
Functional Verification Methodology 17 December 1998 1

Abstract

Even though the importance of microprocessor design
verification is widely acknowledged, no rigorous method-
ology is being commonly followed for its realization. This
paper attempts to delineate such a methodology, and
shows how it is promoted by Genesys, an automatic
pseudo-random test-program generator. The methodol-
ogy relies on a verification plan which induces smart sets
of tests that carry out the verification tasks. The paper
reports on an application of this methodology, using
Genesys, to verify an x86 design and describes, in partic-
ular, how this methodology could have helped to avoid
known escape bugs, such as the recent two infamous
Pentium Floating Point bugs.

1.0 Introduction
It is widely recognized that functional verification emerges

as the bottleneck of the design development cycle. This is due
to a combination of several correlated factors: exponential
increase in design complexity, tighter time-to-market require-
ments, and higher quality expectations. In parallel, verification
means are not evolving at a matching pace. The cost of the late
discovery of the recently found Pentium FDIV flaw (around
$475,000,000) demonstrates the implications of having a
design that does not totally conform to its architectural specifi-
cation [2]. It is therefore not surprising that, for a typical micro-
processor design project, up to half of the overall resources
spent, are devoted to its verification [3, 4]. This paper suggests
an overall methodology for the functional verification of micro-
processors, and explains how this methodology is promoted by
Genesys, a pseudo-random test-program generator developed at
the IBM Haifa Research Lab [4]. In addition, it reports some of
the insights gained through the application of this methodology
to x86 microprocessors.

Common verification practices include tests obtained from
several sources [6,7]. Firstly, a small fraction of the tests are
usually devised manually to target corner cases, or otherwise

hard-to-reach parts of the design. Secondly, the simulation
includes running existing sets of tests (legacy tests or commer-
cial test suites) [10]. These tests typically have claimed cover-
age, and, most importantly, have already been successfully
employed in the verification of similar designs. Obviously, this
component is available only if the targeted architecture is an
established one. For the x86 architecture, such sets of tests are
generally available and are being updated along with each
architecture upgrade. Thirdly, after the hardware is ready for
use, some extensive applications (e.g., operating systems) are
run. Finally, automatic test generation, usually mainly random
and of restricted scope, might be performed. The overall proc-
ess should be interleaved with some means of coverage. Cover-
age is a major constituent of the verification process and
therefore deserves further attention. This however is beyond the
scope of this paper. In addition, designers should routinely keep
in mind the verification implications of their development or
modifications, thereby collaborating toward averification-
aware design process [5]. It will be shown, in this paper, how
the suggested methodology, and Genesys in particular, pro-
motes such a process.

Genesys, a follow-on of the Model-Based-Test-Generator
[1,4], enables the combination of randomness and control, thus
generating a virtually infinite number of high quality tests. It
was primarily developed to minimize the effort to apply it to
any architecture, and to allow the usual architectural changes
and upgrades to be easily implemented within the tool. Moreo-
ver, its most powerful property is its ability to be externally and
incrementally enriched by Testing Knowledge (TK) in order to
influence the quality of the generated tests [4]. In this way, cor-
ner cases can be assigned a suitable probability to occur,
whereas their chance of appearing randomly would be practi-
cally nonexistent. In fact, Genesys and, in particular, the incre-
mental TK paradigm, is especially well suited to the
methodology described in this paper.

The importance of the x86 architecture cannot be over-
stated, and it seems that this importance will not decrease in the
foreseen future. It is therefore of interest to study the results of
applying the proposed methodology to the verification of an
x86 design.

Functional Verification Methodology for Microprocessors Using the
 Genesys Test-Program Generator

Application to the x86 Microprocessors Family

 Laurent Fournier Yaron Arbetman Moshe Levinger
IBM Haifa Research Lab IBM Haifa Research Lab IBM Haifa Research Lab
laurent@vnet.ibm.com yaronar@vnet.ibm.com mosh@vnet.ibm.com

Functional Verification Methodology 17 December 1998 2

The remainder of the paper is organized as follows: Section
2 suggests a functional verification methodology. Section 3
presents the Genesys system, and Section 4 describes how it
copes with and suits the implementation of the described meth-
odology. A case study, done by analyzing the implementation
of the above methodology on an x86 microprocessor, is
reported in Section 5. Section 6 concludes the paper.

2.0 General Methodology

The overall strategy relies on the early composition of a
Verification Plan. The Verification Plan will ultimately induce
sets of tests that realize the verification tasks. This section sug-
gests a framework for composing and implementing a Verifica-
tion Plan, independently of the tools available for realizing the
plan. Section 2.1 describes the Verification Plan, whereas Sec-
tions 2.2 - 2.4 survey the different means available for its imple-
mentation.

2.1 Verification Plan
It is obvious that any verification activity should be pre-

ceded by the composition of a Verification Plan that describes
the overall methodology. This includes the description of high
level verification goals leading to detailed verification tasks.
The plan should be composed from a deep understanding of the
architecture and the main properties of the micro-architecture.
Available verification means (e.g., existing tests, test genera-
tors, etc.) should not be taken into account at this point, since
they could bias or limit the scope of the Verification Plan. As
the design evolves, new tasks are added to cover emerging
implementation details. The plan is therefore a living document
reflecting the present state of the design, and can also be incre-
mented upon discovery of a bug.

2.2 Test Repertory
The following subsections define the different types of tests

required during the verification process. A summary appears in
Table 1.

2.2.1 Periodic Regression Sets (PRS)
Starting early in the design, atest regression should be run

frequently in order to yield a reasonable confidence in the over-
all design status. It functions as a kind of “barometer” follow-
ing the design evolution from start to end. Consequently, it
should be relatively small so that it can run fast, yet be compre-
hensive enough to provide useful feedback. These goals are
conflicting, but can be simultaneously met by directing a PRS
to all the different capabilities of the design, while providing
only loose coverage.

The contents of this set should be adapted to the state of the
design, starting from very simple tests and evolving as new
capabilities are added. Its running frequency is dependent on
the number of problems uncovered, and on the time needed to
correct them. Typically, such a regression should be routinely
run on a daily basis.

Since it is inefficient to run the same regression every day,
tests run on successive regressions should be different, yet be
able to fulfil the same underlying general purposes. Section 4.1
describes how this goal is easily achieved using a random test-
program generator, such as Genesys.

2.2.2 Specific Tests
Generally many tests produced with significant effort are

worthwhile keeping for periodic reruns. These tests might be
written by the designer himself (sometimes manually) to pin-
point some hard-to-reach corner cases. It would be inefficient
not to exploit these tests and lose the Testing Knowledge they
include. Section 4.2 shows how Genesys promotes the accumu-
lation and further usage of such Testing Knowledge. Addition-
ally, tests that have uncovered bugs in the design should be
preserved. However, the discovery of a bug should induce a
broader set of actions, as described in Section 2.4.

2.2.3 Coverage Subsets
To complete the periodic regression set, a library of tests

with some known coverage properties, should be available. Dif-
ferent coverage models are possible, the important point being
that the successful running of those tests should provide a rela-
tively high degree of confidence. They may be run each time a
major design change is performed. They may be partitioned
into sets, each having a specific subgoal. In this context, a par-
ticular set might be run any time its corresponding part in the
design is suspected or undergoes a major change. For example,
a set responsible for the Floating Point Unit might be simulated
each time this unit is significantly modified. It is also advisable
to run those sets periodically (e.g., each weekend) and not only
as a result of external events. However, these tests can not be
run too often, since such sets of tests, in order to maintain the
coverage level, are inherently huge and time-consuming to run.
In any event, to maintain efficiency, the use of such coverage
subsets should be delayed until the design has reached a rela-
tively stable state.

It is common practice to purchase existing suites of tests
claiming coverage, especially for established architecture such
as x86. These suites can also be built using a random test gener-
ator, such as Genesys (see Section 4.1). However, one should
keep in mind that there are always bugs which cannot be found
by any existing static set of tests.

2.2.4 Full-Load Testing
Many intricate design mechanisms are difficult to fully

exercise using standard tests. For example, causing a complex
pipeline to reach full capacity depends on timing dependencies
among several internal signals and is not usually accessible by
regular tests. It is therefore common to directly trigger these
mechanisms by artificially causing them to be in a threshold
state. Standard tests can then be exercised in such a context.

Functional Verification Methodology 17 December 1998 3

2.2.5 Random Testing
When the design reaches high stability and bugs become

relatively difficult to find, the testing described in the previous
subsections should be mixed with massive unconstrained ran-
dom testing. A random test generator is clearly needed for this
purpose. Randomness is a fundamental property since bug loca-
tions are usually unpredictable. However, one should be aware
of the limitations of random testing. Indeed, pure random test-
ing is inefficient since the space domain is enormous and the
probability of interesting cases is infinitely small. Section 4.3
describes how Genesys avoids the pitfall of pure randomness.

2.2.6 Hardware Testing
Once the hardware is up and running, some testing can be

resumed directly on the silicon. Beyond the fact that it is impor-
tant to check the final product itself, the main advantage of run-
ning tests directly on hardware (as opposed to a simulation
environment) is that it is much faster. But, since debugging on
hardware is typically very inconvenient, testing should also
continue in the simulation environment.

Large applications, such as operating systems, are usually
run. Although they are important confidence builders, one
should keep in mind the limited value of such applications in
terms of verification. They tend to repeatedly exercise a very
small portion of the design, therefore it would be premature to
reach conclusions from running them successfully.

In any event, it is profitable at this point to run very long
tests on the hardware. These tests can also originate from a test
generator. Again, as for massive random generation, the wealth
of the default Genesys Testing Knowledge (see Section 3.3.3)
will cause those long tests to have a high verification value.

2.3 Verification Process
At the beginning of the design process, bugs are easy to

find. There is therefore no point in bombarding the design with
a large number of tests. This would only overwhelm the verifi-
cation team with a huge number of failures. Similarly,unsys-
tematic testing, i.e. running tests without specific properties, is
equally inefficient. It induces a non homogenous debugging
process, in which some parts of the design arbitrarily receive
more attention than others.

Testing should be done incrementally to avoid a non
homogenous debugging process, which would complicate the
debugging. The initial PRS should be very simple, small and
systematic. For example, it is recommended to start with tests
that are aimed at single instructions and limited to the simplest
processor mode, and then have the test complexity evolves at a
pace which matches the design status.

Once relative stability has been reached, coverage subsets
can be run. Later, as bugs become rare, massive random testing
should begin. Then, when the hardware is running, it will be
used for further testing (i.e., long tests, huge applications such
as Operating Systems).

The overall process should be interleaved with some means
of coverage. It should serve as a feedback mechanism for addi-

tional testing and as a reliable measure for deciding when suffi-
cient confidence has been acquired.

2.4 Bug Driven Activity
The discovery of a functional design bug is an important

event. There are a few lessons to be gained from it. These stem
primarily from the two main properties of design bugs (and
bugs in general): temporality and locality. This points out that,
on the one hand, the test which revealed the bug should be
retained in order to make sure that the bug will not re-occur
(temporality) and, on the other hand, additional tests should be
built for adjacent design areas (locality). For the latter task, the
core of the bug should be understood and serve as a basis for
additional tests which would also tackle related areas.

At this point, it is important to point out that the legality of a
test often expires. In other words, a test that is perfectly legal at
some point in time, may become invalid after changes have
been made to the design. Since changes are often made during
the design cycle, the lifetime of a test is typically limited. This
fact points out that important tests, such as bug finders, might
need to be “adjusted”. This can be a very time-consuming task.
Section 4.2. shows how this problem can be overcome using
Genesys.

Finding a bug can also serve as a feedback mechanism for
the Verification Plan. Had the bug been found by some random
testing, it might point out that there is a hole in the Verification
Plan. It should have induced tasks, and thus tests, covering the
discovered failure. This could also lead to the addition of new
tasks for other related potential failures.

Section 4.2 shows how Genesys, by generalizing bug data
and driving more tests, naturally lends itself to bug driven activ-
ity in general, and to the locality property, in particular.

3.0 Genesys

The main objective of this section is to present the basic
concepts and properties of the Genesys test-program generator.
The general structure of the Genesys system is described in
Section 3.1, while Section 3.2 points out its main properties.

3.1 General Structure

FIGURE 1. System components and interactions

Architecture Model
and
Testing Knowledge

Architecture
Simulator

Test-Program
Generator

User
Interface

Test Programs

Functional Verification Methodology 17 December 1998 4

Genesys is a model-based test-program generator which
dynamically generates tests using a generation-simulation cycle
for each instruction. It has been widely used during the last
seven years at many IBM sites all over the USA. It is also used
as a major verification means by several other companies [3].
The system has already been employed to model several proc-
essor architectures and to verify their implementation.

The system consists of three basic interacting components:
a generic, architecture-independent test generator which is the
engine of the system, an external specification (the model)
which holds a formal description of the targeted architecture,
and a behavioral simulator which is used to predict the results
of instruction execution (see Figure 1 in which the User Inter-
face is depicted as the fourth block). The user can control test
generation by specifying desired biasing towards special
events. This biasing can also be saved to a userdirectives file.

The external specification model also allows incorporation
of testing knowledge. It is employed in order to generate prob-
ing test cases and allows expert users to add knowledge to the
system in a local and relatively simple manner.

3.2 Major Properties
The following subsections describe the main properties of

Genesys, especially stressing those which will be of primary
importance for implementing the verification methodology.

3.2.1 Control
Genesys enables the creation of programs ranging from

completely deterministic to totally random programs. By the
means of a directives file, control is given to guide the genera-
tion to the desired extent, while any parameter not explicitly
constrained is randomly set to any consistent value. The ability
to target the whole range of test randomness is of key impor-
tance for implementing the proposed methodology. Namely, the
methodology induces the creation of fully random tests, spe-
cific scenarios, and test templates with varying levels of ran-
domness (see Section 4).

3.2.2 Testing Knowledge
Another major feature of Genesys is its ability to easily

acquire additional Testing Knowledge (TK). The incorporation
of TK into a random generator enables you to adjust the distri-
bution of the probability of the targeted test space. As a simple
example, the result of zero for an ADD instruction is typically
of special importance while its relative probability to occur ran-
domly is practically inexistent. Informing the test generator that
the result of zero is important, and should thus be generated
with a reasonable probability, is an example of the process of
adding TK to the generator. As a more advanced example,
many architectures define instructions with two memory oper-
ands (e.g., string instructions in x86). Having the two memory
locations overlap is usually an exceptional event rarely occur-
ring randomly, and worthwhile to add as TK to the generator.
More generally, adequate weights should be given to corner
cases which otherwise would be occurring with negligible

probability. In Genesys, TK is in the form of Generation and
Validation functions (written in C) and is held in the external
specification model. The most noteworthy property of Genesys
is that this TK can be incrementally added by the user itself to
bias the creation of any test. The TK can be linked to the data,
length or address of any resource and it can influence the gener-
ation of any event. In such a way, the scope and sharpness of
Genesys’ test-programs are truly unlimited: they are deter-
mined by the investment made by its users. Depending on how
it is defined in the specification model, TK can be taken into
account during random generation (then calleddefault TK) or
only when specifically requested (calledspecific TK). The Test-
ing Knowledge paradigm is reported at length in [1].

3.2.3 Model-Based
Genesys relies on a formal and declarative model of the

architecture captured separately in its architecture model com-
ponent. This structure allows to conveniently integrate architec-
ture changes, which are so common during design
development. More generally, it enables to adapt Genesys to a
wide range of different architectures, with minimal effort. The
latest trend of designing ahybrid microprocessor (e.g., Merced
which mixes x86 with VLIW) emphasizes the importance of
having a tool which is easily customized to any architecture.

3.2.4 Short Tests
Contrary to typical test cases which assume initiation from

the Reset state of the design, Genesys allows you to start a test
from any (legal) state. It enables you to bring the design
directly into a state which otherwise would have been relatively
hard to reach. The sole output of the generator is a test file
which consists of a sequence of instructions starting from a
given initial state, and a section of expected results describing
the expected values of the various processor resources. Both
properties, initial state and expected results, contribute to the
production of short, easy-to-debug and incisive tests.

4.0 Implementing the Methodology Using
Genesys

The goal of this section is to demonstrate how Genesys inte-
grates and promotes the methodology described in Section 2.
Although a large part of this methodology is independent of the
particular test generator used, some of the most noteworthy
characteristics of Genesys contribute significantly to the suc-
cessful implementation of the proposed methodology. More
specifically, even though all the major properties appearing
under Section 3.2 contribute to the overall quality of the verifi-
cation process, two of them will be shown to be particularly
important: first the ability to keep directives files instead of
tests, and second the possibility to incrementally and externally
add testing knowledge to Genesys. Instead of keeping tests,
directives files, which may have varying degrees of control,
impart the desired randomness and solve the test legality prob-
lem. More exclusive to Genesys, the testing knowledge frame-

Functional Verification Methodology 17 December 1998 5

work enables to optimize the quality of each of the stages
induced by the methodology. In the following subsections, we
will follow these stages and explain the role of Genesys in
them.

4.1 Getting Started
Given a deep understanding of the architecture and an over-

view of the principal design properties, the first goal is to com-
pose a Verification Plan. At this point, all of the different
expected behaviors, including every corner case, are identified
and listed as targets for testing. They should be translated into
TK, including default TK, within Genesys, especially if their
probability to appear at random is relatively low. In such a way,
all the different identified behaviors are easy to target, yet will
appear randomly with a reasonable probability.

Then, there is a need for the development of the periodic
regression set. As indicated previously, it is desirable for such a
test set to be different in successive runs. This can be achieved
by composing the set using Genesys directives files instead of
static tests. In such a way, a countless number of different tests
can be induced. Moreover, randomness will be profitably added
to the process.

It should be observed at this point that havingshorttests,
due to the initial state and expected results structure, makes the
entire debugging process much more efficient. This is true
throughout the verification process, but it is of particular impor-
tance in the beginning stages. Contrary to standard self-check-
ing tests that start from Reset, simple and short tests should
focus on elementary goals. There is no need to get involved in
complex Reset sequences and redundant self-checking seg-
ments.

Following periodic regression, coverage subsets should
become available. A random test generator, capable of generat-
ing a countless number of different tests, can assist in the elabo-
ration of such subsets. Given a coverage model, massive
generation can be filtered to keep only those tests involving new
coverage tasks belonging to this coverage model. As an exam-
ple for a coverage model, a subset can be built by using stand-
ard software techniques to cover the code of an architecture
simulator (such as the one present in the Genesys system).

4.2 Testing Knowledge Encapsulation
Both the Verification Plan and the Testing Knowledge

evolve together with the design. They must be upgraded on two
main occasions. First, when a certain architecture behaviour is
being implemented in the design in an unpredictable manner.
Nothing in the architecture book hints that this behaviour
requires special attention. This event is of particular importance
as it is a significant source of numerous escape bugs. It is obvi-
ously the designer’s duty to convey the information to the veri-
fication team. Thus, beyond the elaboration of a few tests by the
designer itself, this should cause the Verification Plan to be
updated, and several tests to be created around the newly identi-
fied corner cases. Genesys, in particular the TK paradigm, pro-
vides very efficient groundwork for dealing further with such
cases. By directly upgrading Genesys with this additional TK,

the feature will continue to be tested randomly, within many
different contexts.

Second, when a bug is found by chance, not as a result of
the scheduled verification tasks. There is some similarity
between new design features and such a bug discovery. In both
cases, a new corner case is identified. Therefore, upon bug dis-
covery, the TK should be increased as well. In addition, to
tackle the locality property (Section 2.4), once the essence of
the bug is distinctly grasped, it should be captured in a Genesys
directives file, leaving all other biasing directives random. Con-
sequently, this directives file can be seen as a generic engine to
target not only the bug, but all the nearby design regions sur-
rounding the bug as well. Incidentally, keeping directives files
(instead, or in addition to tests) also solves the “test legality
expiration” problem described in Section 2.4.

4.3 Massive Testing
In later stages of the design process, massive random testing

is performed both in the simulation environment and directly on
hardware (given an appropriate interface). Thedefault TK
present in Genesys allows you to tackle all the different design
behaviors, even though no effort is done to control the genera-
tion process. Genesys allows the combination of quality and
quantity, thereby achieving a large number ofsmart cycles.

5.0 Case Study: An x86 Design

Due to its preponderance and complexity, the x86 architec-
ture is a suitable candidate for corroborating the methodology
suggested in Section 2. This methodology was applied during
the development of an x86 microprocessor within IBM, and
relied on the recent availability of Genesys-x86, a Genesys-
based pseudo-random test generator for the x86 architecture.
Although genericness is one of Genesys’ properties, significant
effort was needed to support a complex architecture such as the
x86. One of the main challenges presented to Genesys by the
x86 architecture was the presence of instructions with variable-
size and complex addressing modes [8]. Section 5.1 reports the
principal insights gained. Section 5.2 demonstrates how Testing
Knowledge encapsulation could have prevented the recent Pen-
tium bugs.

5.1 Applying the Methodology to x86 Verification
The main insight gained is that confining verification to

(usually purchased) test suites and long applications such as
operating systems, is far from sufficient. The full test repertory
described in Section 2.2 is needed for thorough verification.

Figure 2 displays the number of bugs uncovered at one of
IBM sites by Genesys-x86 tests, in comparison to tests origi-
nating from different test sources but mainly commercial test
suites (the upper curve being Genesys). Genesys’ tests come
from both the periodic regression and the massive random test-
ing. It should be noted that Genesys-x86 was employedafter
the test suites had been comprehensively exercised on the
design simulation environment. This highlights the fact that the

Functional Verification Methodology 17 December 1998 6

bugs found by Genesys-x86 might not have been found other-
wise, at least not within an appropriate time frame. It is note-
worthy to imagine the erroneous conclusions (and their
implications) which would have been reached from relying
only on bug curves other than Genesys’. It was surprising to
witness the simplicity of some of the bugs left by those suites
and later discovered by Genesys-x86. For example, a regular

jump to high memory (beyond 216) revealed a bug showing that
this simple operation was not exercised by any of the suites.
This is partly due to the lack of randomness inherent in any
given static set of tests. Whatever their size and claimed cover-
age, there are always simple bugs which stay untargeted. Of
course, Genesys-x86 also revealed many bugs resulting from
the complex interactions of different instructions and even units
of the design. As an example of a more subtle bug, Genesys
generated a test where a MTCR0 changing the processor mode
(from protected to real) appeared in a non taken leg of a JMP
instruction. This mode switching was not correctly cancelled
upon returning to the right instruction stream.

The hardware was functional at first tape-out and success-
fully ran DOS and other operating systems. As expected, the
test subsets coming from Genesys kept finding bugs at a high
rate after this stage. Again, the reason is that, even though run-
ning large applications such as operating systems is undoubt-
edly a good confidence builder and a threshold which has to be
successfully passed, they do not exercise a significant portion
of the architecture. Many areas are left untouched, leaving
potential bugs untargeted. In particular, many different initial
states proposed by Genesys’ tests are never reached.

5.2 Pentium Bugs
It is interesting to check whether the described methodol-

ogy and Genesys-x86 would have prevented known escape
bugs such as the last 2 Pentium FP bugs (the FDIV bug and the
FIST bug [9]). Both were implementation dependent bugs
which could not have been suspected from merely reading the
Pentium architecture book. Consequently, a mandatory precon-
dition for uncovering these bugs is that the unsuspected algo-
rithm implemented by the designer is revealed to the
verification team, but this is exactly the requirement described
at the beginning of Section 4.2. We see then that such expensive
bugs reflect a hole in the verification process. It could be a
methodology problem suggesting a lack of coordination
between the designer and the verification team, or it could stem
from a lack of means to sufficiently integrate the newly
revealed algorithm within the verification process. In any event,
Section 4.2 explains how the suggested methodology would
have dealt with these problems by introducing the implementa-
tion-specific information into Genesys’ Testing Knowledge.

Nevertheless, there is another less obvious way through
which Genesys-x86 might have discovered these bugs. Accu-
mulated experience has shown that there are some cases which
are typically more bug-prone in design. For example, although
in general it is not clear from the architecture definition, long
sequences of 0’s or of 1’s in source operands or in intermediate
results, are often the source of bugs in today’s FP designs. This

observation can be easily translated into Testing Knowledge
within Genesys. Thus, analysis of bugs, in an intra-architecture
manner, leads to the definition of what can be calledgeneric
Testing Knowledge. Incidentally, having the long bit sequence
TK in Genesys-x86 causes the tool to generate tests which
uncover both Pentium bugs with a reasonably high probability.
Table 2 below shows a range of values which cause the Pentium
II FIST32 bug (‘x’ and ‘y’ can be replaced with ‘0’ or ‘1’) [9].
A similar sequence also caused the FIST16 bug.

The probability of randomly generating such a mantissa for

a normal floating point number is 1:232, as you need a 31 ‘0’
sequence with a ‘1’ before it (the leading ‘1’ is a must for a nor-
mal FP number). Using the bit sequence pattern, the probability

to hit this type of mantissa drops to approximately 1:27. For the
exponent part, using the bit sequence pattern reduces the proba-

bility from 1:215 to or 1:910 taking into account the sign

bit. Hence, the probability of getting this event using the bit

sequence pattern is around 1:217 (~1:117,000). As a result, one
should expect to find this type of FP bug after generating a few
hundred thousand FIST32 instructions when the bit sequence
pattern is used, whereas, using pure random generation, the

probability to hit the bug is 1:249 which entails the unrealistic
need to generate thousands of billions of FIST32 instructions.

6.0 Conclusions

A rigorous methodology for tackling functional microproc-
essor design verification has been described. The principal con-
tribution of this paper is to set the general guidelines for
obtaining a compound functional verification framework, and
to describe how this can be optimally implemented by a test-
program generator such as Genesys. The goal of the paper is to
assist in the composition of verification processes which typi-
cally include only part of the testing suggested in this frame-
work. Although related and having a recognized importance,
the fields of formal verification and coverage are beyond the
scope of this paper.

It has been shown how an incomplete methodology applied
to x86 microprocessors, i.e. running only existing suites of tests
and long applications, or missing coordination between design-
ers and the verification team, can lead to false conclusions on
the design’s correctness. In addition, the two main properties of
Genesys, namely external Testing Knowledge and comprehen-
sive control through directives files, have been shown to natu-
rally suit the described functional verification methodology.

15

12 
 
 

Functional Verification Methodology 17 December 1998 7

FIGURE 2. Comparative evolution of bugs found at an IBM site (Genesys-x86 vs. other verification means) .

Type Description
Design
Stage Goal

Periodic
Regression
Set (PRS)

A frequently run test regression. Small but comprehensive
enough to provide useful feedback on the design status. Should
be adapted to the state of the design.

Starting early in
the design

Barometer of the
design status

Specific Tests Tests which pinpoint some hard-to-reach corner cases. Small number
of bugs in PRS

Verify corner cases

Coverage Sub-
sets

A library of tests having some known measure of coverage.
Should be used each time a major design change is performed. A
subset for a given part (such as FPU) may be run when the part
changes.

Design is rela-
tively stable

Quality checker.
Assurance vs.
changes

Full-Load Test-
ing

Standard tests run after the design was artificially put under a
full-load state, such as a full complex pipeline.

Unit verification Verify the unit in a
full-load state

Random Test-
ing

Massive unconstrained random testing produced by a random
test program generator.

Design is stable Overall design
check. Final search
for bugs

Hardware
Testing

Running large applications such as operating systems, and mas-
sive random generation of long tests.

Hardware is
functional

Final verification on
product itself

TABLE 1. Type of tests and their usage

Sign Exponent Mantissa
 1 100000000100100 1xxxxx100000000000000000000000000000000yyyyyyyy

TABLE 2. Template for an FP number which uncovers the Pentium II FIST32 bug

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Weeks

Bu
gs

Bugs found by various verification means

Genesys

Manual Testing

Commercial Test Suites

Applications

Functional Verification Methodology 17 December 1998 8

References.

[1] Y. Lichtenstein, Y. Malka and A. Aharon, “Model-Based Test
Generation For Processor Design Verification”, Innovative
Applications of Artificial Intelligence (IAAI), AAAI Press, 1994.
[2] H.P. Sharangpani, M.L. Barton, “Statistical Analysis of Floating
Point Flaw in the Pentium Processor”, Intel Corporation, 1994.
[3] F. Casaubieilh et al., “Functional Verification Methodology of
Chameleon Processor”, 33rd Design Automation Conference, Las
Vegas, June 1996, pp. 421-426.
[4] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y.
Malka, C. Metzger, M. Molcho, and G. Shurek, “Test Program
Generation for Functional Verification of PowerPC Processors in
IBM”, 32nd Design Automation Conference, San Francisco, June
1995, pp. 279-285.
[5] A. L. Sangiovanni-Vincentelli, P. C. McGeer, A. Saldanha,
“Verification of Electronic Systems”, 33rd Design Automation
Conference, pp. 106-111.
[6] J. Monaco, D. Holloway, R. Raina, “Functional Verification
Methodology for the PowerPC 604 Microprocessor”, 33rd. Design
Automation Conference, pp. 319-324.
[7] M. Kantrowitz, L. M. Noack, “I’m Done Simulating; Now
What?”, 33rd Design Automation Conference, pp. 325-330.
[8] D. Lewin, L. Fournier, M. Levinger, E. Roytman, G. Shurek,
“Constraint Satisfaction for Test Program Generation”, IEEE 14th
Phoenix Conference on Computers and Communications, 1995.
[9] Intel Pentium II flag erratum, Intel home page at: http://
developer.intel.com/design/news/flag/tech.htm
[10] G. Ganapathy, R. Narayan, G. Jorden, D. Fernandez, “Hardware
Emulation for Functional Verification of K5”, 33rd Design
Automation Conference, pp. 315-318.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

