.

ACKNOWLEDGMENTS
The authors would like to thank the members of the

MMBase Management Committee, and in particular

Rob Vermeulen and Pierre van Rooden, for their

contributions and comments. We would like to thank

Jeroen Visser (of IBM Netherlands) for his support

and his comments. Finally, many thanks go to Bert

Straatman, Michiel Meeuwissen and Rogier Schaaf

for their input and Karien Stroucken for her support

and coordination of the many activities needed to get

this paper published.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc., Microsoft Corporation, Oracle Corporation, Linus Tor-
valds, Netscape Communications Corporation, MySQL AB,
PostgreSQL, Inc., The Open Group, The Mozilla Organization,
The Apache Software Foundation, Mediasurface Plc, Tridion
B. V., or Zope Corporation.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 395

CITED REFERENCES AND NOTES
1. M. Noga and F. Kruper, ‘‘Optimizing Content Manage-

ment System Pipelines—Separation and Merging of
Concerns,’’ in Generative Programming and Component
Engineering, Lecture Notes in Computer Science, No.
2487, Springer-Verlag, Heidelberg, Germany (2002), pp.
252–267.

2. M. Bandorf, T. Yoshizawa, Y. Takada, and G. Merbeth,
‘‘Enterprise Content Management with Interstage Con-
tentbiz,’’ Fujitsu Scientific and Technical Journal 40, No.
11, 61–73 (2004).

3. A. Somani, D. Choy, and J. Kleewein, ‘‘Bringing Together
Content and Data Management Systems: Challenges and
Opportunities,’’ IBM Systems Journal 41, No. 4, 686–696
(2002).

4. P. Tyma, ‘‘Why Are We Using Java Again?’’ Communi-
cations of the ACM 41, No. 6, 38–42 (1998).

5. See, for instance, A. Leroy, ‘‘J2EE and .NET: Interoper-
ability with Webservices,’’ Lecture Notes in Computer
Science, No. 2952, Springer-Verlag, Heidelberg, Germany
(2004), p. 155; and J. Williams, ‘‘The Web Services
Debate: J2EE vs. .NET,’’ Communications of the ACM 46,
No. 6, 58–63 (2003).

6. See also S. Cheong, K. M. Azhar, and M. Hanmandlu,
‘‘Personalization of Interactive News through J2EE, XML,
XSLT, and SMIL in a Web-Based Multimedia Content
Management System,’’ Proceedings of PCM 2002—Ad-
vances in Multimedia Information Processing, Lecture
Notes in Computer Science, No. 2532, pp. 287–294
(2002); and J. D. Litke, ‘‘Strategic Implications for Future
Content Management Systems,’’ Society of Motion Picture
and Television Engineers Journal 110, No. 1, 23–27
(2001).

7. The case of The Mediator Group introduces another
reason, namely the lack of one MMBase vendor that is a
clear point of reference.

8. MMBase Homepage, http://www.mmbase.org (July
2004).

9. The Mozilla Public License is an open-source license. The
latest version of the license can be found at http://
www.mozilla.org/MPL/MPL-1.0.html (July 2004).

10. The text of the GPL can be found at http://www.gnu.org/
copyleft/gpl.html (July 2004).

11. SQL was first created by IBM Research in the 1970s.

12. See http://java.sun.com/products/jdbc/ (July 2004) for a
description of JDBC. Graham Hamilton, Rick Cattell, and
Maydene Fisher wrote a manual on JDBC called JDBC API
Tutorial and Reference, Addison-Wesley Professional,
Second Edition (1999).

13. Java Specification Request 170 (JSR 170), http://
www.jcp.org/en/jsr/detail?id=170.

14. For more information, see S. Bodoff, A. Armstrong, J.
Ball, and D. Bode Carson, The J2EE Tutorial, Second
Edition, Addison-Wesley Professional (2002).

15. For a description of Wodan and its community, see
http://www.wodan.net/ (July 2004).

16. For a more elaborate description of open-source licenses
and their effects, see R. van Wendel de Joode, J. A. de
Bruijn, and M. J. G. van Eeten, Protecting the Virtual
Commons: Self-Organizing Open Source Communities and
Innovative Intellectual Property Regimes, T. M. C. Asser
Press, The Hague (2003).

17. T. Govindasamy, ‘‘Successful Implementation of
E-learning Pedagogical Considerations,’’ Internet and
Higher Education 4, 287–299 (2002).

18. L. Mortimer, ‘‘(Learning) Objects of Desire: Promise and
Practicality’’ (2002), http://www.learningcircuits.org/
2002/apr2002/mortimer.html.

19. Learning Object Metadata, Learning Technology Stan-
dards Committee, Working Group 12, http://
ltsc.ieee.org/wg12/ (July 2004).

20. Shareable Content Object Reference Model (SCORM)
Initiative, http://xml.coverpages.org/scorm.html (July
2004).

21. The manual can be downloaded from http://
www.imsglobal.org/learningdesign/index.cfm (July
2004).

22. See for instance: R. van Wendel de Joode, ‘‘Conflicts in
Open Source Communities,’’ Electronic Markets 14, No. 2,
104–113 (2004).

23. R. M. Stallman, Free Software, Free Society: Selected
Essays of Richard M. Stallman, GNU Press, Boston, MA
(2002).

24. J. Lerner and J. Tirole, ‘‘Some Simple Economics of Open
Source,’’ Journal of Industrial Economics 50, No. 2, 197–
234 (2002).

25. The Docbook XML software (Version 4.2) and the project
can be found at http://www.oasis-open.org/docbook/
xml/ (July 2004).

Accepted for publication October 21, 2004.

Joost Becking
The Mediator Group, P.O. Box 59295, 1040 KG Amsterdam,
The Netherlands (joost@mediatorgroup.com). Mr. Becking is
co-founder and principal educational architect of the open-
source e-learning platform Didactor, and is responsible for
open-source strategy. He specifically focuses on expanding the
worldwide developer and user community. Mr. Becking co-
authored the book Internet Method on integrating Web
applications in primary business processes. His interests are in
the areas of open-source business modeling, standardization,
and learning object technology. He strongly believes that IT
can do a great deal of good in educational settings, but only if
it becomes part of the educational strategy for primary
processes, and so he strongly believes in the power of blended
learning.

Steve Course
Quantiq Xmedia B.V., 11–13 Koninginneweg, 1217 KP
Hilversum, The Netherlands (steve.course@quantiq.com). Mr.
Course is CTO and co-founder of Quantiq Xmedia. Quantiq
brings IT and marketing and communication specialists
together to create value for clients, helping them become
cross-media driven by developing concepts and technical
implementations. Previously, he was the technical manager at
Vodafone, where he was responsible for the implementation
of the Vodafone Live! platform and the Vizzavi portal.

Gerard van Enk
Million Pieces, Kiekstraat 167, 1087 GT Amsterdam, The
Netherlands (gerard@mmbase.org). Mr. van Euk is a member
of the MMBase Management Committee and MMBase release
manager. His company, Million Pieces, specializes in Internet-
related development and consultancy. He is the senior Web
application developer for the Evangelical Broadcasting
Organization, a Dutch public broadcaster. His interests
include Java, open source (software, communities, licenses,
etc.), and free culture.

BECKING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005396

Published online April 20, 2005.

Hendrik Theodoor Hangyi
MMatch/MMBase Consultancy and Implementation,
Hommelstraat 9A, 3061 VA, Rotterdam, The Netherlands
(hangyi@xs4all.nl). Mr. Hangyi is the project manager of the
MMBase documentation project. He has worked with MMBase
since 2001, focusing mainly on consultancy, implementation,
and education. Before starting his own firm, he worked as a
consultant at CMG and Arthur Andersen.

Jo Lahaye
MMBase Foundation, Neuweg 83, 1214 GM Hilversum, The
Netherlands, (Jo@mmbase.org). Mr. Lahaye is the first CEO of
The MMBase Foundation. He has a background in journalism,
worked as an ICT (information and communication
technology) project manager, and implemented many
different CMSes, especially in higher education. He also
advises many organizations on the use of open-source
software and is the author of many (Dutch) articles on open-
source and open-standards issues as well as (software)
patents.

Daniel Ockeloen
Submarine.nl crossmedia production company,
Rapenburgerstraat 109, 1011VL Amsterdam
(daniel@submarine.nl). Mr. Ockeloen is a software designer.
With Rico Jansen, he was responsible for the development of
James and MMBase for VPRO. In 1999 and 2000, he prepared
MMBase for open-source release. In 2000, he left VPRO to co-
found the company Submarine, which produces cross-media
products. Mr. Ockeloen was part of the MMBase Management
Committee for the first few years of the open-source phase.
Currently, he works for Submarine and several other
supporting organizations to create new extensions for
MMBase. He plays a positive role in the community by giving
talks and lectures when time allows. He spends much of his
free time with music and movies in his self-built home theater.

Rob Peters
University of Amsterdam/Faculty of Law, Leibniz Center for
Law, Oude Manhuispoort 4, PO Box 1030, 1000BA
Amsterdam, The Netherlands (rob@lri.jur.uva.nl). Mr. Peters
organized the first conference on electronic commerce in
Europe in 1993. He was responsible for building some of the
Netherlands’ major government sites, like
www.PortofRotterdam.com and www.overheid.nl. He is now
in charge of a number of European research projects, such as
www.addwijzer.org. Currently, he works for a small
consultancy firm for e-government called Zenc, specializing in
the link between content production and content navigation.
At the University of Amsterdam, he is completing a Ph.D.
degree on open source as a catalyst for e-government
innovation.

Hessel Rosbergen
Finalist IT Group, 3 Wibautstraat 9th floor, 1091CH
Amsterdam, The Netherlands
(Hessel.Rosbergen@finalist.com). Mr. Rosbergen is account
manager at Finalist IT Group. Finalist specializes in technical
consulting and development services for the Internet, based
on Java technology. Most of the projects are based on open-
source technology, such as MMBase and JBOSS. Because
Finalist also uses SUN, HP, BEA, IBM and X-Hive, different
technologies can be thoroughly compared.

Ruben van Wendel de Joode
Delft, University of Technology, Faculty of Technology, Policy
and Management, P.O. Box 5015, 2600 GA Delft, The
Netherlands (rubenw@tbm.tudelft.nl). Mr. van Wendel de
Joode is a Ph.D. degree student. His research focuses on the
organization of popular open-source communities like Apache
and Linux. He received two grants from the Netherlands
Organization for Scientific Research (NWO) for research

related to open-source communities. The first grant was to
study the interplay between intellectual property rights and
open-source communities. The results are published in
Governing the Virtual Commons (Cambridge University Press,
2003). He has written numerous articles on open source,
which have appeared in journals like Electronic Markets,
Knowledge, Technology and Policy, and the International
Journal of IT Standards & Standardisation Research. &

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BECKING ET AL. 397

