
© Parallax, Inc. 2006 Page 1

Categorical Listing of Propeller Assembly Language:
Elements marked with superscript “s” are also available in Propeller Spin.

Directives
ORG Adjust compile-time cog address pointer.

FIT Validate that previous instructions/data fits entirely in cog.

RES Reserve next long(s) for symbol.

Configuration
_CLKMODEs Application-defined clock mode (read-only).

_CLKFREQs Application-defined clock frequency (read-only).

CLKSETs Set clock mode and clock frequency.

_XINFREQs Application-defined external clock frequency (read-only).

_STACKs Application-defined start of stack (read-only).

RCFASTs Constant for _CLKMODE: internal fast oscillator.

RCSLOWs Constant for _CLKMODE: internal slow oscillator.

XINPUTs Constant for _CLKMODE: external clock/oscillator.

XTAL1s Constant for _CLKMODE: external low-speed crystal.

XTAL2s Constant for _CLKMODE: external medium-speed crystal.

XTAL3s Constant for _CLKMODE: external high-speed crystal.

PLL1Xs Constant for _CLKMODE: external frequency times 1.

PLL2Xs Constant for _CLKMODE: external frequency times 2.

PLL4Xs Constant for _CLKMODE: external frequency times 4.

PLL8Xs Constant for _CLKMODE: external frequency times 8.

PLL16Xs Constant for _CLKMODE: external frequency times 16.

Cog Control
COGIDs Get current cog’s ID (0-7).

COGINITs Start, or restart, a cog by ID.

COGSTOPs Stop a cog by ID.

© Parallax, Inc. 2006 Page 2

Process Control
LOCKNEWs Check out a new semaphore.

LOCKRETs Return a semaphore.

LOCKCLRs Clear a semaphore by ID.

LOCKSETs Set a semaphore by ID.

WAITCNTs Wait for System Counter to reach a value.

WAITPEQs Wait for pin(s) to be equal to value.

WAITPNEs Wait for pin(s) to be not equal to value .

WAITVIDs Wait for video sync and deliver next color/pixel group.

Flow Control
IF_ALWAYS Always.

IF_NEVER Never.

IF_E If equal (Z = 1).

IF_NE If not equal (Z = 0).

IF_A If above (!C & !Z = 1).

IF_B If below (C = 1) .

IF_AE If above or equal (C = 0).

IF_BE If below or equal (C | Z = 1).

IF_C If C set; p.

IF_NC If C clear; p.

IF_Z If Z set; p.

IF_NZ If Z clear; p.

IF_C_EQ_Z If C equal to Z.

IF_C_NE_Z If C not equal to Z.

IF_C_AND_Z If C set and Z set.

IF_C_AND_NZ If C set and Z clear.

IF_NC_AND_Z If C clear and Z set.

IF_NC_AND_NZ If C clear and Z clear.

IF_C_OR_Z If C set or Z set.

IF_C_OR_NZ If C set or Z clear.

IF_NC_OR_Z If C clear or Z set.

IF_NC_OR_NZ If C clear or Z clear.

IF_Z_EQ_C If Z equal to C.

© Parallax, Inc. 2006 Page 3

IF_Z_NE_C If Z not equal to C.

IF_Z_AND_C If Z set and C set.

IF_Z_AND_NC If Z set and C clear.

IF_NZ_AND_C If Z clear and C set.

IF_NZ_AND_NC If Z clear and C clear.

IF_Z_OR_C If Z set or C set.

IF_Z_OR_NC If Z set or C clear.

IF_NZ_OR_C If Z clear or C set.

IF_NZ_OR_NC If Z clear or C clear.

CALL Jump to address with intention to return to next instruction.

DJNZ Decrement D and jump to address if not zero.

JMP Jump to address unconditionally.

JMPRET Jump to address with intention to “return” to another address.

TJNZ Test D and jump to address if not zero.

TJZ Test D and jump to address if zero.

RET Return to stored address.

Result Control
NR No result (don’t write result).

WR Write result.

WC Write C status.

WZ Write Z status.

Main Memory Access
RDBYTE Read main memory byte into D, zero extended.

RDWORD Read main memory word into D, zero extended.

RDLONG Read main memory long into D.

WRBYTE Write byte in D to main memory byte.

WRWORD Write word in D to main memory word.

WRLONG Write long in D to main memory long.

© Parallax, Inc. 2006 Page 4

Instructions
NOP No operation, just wait one instruction cycle.

ABS Set D to absolute S.

ABSNEG Set D to negative of absolute S.

NEG Set D to –S.

NEGC Set D to either –S (if C) or S (if !C).

NEGNC Set D to either S (if C) or -S (if !C).

NEGZ Set D to either –S (if Z) or S (if !Z).

NEGNZ Set D to either S (if Z) or -S (if !Z).

MIN Store lesser of D and S into D (unsigned).

MINS Store lesser of D and S into D (signed).

MAX Store greater of D and S into D (unsigned).

MAXS Store greater of D and S into D (signed).

ADD Add unsigned S into D.

ADDABS Add absolute S into D.

ADDS Add signed S into D.

ADDX Add unsigned, extended S+C into D.

ADDSX Add signed, extended S+C into D.

SUB Subtract unsigned S from D.

SUBABS Subtract absolute S from D.

SUBS Subtract signed S from D.

SUBX Subtract unsigned, extended S+C from D.

SUBSX Subtract signed, extended S+C from D.

SUMC Sum either –S (if C) or S (if !C) into D.

SUMNC Sum either S (if C) or -S (if !C) into D.

SUMZ Sum either –S (if Z) or S (if !Z) into D.

SUMNZ Sum either S (if Z) or -S (if !Z) into D.

MUL <reserved for future use>.

MULS <reserved for future use>.

AND Bitwise AND S into D.

ANDN Bitwise AND !S into D.

OR Bitwise OR S into D.

XOR Bitwise XOR S into D.

ONES <reserved for future use>.

© Parallax, Inc. 2006 Page 5

ENC <reserved for future use>.

RCL Rotate C left into D by S bits.

RCR Rotate C right into D by S bits.

REV Reverse 32 – S[4..0] bottom bits in D and zero extend.

ROL Rotate D left by S bits.

ROR Rotate D right by S bits.

SHL Shift D left by S bits.

SHR Shift D right by S bits.

SAR Shift D arithmetically right by S bits.

CMP Compare unsigned D to S.

CMPS Compare signed D to S.

CMPX Compare unsigned, extended D to S+C.

CMPSX Compare signed, extended D to S+C.

CMPSUB Compare D to S, if D => S then subtract S from D.

TEST Binary AND S with D to affect flags only.

MOV Copy S into D.

MOVS Copy S bits into D’s Source Field (S[8..0] into D[8..0]).

MOVD Copy S bits into D’s Destination Field (S[8..0] into D[17..9]).

MOVI Copy S bits into D’s Instruction Field (S[8..0] into D[31..23]).

MUXC Copy C to bits in D with S as mask.

MUXNC Copy !C to bits in D with S as mask.

MUXZ Copy Z to bits in D with S as mask.

MUXNZ Copy !Z to bits in D with S as mask.

HUBOP Hub operation; template for RDBYTE, CLKSET, etc.

© Parallax, Inc. 2006 Page 6

Registers
DIRAs Direction Register for 32-bit port A.

DIRBs Direction Register for 32-bit port B (future use).

INAs Input Register for 32-bit port A (read only).

INBs Input Register for 32-bit port B (read only) (future use).

OUTAs Output Register for 32-bit port A.

OUTBs Output Register for 32-bit port B (future use).

CNTs 32-bit System Counter Register (read only).

CTRAs Counter A Control Register.

CTRBs Counter B Control Register.

FRQAs Counter A Frequency Register.

FRQBs Counter B Frequency Register.

PHSAs Counter A Phase Lock Loop (PLL) Register.

PHSBs Counter B Phase Lock Loop (PLL) Register.

VCFGs Video Configuration Register.

VSCLs Video Scale Register.

PARs Cog Boot Parameter Register (read only).

Constants
TRUEs Logical True: -1 ($FFFFFFFF).

FALSEs Logical False: 0 ($00000000).

POSXs Maximum positive integer: 2,147,483,647 ($7FFFFFFF).

NEGXs Maximum negative integer: -2,147,483,648 ($80000000).

PIs Floating point value for PI: ~3.141593 ($40490FDB).

Unary Operators
NOTE: All operators shown are constant-expression operators.

+ Positive (+X) unary form of Add.

- Negate (-X); unary form of Subtract.

^^ Square root.

|| Absolute Value.

|< Decode value (0-31) into single-high-bit long.

>| Encode long into value (0 - 32) as high-bit priority.

! Bitwise: NOT.

NOT Boolean: NOT (promotes non-0 to -1).

@ Address of symbol.

© Parallax, Inc. 2006 Page 7

Binary Operators
NOTE: All operators shown are constant expression operators.

+ Add.

- Subtract.

* Multiply and return lower 32-bits (signed).

** Multiply and return upper 32-bits (signed).

/ Divide and return quotient (signed).

// Divide and return remainder (signed).

#> Limit minimum (signed).

<# Limit maximum (signed).

~> Shift arithmetic right.

<< Bitwise: Shift left.

>> Bitwise: Shift right.

<- Bitwise: Rotate left.

-> Bitwise: Rotate right.

>< Bitwise: Reverse.

& Bitwise: AND.

| Bitwise: OR.

^ Bitwise: XOR.

AND Boolean: AND (promotes non-0 to -1).

OR Boolean: OR (promotes non-0 to -1).

= = Boolean: Is equal.

<> Boolean: Is not equal.

< Boolean: Is less than (signed).

> Boolean: Is greater than (signed).

=< Boolean: Is equal or less (signed).

=> Boolean: Is equal or greater (signed).

