
Dynamic Multipathing

Dynamic Multipathing

Improving data availability and I/O performance
through intelligent management of storage device access paths

by

Dhiren Patel

M.G. Venkatesha

with

Christopher Naddeo
Sathish Nayak

VERITAS Software Corporation

April 22, 2005

VERITAS ARCHITECT NETWORK

Dynamic Multipathing

Scope... 2
The Importance of Multiple Storage I/O Paths... 3
Different Forms of Multi-Path Access.. 5
Common Multi-Path Hardware Configurations.. 7
VERITAS Storage Foundation Dynamic Multipathing (DMP) ... 11
DMP Architecture... 19
DMP Device Discovery during System Operation... 22
I/O Path Failover with DMP... 23
DMP Configuration and Tuning Considerations .. 25
Using DMP with other Path Managers ... 29
Conclusion .. 39

Scope
This paper describes the Dynamic Multipathing (DMP) feature of the VERITAS Volume Man-
ager, a component of the VERITAS Storage Foundation. The DMP architecture described herein
was introduced with Volume Manager Version 3.5, and is the current architecture at the time of
publication. The paper should be used as a guide to understanding. For up-to-date information on
features and coverage, readers are urged to consult VERITAS documentation and support
sources.

VERITAS ARCHITECT NETWORK

Dynamic Multipathing

The Importance of Multiple Storage I/O Paths
The basic techniques for keeping business-critical computer applications and digital data
available to users despite hardware and software failures are well-known:
• Applications. Applications can be protected against server failures by interconnecting

two or more servers to form a cooperative cluster controlled by software that enables
an application running on any of the servers to fail over and restart on another, should
its own server fail.

• Data. Data can be preserved despite storage device failures by techniques such mir-
roring identical copies on two or more disks,1 and writing all updates to both simulta-
neously. Mirroring, sometimes called RAID-1, keeps data available if a disk fails, and
also improves I/O performance by making two or more disks available satisfy each
application read request.

But in enterprise data centers, there is another increasingly important link in the informa-
tion access chain—the I/O path that connects servers with the data they process. The I/O
path, represented in Figure 1, is a complex chain consisting of host bus adapter, cables,
storage network switch, storage device adapter port, and, in disk arrays, a disk controller.

Figure 1: General I/O Path Model

The I/O path shown in Figure 1 begins at a host bus adapter (HBA)2 that connects an I/O
cable to a server’s internal memory access bus. The cable connects the HBA to a corre-

1 In this paper, the term disk refers both to actual disk drives and to the logical units (LUNs) presented to

storage network ports by disk arrays.
2 Some HBAs have multiple ports, each of which is the starting point of a separate path through the

storage network. Since each port is effectively a separate HBA, the model is simplified by treating an
HBA as a port.

Disk Array
Controller

Port Port

Port Port
Switch

Port Port

HBA2HBA1

Host Server

I/O
Path

VERITAS ARCHITECT NETWORK

 3

Dynamic Multipathing

sponding port in a storage network switch. As Figure 1 suggests, the switch manages
logical connections between HBAs and ports within disk array controllers, or between
HBAs and disk drives. Disk array controllers, which typically have more than one port,
virtualize disks within the array and present them to the storage network as logical units,
or LUNs. 3

Usage Note
Each unique combination of these elements that can be used to communicate between a
host server and a LUN within a disk array or a disk connected directly to the network is a dis-
tinct I/O path.

Why Multiple I/O Paths?
With increasing deployment of storage networks, IT managers are becoming conscious of
the important role that I/O paths play in keeping data available. For example, two disks
mirrored by a host-based volume manager may be connected to their hosting server either
by the same I/O path, as shown on the left side of Figure 2, or by different paths, as
shown on the right. If multiple paths are available, mirroring not only protects against
data loss due to disk failure, it also protects against loss of access to data if an I/O path
element fails, as Figure 2 illustrates.

Figure 2: Multiple I/O Paths Improve Data Availability

The server on the left in Figure 2 cannot access its data when the cable between its HBA
and the network switch port fails, even though the storage itself remains completely func-
tional, because the cable is a single point of failure. The server on the right, on the other
hand, can continue to access data if one of its HBAs fails, if a cable fails, or even if one
of the disk array’s controllers fails, because in each case there is an alternate path that

3 In addition to disk array virtualization, both disks and LUNs are sometimes virtualized by appliances or

switches within the storage network, and by host-based volume managers such as VxVM. The virtual
devices that result from disk array virtualization are universally referred to as LUNs. Virtual devices
that result from switch and host-based virtualization are called virtual disks or volumes.

Alternate
Path

LUNs mirrored
by host-based volume manager

Disk Array
Controller

Port

Port
Switch

Port

HBA

Host Server

Failed element in
primary I/O path

Disk Array
Controller Controller

Port Port

Port Port
Switch

Port Port

HBA HBA

Host Server

VERITAS ARCHITECT NETWORK

 4

Dynamic Multipathing

does not include the failed element.
Thus, a second independent path between server and storage increases the number of
component failures an I/O subsystem can withstand without loss of function. But even
with an alternate path, I/O path failure can still be tantamount to storage device failure
unless the system recognizes that it has an alternate path and reroutes I/O requests to it. If
a server does not recognize an alternate path to a storage device, the device may as well
have failed. Even with failure-tolerant mirrored devices, for example, only devices on
still-functioning paths are updated after a path failure. Data redundancy is diminished,
even though the unreachable device is still functional. Moreover, I/O performance de-
creases because one less device is available to satisfy read requests.
Thus, an ability to recognize and utilize alternate I/O paths to storage devices would
clearly be preferable. If a path failed, I/O requests would be rerouted to the alternate. Mir-
rored data would remain fully protected, and the effect on I/O performance would be
smaller.
Multiple I/O paths between server and storage device can also improve I/O performance.
In many applications, disk arrays satisfy a significant percentage of I/O requests from
cache. For example most disk arrays recognize sequential read patterns, and begin to read
data into cache in advance of host I/O requests. In this scenario, I/O path bandwidth can
actually limit LUN performance. With multiple I/O paths to a LUN however, all can be
deliver concurrently as fast as applications request it. Similarly, if an I/O path that pro-
vides access to multiple LUNs becomes momentarily overloaded due to activity on one
LUN, other LUNs’ I/O requests can be rerouted to less-busy paths.

Different Forms of Multi-Path Access
Disks and disk arrays support multi-path access to LUNs in several different ways. Fun-
damentally, there is a distinction between:
• Active-active. If a disk array accepts and executes I/O requests to a single LUN on

two or more ports simultaneously, it is called an active-active (A/A) array. If a path to
an active-active array fails, I/O requests can simply be rerouted to other paths, main-
taining continuous access to data stored on the array’s LUNs.
EMC’s Symmetrix and DMX arrays, Hitachi Data Systems’ 9900 Series (Lightning),
and IBM’s ESS series (Shark) are active-active arrays.

• Active-passive. If a disk array accepts and executes I/O requests to a LUN on one or
more ports on one array controller (the primary), but is able to switch, or “fail over,”
access to the LUN to alternate ports (secondaries) on other array controllers, it is
called active-passive (A/P).
EMC’s Clariion Cx600 and Cx700, Hitachi Data Systems’ 95xx and 9200 series, IBM
FASt-T, and Sun’s T3 and T4 are active-passive arrays.

In addition to this broad classification, active-passive disk arrays capabilities differ in
three ways that affect availability and I/O performance:
• Multiple primary paths. If an active-passive array accepts and executes simultaneous

VERITAS ARCHITECT NETWORK

 5

Dynamic Multipathing

I/O requests to a LUN on two or more ports of the same array controller, it is called
an active-passive concurrent (A/PC) array. Active-passive concurrent arrays’ LUNs
fail over to secondary paths on alternate array controllers only when all primary paths
have failed. Most active-passive arrays can be configured for active-passive concur-
rent operation.
EMC’s CLARiiON, Hitachi Data Systems’ 9500V series, IBM’s FASt-T, and Sun’s T3
and T4 are active-passive concurrent arrays.

• Explicit failover. Some active-passive arrays fail over from primary I/O paths to sec-
ondary ones automatically when they receive an I/O request to a LUN on a secondary
path. Others fail over only when they receive special array model-specific SCSI
commands from their hosts. Explicit failover simplifies support for active-passive ar-
rays in clusters, where multiple hosts can issue I/O requests directly to LUNs. With-
out explicit failover capability, cluster software must carefully synchronize all hosts’
access to a LUN before initiating implicit failover so that I/O requests from multiple
hosts do not result in continuous failovers.4
Sun Microsystems T3 and T4 arrays are capable of explicit failover.

• LUN group failover: In general, LUNs fail over from one array controller to another
individually. Some active-passive arrays, however, can fail administratively defined
groups of LUNs over together. Arrays with this capability are called active-passive
with group failover capability (A/PG).. If all primary paths to a LUN in an A/PG ar-
ray fail, all the LUNs in its group fail over to secondary paths. LUN group failover is
faster than failover of individual LUNs, and can therefore reduce the application im-
pact of array controller failure, particularly in disk arrays that present large numbers
of LUNs.
Hitachi Data Systems’ 9200 series arrays are capable of LUN group failover.

As discussed in later sections, the dynamic multipathing (DMP) feature of the VERITAS
Volume Manager has a modular architecture that makes it possible to integrate support
for new and different types of multi-path access control quickly and easily.

Discovering Multiple I/O Paths
UNIX operating systems “discover” the storage devices that are accessible to them auto-
matically when they start up. Operating system device discovery consists of:
• Scanning I/O buses or querying storage network fabrics to determine which bus or

network addresses connect to actual disks or LUNs
• Creating in-memory data structures in the operating system device tree that identify

and describe discovered devices
• Loading any specialized drivers required to utilize the devices

4 At the time of publication, DMP supports explicit failover of Sun Microsystems’ StorEdge T3 and T4

arrays only when they are connected to Solaris servers. Because disk array capabilities and DMP
support for them are enhanced frequently, users are advised to consult both VERITAS and disk array
vendor product documentation and support information sources for up-to-date information.

VERITAS ARCHITECT NETWORK

 6

Dynamic Multipathing

At the end of device discovery, an operating system has an in-memory database, or de-
vice tree, that represents the storage devices with which it can communicate, and has
loaded the drivers required to control them.
To an operating system, a storage device is an address on a network that responds appro-
priately to SCSI storage device commands. UNIX operating systems are not inherently
multi-path aware. They view a storage device accessible on two or more paths as two de-
vices at different network addresses. Path management software, such as VERITAS Stor-
age Foundation’s Dynamic Multipathing (DMP) discussed starting on page 11, is re-
quired to analyze the device tree and identify multi-path devices. DMP’s discovery proc-
ess and the modifications it makes to the operating system device tree are described start-
ing on page 12.

Common Multi-Path Hardware Configurations
The hardware elements that comprise I/O paths can be configured in a variety of ways
that affect both system resiliency and I/O performance. The sections that follow describe
the most commonly encountered multi-path hardware configurations.

Directly Connected Disk Arrays
Although it is not often encountered in practice, the simplest multi-path hardware con-
figuration consists of a disk or disk array that can present LUNs on two or more ports,
each of which is connected directly to a host bus adapter (HBA) on a hosting server.
Figure 3 illustrates this configuration.

Figure 3: Directly Attached LUNs5

The array illustrated in Figure 3 contains four LUNs, each of which is accessible on both
of its controller ports. UNIX operating systems would discover the same four LUNs on
both paths, so an operating system device tree would contain a total of eight device en-
tries (two for each LUN).
This array might be active-active (able to present LUNs on both ports simultaneously), or
active-passive (able to present a LUN on either port, but not on both). If it were active-

5 For simplicity, and the figures that follow show artificially small numbers of LUNs. Figure 3

Disk Array
Controller 1 Controller 2

Port2Port1

HBA2HBA1

Host Server
“Devices” discovered by operating system: 8

Paths: 2

LUNs: 4 A B C D

VERITAS ARCHITECT NETWORK

 7

Dynamic Multipathing

passive, the array might or might not be capable of explicit failover and LUN group
failover. With only one port per controller however, the array could not provide active-
passive concurrent LUN access.

Disk Arrays Connected to a Storage Network
A more common multi-path configuration, especially in large data centers, uses a storage
network to connect host computers and disk arrays. Figure 4 illustrates this configuration.
In the example of Figure 4, each HBA can connect through the switch to each of the disk
array’s controller ports. There are therefore four unique paths between server and disk
array:
• HBA1↔Port1↔Port3↔Port5
• HBA1↔Port1↔Port4↔Port6
• HBA2↔Port2↔Port3↔Port5
• HBA2↔Port2↔Port4↔Port6
In this configuration, operating system discovery would report a total of 16 devices (four
LUNs on each of the four paths).

Figure 4: I/O Paths Through a Non-Redundant Storage Network

As with the configuration in Figure 3, the array illustrated in Figure 4 might be active-
active or active-passive, with or without explicit and LUN group failover capability.
Again, with only one port per controller, active-passive concurrent operation would not
be possible. Even if this array were active-passive, concurrent execution of I/O requests
to a LUN from both HBAs might be possible, although both would access the same con-
troller port, e.g.:
• HBA1↔Port1↔Port3↔Port5
• HBA2↔Port2↔Port3↔Port5
This might be slightly advantageous from an availability point of view, since it eliminates
failover time for failures of path elements on the host side of the switch, but there is no

Disk Array
Controller Controller

Port6Port5

Port4Port3
Switch

Port2Port1

HBA2HBA1

Host Server

“Devices” discovered by operating system: 16

Paths: 4

LUNs: 4 A B C D

VERITAS ARCHITECT NETWORK

 8

Dynamic Multipathing

performance benefit, because access to any given LUN is limited by the performance of
the single controller port on which it is presented.

Disk Arrays Connected to Redundant Storage Networks
A common (and good) storage network design practice, illustrated in Figure 5, is the con-
figuration of identical parallel fabrics connected to the same storage devices and servers,
but not to each other. With this configuration, even a complete storage network outage
(e.g., a total switch or director failure) leaves all host servers still able to communicate
with all storage devices.
In the configuration illustrated in Figure 5, each HBA is connected to a different fabric
(represented in the figure by a single switch for simplicity). Similarly, each disk array
port is connected to a different fabric, creating two paths between any LUN and the host
computer:
• HBA1↔Port1↔Port3↔Port5
• HBA2↔Port2↔Port4↔Port6
Operating system discovery would report a total of eight devices (four on each of the two
paths).

Figure 5: Multiple I/O Paths in a Storage Network with Redundant Fabrics

As in the preceding configurations, this array might be capable of either active-active or
active-passive operation. If active-passive, it might be capable of explicit and LUN group
failover. But with only one port per controller, active-passive concurrent LUN access
would not be possible.

Disk Arrays with Multi-Port Controllers Connected to Multiple Storage
Network Fabrics
The configuration shown in Figure 6 is similar to that of Figure 5 in that it includes two
parallel fabrics. It differs, however, in that each array controller has two ports. The array
can present each LUN on any of four ports (for simplicity, only the port connections for

Disk Array
Controller Controller

Port6Port5

Port4Port3
Switch Switch

Port1 Port2

HBA2HBA1

Host Server

“Devices” discovered by operating system: 8

Paths: 2

LUNs: 4 D A B C

VERITAS ARCHITECT NETWORK

 9

Dynamic Multipathing

LUNs B and C are shown). Operating system discovery would report 16 LUNs—each
actual LUN would be reported on all four paths:
• HBA1↔Port1↔Port3↔Port5
• HBA1↔Port1↔Port7↔Port9
• HBA2↔Port2↔Port4↔Port6
• HBA2↔Port2↔Port8↔Port0
The disk array in Figure 6 might be active-active or active-passive, and if active-passive,
might be capable of explicit failover and LUN group failover. Because each array con-
troller has two ports, active-passive concurrent operation is possible. LUNs might be pre-
sented on primary ports 5 and 9, for example, with ports 6 and 0 designated as secondary
ports. EMC Clariion Cx700 arrays can be configured in this fashion.

Figure 6: Multi-Port Controllers Connected to Redundant Fabrics

Disk Arrays with Multi-Port Controllers Cross-Connected to Redundant
Fabrics
The configuration illustrated in Figure 7 is identical to that of Figure 6 with the exception
that each disk array controller is connected to both fabrics. Each LUN can be accessed on
any of the four ports (again, for simplicity, Figure 7 illustrates only the LUN B and C
port connections.)
Operating system discovery would report each LUN on four paths:
• HBA1↔Port1↔Port3↔Port5
• HBA1↔Port1↔Port7↔Port6
• HBA2↔Port2↔Port4↔Port9
• HBA2↔Port2↔Port8↔Port0
From a path management point of view, this configuration is identical to the preceding
one. It might offer slightly better availability since a controller failure would still leave

Disk Array
Controller Controller

Port6Port5 Port0Port9

Port4Port3 Port8Port7
Switch Switch

Port1 Port2

HBA2HBA1

Host Server

“Devices” discovered by operating system: 16

Paths: 4

LUNs: 4 A B C D

VERITAS ARCHITECT NETWORK

 10

Dynamic Multipathing

both fabrics usable (unlike the configuration in Figure 6). Similarly, failure of a fabric
would leave the disk array able to use both of its controllers, eliminating the need for path
failover.

Figure 7: Multi-Port Controllers Cross-Connected to Redundant Fabrics

VERITAS Storage Foundation Dynamic Multipathing
(DMP)
Effective use of multiple I/O paths requires both awareness of storage network topology
and an ability to execute pre-defined policies automatically in response to rapidly chang-
ing conditions in the I/O subsystem. The VERITAS Storage Foundation’s Dynamic Mul-
tipathing (DMP) feature automates the management of multiple I/O paths between serv-
ers and storage devices in accordance with pre-defined administrative policies. DMP en-
hances I/O subsystem availability and I/O performance in three ways:
• Data availability. If an I/O path to a multi-path storage device fails, DMP automati-

cally reroutes I/O requests to an alternate path transparently to applications and with-
out administrator intervention. When a failed path returns to service, DMP restores
the original path configuration automatically and transparently as well.

• I/O performance. For disk arrays that support simultaneous access to a single storage
device on multiple paths, DMP enhances I/O performance by distributing I/O requests
across all available paths according to pre-defined load balancing policies.

• Application resiliency. In cluster configurations, DMP improves application avail-
ability by eliminating application failovers that would otherwise result from I/O path
failures.

In addition to these, DMP makes it possible to manage both storage virtualization and I/O
path policies from a single console or graphical interface because it is part of the

Disk Array
Controller Controller

Port6Port5 Port0Port9

Port4Port3 Port8Port7
Switch Switch

Port1 Port2

HBA2HBA1

Host Server
“Devices” discovered by operating system: 16

Paths: 4

LUNs: 4 A B C D

VERITAS ARCHITECT NETWORK

 11

Dynamic Multipathing

VERITAS Storage Foundation Volume Manager (VxVM).

DMP In the UNIX Storage I/O Software Stack
DMP is a layer in the UNIX storage I/O software stack. While different platforms’ im-
plementations differ in detail, UNIX I/O software stacks share a common overall struc-
ture, simply because all perform the same basic functions to provide I/O services. Figure
8 shows a simplified model of a generic UNIX storage I/O software stack that includes
VxVM and DMP.

Figure 8: Generic Model of the UNIX Storage I/O Software Stack

In a typical server, almost all I/O requests to a server’s I/O subsystem are issued by a file
system (in some cases, database managers issue I/O requests to “raw” storage). File sys-
tems issue their I/O requests to VxVM virtual volumes (e.g.,
/dev/vx/rdsk/diskgroup/volume). The VxVM virtualization layer converts them
into equivalent requests to physical disks or LUNs. For example, if a file system issues a
write request to a mirrored volume, the VxVM virtualization layer converts it into write
requests to corresponding block ranges of each of the mirrors that comprise the volume.
Path management software like DMP necessarily occupies a position below virtualization
in the I/O stack. It receives I/O requests from the VxVM virtualization layer, determines
which path should carry each one, and issues it to the operating SCSI system driver on
that path. UNIX operating systems have two layers of storage I/O drivers—a SCSI layer
that converts operating system I/O request structures into SCSI command data blocks
(CDBs) and one that sends and receives messages containing CDBs and data on the stor-
age network or I/O bus.

DMP and Device Discovery
As discussed earlier (page 6), UNIX operating systems discover the I/O devices that are
accessible to them when they start up. Following operating system discovery, the VxVM
configuration daemon, vxconfigd, discovers information that VxVM requires and cre-

HBA2HBA1

Host Server

VxVM Virtualization Layer

DMP Path Management Layer

Operating System SCSI Driver

File System or Database Manager

Operating System HBA Drivers

to
storage devices

VERITAS ARCHITECT NETWORK

 12

Dynamic Multipathing

ates in-memory data structures that describe (among other things) devices’ multi-path
capabilities.

DMP Multi-Path Devices in the Operating System Device Tree
For each disk or LUN it detects, a UNIX operating system creates data structures some-
times called nodes or device handles, in its device tree. For example, the Solaris operat-
ing system creates nodes in both the /dev/rdsk and /dev/dsk paths for each device it
detects. If a device is accessible on two or more paths, operating systems treat each path
as a separate device, and create nodes corresponding to each path.
During its discovery process, VxVM’s vxconfigd daemon creates similar structures
called metanodes in the /dev/vx/rdmp and /dev/vx/dmp trees for each storage device
it detects. Each metanode represents a metadevice, a VxVM abstraction that corresponds
to a disk or LUN and all the I/O paths on which it can be accessed. The VxVM virtualiza-
tion layer issues its I/O requests to these metadevices.
The vxconfigd daemon identifies multiple paths to a device by issuing a SCSI inquiry
command to each operating system device. A disk or LUN responds to a SCSI inquiry
command with information about itself, including vendor and product identifiers and a
unique serial number. An administrator can use the command
/etc/vx/diag.d/vxdmpinq to issue a SCSI inquiry to a device and display the re-
sponse, as Dialog 1 illustrates.

dcsun51 $/etc/vx/diag.d/vxdmpinq /dev/vx/rdmp/HDS9970V0_4s2
Inquiry for /dev/vx/rdmp/HDS9970V0_4s2, evpd 0x0, page code 0x0, flags 0x4
 Vendor id : HITACHI
 Product id : OPEN-9 -SUN
 Revision : 2106
 Serial Number : 045175F30009

Dialog 1: Information Returned by SCSI Inquiry Command

If two operating system devices respond to SCSI inquiry commands with the same serial
number, they are in fact the same physical disk or LUN responding on two different
paths.6
If VxVM discovery encounters only one instance of a particular serial number, the device
can only be accessed on a single path. DMP links its metanode for each single-path de-
vice to the corresponding node in the operating system tree, as Figure 9 illustrates, and
marks the device for “fast path” access by the VxVM virtualization layer. During system
operation, the VxVM virtualization layer sends I/O requests to fast-path devices directly
to the operating system’s SCSI driver without passing them to DMP.

6 A consequence of this method of detecting multiple paths to a device is that DMP can only support

disks and LUNs that return the same unique disk identifier in response to SCSI inquiry commands on
all paths. This is generally true for path management software.

VERITAS ARCHITECT NETWORK

 13

Dynamic Multipathing

/dev/vx/rdmp/c1t0d0s2 DMP metanode

/dev/rdsk/c1t0d0s2 Operating sys-
tem device tree

node

Figure 9: VxVM Subtree for a Single-Path Device (Solaris)

A device that is accessible on multiple paths returns the same serial number to inquiry
commands on all paths. When DMP encounters the same serial number on different
paths, it creates a metanode and links it to all operating system nodes that represent paths
to the device, as Figure 10 illustrates.

/dev/vx/rdmp/c1t0d0s2 DMP metanode

Figure 10: VxVM Subtree for a Dual-Path Device (Solaris)

An administrator can use the vxdisk path command to display information about
VxVM metadevices and the paths to which they correspond, as Dialog 2 illustrates.

vxdisk path
SUBPATH DANAME DMNAME GROUP STATE
c1t0d0s2 c1t0d0s2 mydg01 mydg ENABLED
c2t0d0s2 c1t0d0s2 mydg01 mydg ENABLED
c1t1d0s2 c1t1d0s2 mydg02 mydg ENABLED
c2t1d0s2 c1t1d0s2 mydg02 mydg ENABLED

Dialog 2: vxdisk path Command for Multi-Path Disks

For the dual-path device illustrated in Figure 10, the vxdisk path command in Dialog
2 shows the metanode c1t0d0s2 (in the /dev/vx/rdmp subtree) as corresponding to
operating system nodes c1t0d0s2 and c2t0d0s2. Information displayed by the VxVM
vxdisk path command includes:
• The disk access name (DANAME, or VxVM metanode name, e.g., c1t0d0s2 in Dialog

2) of each metadevice. The DANAME is the name used by the operating system to
manage the LUN.

• The disk media name (DMNAME, or VxVM user-friendly device name, e.g., mydg01

/dev/rdsk/c1t0d0s2 /dev/rdsk/c2t0d0s2

Operating system
device nodes

VERITAS ARCHITECT NETWORK

 14

Dynamic Multipathing

in Dialog 2), of each metadevice. The DMNAME is used in VxVM management opera-
tions.

• The operating system device nodes (SUBPATHs) corresponding to each metadevice
(e.g., c1t0d0s2 and c2t0d0s2 corresponding to VxVM metanode c1t0d0s2 in
Dialog 2)

• The VxVM disk group membership of metadevices (mydg in Dialog 2)
• The operational state of each metadevice on all access paths. Dialog 2 indicates that

all paths are ENABLED, or eligible to handle I/O requests. Paths may also be
DISABLED, either by administrative command, or by DMP itself it fails to recover
from an I/O error.

DMP I/O Load Balancing Policies
In most instances, DMP is installed primarily to increase data availability by keeping
storage devices accessible when I/O paths fail. When all paths are operational, however,
DMP can also improve a device’s I/O performance by routing each request to the most
appropriate path. Using structures similar to that shown in Figure 10, DMP can choose
the optimal path on which to route each file system I/O request.
The “optimal” path to a device can change over time based on I/O load, but path selection
can also be a matter of system policy. At the time of publication, DMP includes six dif-
ferent I/O request routing policies that can be applied to multi-path storage devices to in-
fluence the balancing of I/O requests across paths. The paragraphs that follow describe
these six policies.

Balanced Path Routing
DMP’s balanced path policy routes I/O requests to paths based on the starting block ad-
dresses they specify. Effectively, this policy divides a device’s block address space into
as many disjoint regions as there are active paths, and assigns each I/O request to a path
that corresponds to the region in which the data it transfers falls.
For LUNs using the balanced path policy, DMP divides the starting data address speci-
fied each I/O request by the system-wide parameter DMP_PATHSWITCH_BLKS_SHIFT
and discards the remainder. The quotient of the division modulo the number of active
paths is used to index the active path used to issue the I/O command.
As an example, Figure 11 illustrates the balanced path I/O policy for an active-active de-
vice with two paths. For graphic simplicity, DMP_PATHSWITCH_BLKS_SHIFT has an ar-
tificially low value of 4. In this example, DMP would route read and write requests that
specify a starting block addresses between 00 and 03 to path c1t0d0s0, those that spec-
ify one of blocks 04-07 to path c2t0d0s0, those that specify one of blocks 08-11 to path
c1t0d0s0, and so forth.

VERITAS ARCHITECT NETWORK

 15

Dynamic Multipathing

/dev/vx/dmp/c1t0d0s0DMP metanode

Figure 11: Balanced I/O Policy Path Selection

To illustrate the general algorithm, for a read or write request specifying a starting ad-
dress of block 13, DMP would divide the address by DMP_PATHSWITCH_BLKS_SHIFT
(13/4), giving an integer quotient of three. Three modulo the number of active paths (two)
is one, so DMP would issue an I/O request to the operating system SCSI driver on path 1
(operating system device c2t0d0s0).
The balanced path policy is DMP’s default policy for active-active arrays’ LUNs (in ear-
lier versions of DMP, it was the only available policy). It is particularly useful for high-
speed sequential reading from active-active disk arrays and dual-port disk drives with
read-ahead cache. Aligning the value of DMP_PATHSWITCH_BLKS_SHIFT with the se-
quential I/O request size causes DMP to route successive requests to alternate paths,
which frequently allows data for two or more requests to transfer concurrently.
The default value for DMP_PATHSWITCH_BLKS_SHIFT is 2048 blocks, or 1 megabyte.
The value can be overridden for individual arrays by using the setattr option of the
vxdmpadm command. Overriding the global PATHSWITCH_BLKS_SHIFT value is useful
in systems connected to two or more different types of arrays.

Round-Robin Routing
The round-robin I/O request routing policy attempts to issue an equal number of I/O re-
quests on each active I/O path to a device. For each request, DMP computes a pseudo-
random number and assigns a path based on the computed number modulo the number of
active paths.
The round-robin policy is useful when most I/O requests to a LUN specify approximately
the same amount of data transfer, and in storage networks whose loading is relatively
evenly distributed. Round robin is the default DMP policy for active-passive concurrent
arrays with multiple primary paths enabled.

Minimum Queue Length Routing
The minimum queue length policy routes each I/O request to the active path with the

 00 01 02 03 04 05 06 07 08 09 10 11 13
 12

 13
 12

 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

/dev/dsk/c1t0d0s0 /dev/dsk/c2t0d0s0 Path 1 Path 0

DMP_PATHSWITCH_BLKS_SHIFT=4

● ● ●
Storage device blocks

VERITAS ARCHITECT NETWORK

 16

Dynamic Multipathing

smallest number of outstanding requests. Each time DMP assigns a request to a path, it
increments the path’s outstanding request counter. Each time a request completes, the
path’s request counter is decremented. For each new request, DMP selects the path with
the smallest outstanding request counter value. This policy tends to counteract momen-
tary load imbalance automatically, as for example, when a path bottlenecks because of
error retries or overload from other LUNs.

Adaptive Routing
The adaptive routing policy allows DMP to dynamically route I/O requests based on cal-
culated path priorities. When this policy is in effect, DMP records the service time and
amount of data transferred for each request, and periodically calculates a priority for each
path based on its recent throughput (bytes per second). The priority calculation algorithm
produces higher priorities for paths that have recently delivered higher throughput. In-
coming I/O requests are routed to paths in proportion to the paths’ relative priorities. For
example, if there are three active paths whose priorities are calculated as 3, 2, and 1 re-
spectively, half of incoming requests are routed to path 1, a third to path 2, and the re-
maining sixth to path 3. As total I/O load on higher priority paths increases, the paths
tend to deliver lower throughput, resulting in lower priorities on the next recalculation
cycle.
The adaptive policy is useful with rapidly varying I/O loads, such as database applica-
tions that include both transactions (short transfers) and periodic table scans (long trans-
fers). It is also useful in storage networks where different paths have discernibly different
average performance, such as paths with different numbers of network “hops” or individ-
ual links of different speeds.

Priority Routing
With the priority routing policy, DMP routes requests based on path priority as with the
adaptive policy. Path priorities are assigned by administrators rather than calculated by
DMP, however, and do not change without administrative action. The priority routing
policy allows administrators to assign path priorities based on considerations other than
performance, such as applications’ relative importance to an enterprise.

Single Active Path (Preferred Path) Routing
As its name implies, the single active path policy causes DMP to route all I/O requests to
one path (called the preferred path). Only if the preferred path fails does DMP route I/O
to a secondary one. The single active path policy is the default for non-concurrent active-
passive arrays. If this policy is configured for a LUN in an active-active array, DMP
routes all I/O requests to the single active path; other paths are not used unless the active
one fails.

VERITAS ARCHITECT NETWORK

 17

Dynamic Multipathing

Usage Note
I/O performance of active-passive arrays can be influenced by the assignment of different
LUNs’ preferred paths to different controllers. For example, in an array with two controllers,
odd numbered LUNs might be assigned to one controller and even numbered LUNs to the
other. If certain LUNs are known a priori to be heavily loaded, their primary path assign-
ments can be distributed across controllers.

Determining the Effect of DMP Load Balancing Policies
Administrators can monitor the effect of any of these load balancing policies by using the
vxdmpadm iostat command, as Dialog 3 illustrates.

dcsun51 $vxdmpadm iostat show all
 cpu usage = 19733393us per cpu memory = 32768b
 OPERATIONS MBYTES AVG TIME(ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c0t1d0s2 159 0 79 0 10.670886 0.000000
c0t0d0s2 20 7 1220 162 0.042623 0.203704
c2t3d13s2 870 236 17426 2158 0.205153 0.101946
c3t3d13s2 334 4 15684 56 0.173871 0.017857
c2t3d12s2 9127 507 9236 18365 0.251299 0.076940
c3t3d12s2 45 649 255 18632 0.152941 0.074281
c2t3d11s2 1311 11 2068 185 0.133946 0.021622
c3t3d11s2 0 1 0 8 0.000000 0.000000
c2t3d10s2 1241887 1200897 19851284 19849637 0.306276 0.213964
c3t3d10s2 1241300 1285848 19850538 19968007 0.274636 0.190663
c2t3d9s2 1240586 1200829 19849347 19850382 0.288218 0.215717
c3t3d9s2 1240839 1204491 19852391 19886690 0.255909 0.190155
c2t3d8s2 1240585 1200814 19849319 19850598 0.272347 0.241037
c3t3d8s2 1241296 1199258 19850357 19878681 0.241508 0.213279
c2t3d7s2 1240584 1201024 19849315 19850304 0.293359 0.242801
c3t3d7s2 1246021 1201910 19846281 19881291 0.262374 0.215197
c2t3d6s2 1311 12 2068 161 0.132495 0.031056
c3t3d6s2 0 1 0 8 0.000000 0.000000
c2t3d5s2 10 18 131 800 0.473282 0.013750
c3t3d5s2 0 1 0 8 0.000000 0.000000
c2t3d4s2 17059295 11930299 137101333 76064118 0.102189 0.158222
c3t3d4s2 6703 2242672 625389 2373697 0.034997 0.899039
c2t3d3s2 82888 1923459 652854 8340732 0.291318 0.180282
c3t3d3s2 82119 913373 549421 4490416 0.357065 0.189884
c2t3d2s2 21 0 10 0 5.600000 0.000000
c3t3d2s2 0 0 0 0 0.000000 0.000000
c2t3d1s2 21 0 10 0 6.400000 0.000000
c3t3d1s2 0 0 0 0 0.000000 0.000000
c2t3d0s2 21 0 10 0 5.400000 0.000000
c3t3d0s2 0 0 0 0 0.000000 0.000000

Dialog 3: DMP Collection of I/O Statistics

The output of the vxdmpadm iostat command displays both the number of read and
write operations, the amount of data read and written, and the average execution time for
reads and writes for each path since VxVM’s iostat daemon was started, or since its

VERITAS ARCHITECT NETWORK

 18

Dynamic Multipathing

counters were last reset (using a variant of the same command). The command can be
executed at intervals to determine the efficacy of a given load balancing algorithm under
actual system I/O loads.

DMP Architecture
Because its value is greatest in large enterprise data centers, DMP is more often used with
disk array LUNs than with directly attached disks. Although disks and disk arrays adhere
to standards for data transfer (SCSI, Fibre Channel and iSCSI), each disk array model has
its own unique way of controlling multi-path LUN and disk access. To support a particu-
lar disk array model, DMP must be customized to handle the array’s multi-path access
capabilities and to interact properly with its interface protocols. The need to support new
disk array models as they reach the market rather then on VxVM release cycles prompted
the introduction of a unique array support architecture in Version 3.2 of VxVM. This ar-
chitecture keeps DMP integrated with VxVM, but at the same time makes it easy to add
multi-path access support for new disk array models rapidly and efficiently. The DMP
array support architecture is available in the form of a software development kit (SDK)
that VERITAS Enabled partners can use to develop DMP support for new disk array mod-
els independently of VxVM releases.

DMP Support for Different Disk Array Models
Disk arrays with multi-path LUN access capability may be supportable by DMP without
custom software. DMP can manage multi-path access to a disk array’s LUNs by treating
them as disks, provided that the array has the following properties:
• Multi-path access to LUNs is active-active
• LUNs respond to SCSI inquiry commands with unique serial numbers, and each

LUN’s serial number is reported identically on all paths
• LUNs’ unique serial numbers can be read from the SCSI standard mode page location
If an array has these properties, the vxddladm command with the addjbod option can
be used to add its LUNs (identified by the vendor ID and product ID reported in response
to SCSI inquiry commands) to DMP’s list of JBOD (physical disk) devices.

Array Support Libraries
For arrays that require more specialized handling, DMP’s architecture provides for array-
specific array support libraries (ASLs) for discovery and configuration and kernel mode
array policy modules (APMs) that perform array-specific functions in the I/O path.
Figure 12 illustrates how ASLs and APMs fit into VxVM’s configuration facilities and
I/O path, with emphasis on the relationship to the vxconfigd configuration daemon.

VERITAS ARCHITECT NETWORK

 19

Dynamic Multipathing

ASL 1 File System

Figure 12: The DMP Device Discovery Layer (DDL) Architecture

After operating system device discovery, VxVM’s vxconfigd daemon executes its own
discovery process to elicit the information it requires to operate, and builds its own de-
vice tree of nodes similar to those illustrated on page 14. For each device in its tree,
VxVM’s Device Discovery Layer (DDL) calls each installed ASL in turn until an ASL
“claims” the device based on its vendor and product identifiers (as shown in Dialog 1 on
page 13). The claim associates an array model with the device, which in turn determines
the set of APMs that vxdmp invokes to perform such functions as I/O path selection, path
failover, and SCSI reservation and release.
All ASLs that ship with VxVM are installed by default during VxVM installation. Dialog
4 lists the ASLs installed on a typical Solaris system, and the types of storage devices
they support.

dcsun51 $vxddladm listsupport
LIBNAME VID PID
==
libvxap.so SUN All
libvxatf.so VERITAS ATFNODES
libvxeccs.so ECCS All
libvxemc.so EMC SYMMETRIX
libvxfujitsu.so FUJITSU GR710, GR720, GR730
libvxhds.so HITACHI All
libvxhitachi.so HITACHI DF350, DF400, DF400F
libvxlsiinf.so LSI INF-01-00
libvxnec.so NEC DS1200, DS1200F, DS3000SL
libvxpurple.so SUN T300
libvxrdac.so VERITAS RDACNODES
libvxsena.so SENA All
libvxshark.so IBM 2105
libvxssa.so SSA SSA
libvxstorcomp.so StorComp OmniForce
libvxveritas.so VERITAS All
libvxvpath.so IBM VPATH_NODES
libvxxp256.so HP All
libhtc9900V.so HITACHI All

Dialog 4: Partial Listing of DMP Array Support Libraries

Because the vxconfigd daemon calls each installed ASL for each device during discov-
ery, deactivating ASLs that are not required (e.g., because no storage devices of the types

vxconfigd DDL

vxdmp Drivervxio Driver

APM 1 APM n

ASL n

●
●

Configuration path

Read/write path
User

Kernel

●

VERITAS ARCHITECT NETWORK

 20

Dynamic Multipathing

they support are connected) can dramatically improve the speed with which a system
starts up. Dialog 5 illustrates the sequence of VxVM commands for deactivating an un-
used ASL (the ASL remains installed and can be reactivated).

vxddladm excludearray libname=libvxvpath.so
vxdctl enable

Dialog 5: Deactivating an Unused ASL

When an ASL is deactivated in this way, the multi-path properties of the LUNs it controls
do not change until VxVM discovery runs. During VxVM discovery, LUNs that had been
controlled by a deactivated ASL are classified as generic disks. After the vxddladm
command in Dialog 5 deactivates an ASL, the vxdctl enable command
causes DMP discovery and reconstruction of its metanodes to reflect changes in device
multi-path capabilities.
ASLs can be installed dynamically while VxVM is running. This makes it possible to add
multi-path access control for new disk array models without stopping VxVM or rebooting
the system. Installing an ASL does not automatically cause VxVM to recognize LUNs
presented by new arrays, however. After ASL installation, the vxdctl enable VxVM
command must be run to cause VxVM to discover new devices and their multi-path ca-
pabilities. Alternatively, if the locations of newly added devices are known, the vxdisk
scandisks command can be issued with constraints to cause a (faster) partial device
scan.

Array Policy Modules
Array Policy Modules (APMs) are dynamically loadable kernel modules invoked by the
vxdmp driver to perform disk array-specific path selection and failover, error processing,
and SCSI reservation and release. DMP includes default procedures for these common
functions; installing an APM overrides the default procedure for all arrays whose array
models refer to it.
As shipped by VERITAS, DMP APMs support generic active-active, active-passive, ac-
tive-passive with group failover, in both single-host and multi-host configurations. Each
array model includes a set of vectors that point to functions which implement policies
such as:
• I/O request routing, using one of the six built-in policies discussed earlier (page 15)
• Error handling, including analysis, recovery, and DMP state changes. Built-in error

handling policies include inquiry (the most common policy, described later), read-
only path (for certain active-active array conditions such as EMC Symmetrix non-
disruptive upgrade), and coordinated failover and failback for active-passive arrays in
clusters

• Get Path State, for obtaining information about current path and device configuration
for use in error handling and elsewhere

• LUN group failover, for active-passive arrays that support concurrent failover of en-

VERITAS ARCHITECT NETWORK

 21

Dynamic Multipathing

tire LUN groups triggered a single event
• Explicit failover, for arrays that support explicit failover functionality (page 6)
• Failover path selection, using first available path, primary path preferred, or other

alternate path selection algorithms
DMP includes one or more default procedures for each of these policies. Custom APMs
that implement array-specific procedures can be substituted by creating array models that
vector to the procedures that implement custom functions.

DMP Device Discovery during System Operation
If a system’s storage device configuration changes, for example because a device fails, or
because additional disks or arrays are added, these must be discovered as well. Rebooting
an operating system after a storage configuration change causes discovery, but rebooting
is almost never desirable, especially for enterprise-class systems. UNIX operating sys-
tems therefore provide commands that an administrator can invoke to discover storage
devices on demand. Table 1 lists the device discovery commands in each of the UNIX
operating systems supported by DMP.

Operating
System Storage Device Discovery Commands

Solaris devfsadm command performs subsystem scan, updates the device tree and loads
drivers as necessary

AIX cfgmgr command performs subsystem scan, updates the device tree and loads
drivers as necessary

HPUX
Administrators should use the ioscan command to survey the old configuration,
followed by the insf -e command to update the device tree and load drivers as
necessary.

Linux makedev command can be used to update the device tree, but I/O subsystem scan
and driver loading are only done at boot time.

Table 1: UNIX Operating System Commands for Run-Time Storage Device Discovery

VxVM Device Discovery During Operation
Whenever an operating system rediscovers its storage configuration, VxVM must also
discover any effects of the change on virtualization and multi-path access. Administrators
can use one of two VxVM commands to cause rediscovery by the vxconfigd daemon:
• vxdctl enable. This command causes vxconfigd to scan all storage devices and

reconstruct DMP metanodes and other structures to reflect the current device configu-
ration.

• vxdisk scandisks. This command may specify complete discovery, or it may be
constrained to scan only newly added devices, or designated enclosures, array con-
trollers or device address ranges. A limited scan can be considerably faster than a full
one if a small number of changes have been made to a large storage configuration.

Both commands use the vxconfigd daemon to re-scan the storage configuration and
update in-memory data structures to reflect changes since the previous scan. The daemon

VERITAS ARCHITECT NETWORK

 22

Dynamic Multipathing

uses ASL services to determine multi-path capabilities of newly-added devices. VxVM
on-demand discovery does not interrupt system or application operation.

I/O Path Failover with DMP
Typically, the primary motivation for installing I/O path management software is to keep
data accessible when an I/O path fails. A fundamental problem of I/O path management
is distinguishing between failure of a path to a device and failure of the device itself. If a
failed device is able to report its status (e.g., hard read error, unrecoverable positioning
error, or write to a write-locked device), the determination is easy. More difficult to diag-
nose is a device that simply does not respond to an I/O request:
• Has the device failed?
• Has the path to the device failed, leaving the device unable to communicate the status

of outstanding requests or accept new ones, even though it is functioning?
• Is the device simply too busy to respond within its timeout period?
When an I/O request fails, DMP must determine whether to re-route future I/O requests
to alternate paths.

Path Failure Analysis
The dmperrd and restored daemons , both of which run as kernel threads, perform
path failover and failback respectively. When either DMP or an operating system driver
times out an I/O request to a multi-path device, DMP moves the request to its error han-
dling queue. The dmperrd daemon diagnoses requests in the error handling queue by
issuing one or more SCSI inquiry commands to the target device on the suspect path.
(Most storage devices will respond to SCSI inquiry commands, even if they are unable to
transfer data). If the daemon receives a valid response within the timeout interval, it con-
cludes that the device was simply too busy to respond, and re-queues the request and any
others added to the error queue in the interim, on the original path.

Path Failover
If the dmperrd daemon’s SCSI inquiries fail within a timeout interval, it fails I/O over to
an alternate path. For active-active arrays, path failover consists simply of adjusting the
load balancing algorithm in effect to account for the failed path. For active-passive ar-
rays, DMP initiates failover, either implicitly, by re-queuing outstanding I/O commands
to an alternate path, or explicitly by invoking services of the APM that corresponds to the
LUN being failed over.

VERITAS ARCHITECT NETWORK

 23

Dynamic Multipathing

Usage Note
On Solaris, AIX, and Linux systems, the dmperrd daemon starts immediately when the
DMP driver, vxdmp, begins to execute at system startup. On HPUX, dmperrd does not
start until the VxVM volume management daemon, vold, executes its first DMP ioctl
command. Thus, on HPUX platforms, dmperrd may not be observable immediately upon
system startup.

DMP fails paths over on a device-by-device basis. Thus, if a shared resource, such as a
storage network switch, fails, DMP executes the failure analysis and failover procedures
described above for all devices affected by the failure. APMs for disk arrays that support
LUN group failover can fail over entire groups of LUNs in response to a single event.

Path Failback
DMP’s restored daemon runs every dmp_restore_daemon_interval seconds
(300 by default) to check I/O path state. The dmp_restore_daemon_policy tunable
can be used to specify one of four path checking policies:
• check_all. This policy causes the restored daemon to issue an inquiry command

on every path to every device controlled by DMP, irrespective of the path’s state.
This policy provides timely notification of path failures, but the large number of in-
quiry commands it issues may impact application performance in systems with a large
number of storage devices.

• check_disabled. This policy causes the restored daemon to issue inquiry com-
mands to failed paths (but not administratively disabled ones). While it does not pro-
vide proactive notification of path failure, the low overhead of this policy makes it at-
tractive for some data center operations.

• check_periodic. This policy causes the restored daemon to execute the
check_disabled policy except during every dmp_restore_daemon_cyclesth
dmp_restore_daemon_interval, when it executes the check_all policy. For
example, with a dmp_restore_daemon_interval of 300 seconds and a
dmp_restore_daemon_cycles of 10, the restored daemon would issue inquir-
ies to FAILED paths every 300 seconds (5 minutes), and to all devices on all paths
every 3000 seconds (50 minutes). This policy represents a compromise between
overhead and timely discovery of failed paths.

• check_alternate. This policy is similar to the check_all policy, except that the
restored daemon stops issuing inquiry commands to a device when it finds two op-
erational paths. This policy is useful with complex storage network topologies, where
checking all paths might result in a large number of inquiries, possibly impacting ap-
plication performance. Because it checks for at least one functional alternate path, this
policy also protects against sudden path failure.

Administrators use the vxdmpadm utility to adjust the three tunables that control the
restored daemon’s behavior, dmp_restore_daemon_interval,

VERITAS ARCHITECT NETWORK

 24

Dynamic Multipathing

dmp_restore_daemon_policy, and, for the check_periodic policy only,
dmp_restore_daemon_cycles.

DMP Configuration and Tuning Considerations
There are three key DMP parameters that administrators should understand and actively
manage, because they can affect system performance and availability significantly. The
values of these parameters are set differently for each platform implementation of
VxVM:
• Solaris. The parameters are found in the /kernel/drv/vxdmp.conf file on So-

laris platforms. The vxdmpadm command is used to set their values.
• AIX. The menu-based smit or the graphical smitty configuration management

utilities are used to set the values of these parameters by selecting the vxvm option,
navigating to the parameter to be changed, and setting its new value.

• HP-UX. Current values for DMP parameters can be determined by running the Sys-
tem Administration Manager (SAM) and selecting the Kernel Configuration
and Configuration Parameters options. The parameters themselves are stored
in the /stand/system file. Some parameter changes may require re-linking the op-
erating system kernel, and rebooting the system using the new kernel.

• Linux. The parameters are found in the /etc/vx/vxdmp_tunables file. The
vxdmptune utility is used to set their values.

The paragraphs that follow describe functions of the three key parameters.

DMP_FAILED_IO_THRESHHOLD
The dmp_failed_io_threshhold parameter represents the amount of time beyond
which DMP considers an I/O request failure to represent a storage device failure. As
Figure 8 (page 12) suggests, the VxVM virtualization layer issues I/O requests to DMP
metadevices. Before forwarding a request to the operating system SCSI driver DMP
saves the current system time. If the SCSI driver signals that an I/O request has failed,
DMP samples the time at the moment of failure notification, and computes how long the
request was outstanding. If the request was outstanding longer than
dmp_failed_io_threshhold seconds, DMP considers the device to have failed, and
does not perform error recovery or path failover. If the request fails within
dmp_failed_io_threshhold seconds, DMP considers path failure as a possible
cause, and initiates the error analysis and recovery procedures described earlier.
By default, the dmp_failed_io_threshhold parameter is set to ten minutes. For non-
redundant volumes, this is typically adequate; too low a value can result in I/O request
failures that are actually due to transient storage network errors. For failure tolerant (mir-
rored) volumes, however, a lower value is usually appropriate, because the VxVM virtu-
alization layer retries a failed I/O request on another of the volume’s plexes. For failure
tolerant volumes, therefore, the dmp_failed_io_threshhold parameter should typi-
cally be set to a few tens of seconds. Of course, appropriate settings depend on steady-

VERITAS ARCHITECT NETWORK

 25

Dynamic Multipathing

state storage network and device loading as well as individual disk or LUN performance
characteristics.
The dmp_failed_io_threshhold parameter is not used on the HP-UX platform. The
HP-UX operating system provides an I/O request timing capability, called pfto that
causes the SCSI driver to abort I/O requests that remain outstanding for too long. DMP
treats I/O requests timed out by the HP-UX SCSI driver identically to failed requests on
other platforms for which the dmp_failed_io_threshhold time is exceeded. The
pfto parameter can be set separately for each VxVM disk group using the vxpfto util-
ity.

DMP_RETRY_COUNT
When a DMP I/O request to a SCSI driver fails within the
dmp_failed_io_threshhold interval, the dmperrd daemon begins recovery by issu-
ing SCSI inquiry commands to the target device on the suspect path. The daemon issues
as many as dmp_retry_count inquiries. The default value for dmp_retry_count is
5.7 To reduce failover times in storage networks with extensive multi-path connectivity,
this value can be lowered. A value of 2 is usually appropriate for storage networks with
two or more paths to each device.
Upper layers of the I/O software stack must ultimately interpret I/O failures. Success of a
DMP inquiry command followed by repeated failure of an I/O request can occur for a
variety of reasons, some of them application-related. For example, write commands to
write-protected devices always fail immediately. The dmperrd daemon’s SCSI inquiry
will succeed, but the application’s command will continue to fail. Behavior like this usu-
ally indicates an application or administrative error.
As another example, if a disk that is part of a non-redundant LUN is failing intermit-
tently, an application I/O request to the LUN might fail, but the dmperrd SCSI inquiry to
the LUN may succeed. In this case, the hardware failure must be detected and diagnosed
by means external to VxVM (e.g., by the disk array’s error reporting mechanisms) and
acted upon.

DMP_PATHSWITCH_BLKS_SHIFT
For LUNs configured to use the balanced path I/O policy (page 15), DMP divides the
starting data address specified in each I/O request by the parameter
dmp_pathswitch_blks_shift and discards the remainder. The quotient of the divi-
sion modulo the number of active paths becomes an index to the active path on which the
I/O request is issued.
The dmp_pathswitch_blks_shift parameter is system-wide; it applies to all storage
devices using the balanced path load balancing policy. Its default value is one megabyte
(2048 blocks) on all supported platforms, but can be changed to match application re-

7 ,On the HP-UX platform, the default value for dmp_retry_count is 30 because the HP-UX SCSI

driver does fewer retries than those of other platforms.

VERITAS ARCHITECT NETWORK

 26

Dynamic Multipathing

quirements. For example, if an application reads large files sequentially using 2-
megabyte requests, setting the value of dmp_pathswitch_blks_shift to 2 mega-
bytes tends to alternate successive read requests among active paths. If the disk array rec-
ognizes sequential access patterns and reads ahead, application requests may be satisfied
from data pre-read into cache.

An Additional AIX-Specific DMP Tuning Consideration
In addition to the three parameters that affect DMP availability and performance on all
platforms, the dmp_queue_depth parameter is unique to the AIX platform. The
dmp_queue_depth parameter limits the number of I/O requests to a single device that
DMP will forward to the operating system driver in order to limit the time required to
abort and redirect outstanding requests when a path fails.
While the dmperrd daemon is analyzing a possible path failure, application I/O requests
may continue to arrive. If the dmperrd daemon ultimately determines that the path has
failed, DMP must abort all I/O requests outstanding to the operating system driver and
reissue them on alternate paths. The operating system driver may take a long time to
abort a large number of I/O requests, so DMP throttles, or limits the number of I/O re-
quests that it allows to be outstanding to the operating system driver to the value of the
dmp_queue_depth parameter.
DMP relays only dmp_queue_depth requests for a single device to the operating sys-
tem driver; it retains any additional ones in its own queue. Each time a request completes,
the number outstanding drops below dmp_queue_depth. If there are additional requests
for the device in DMP’s queue, a DMP kernel thread issues another one to the operating
system driver.

The default value of the dmp_queue_depth parameter is 32. As with other parameters,
the value of dmp_queue_depth can be changed by running the AIX smit utility and
selecting the vxvm subcommand.

Storage Network Hardware Settings
In addition to VxVM parameters, parameters that control the operation of host bus adapt-
ers and storage network switches can affect the performance and function of DMP. These
parameters differ from vendor to vendor, but since similar components perform similar
functions, conceptual similarity is found between HBAs and switches designed by differ-
ent vendors. The paragraphs that follow describe HBA and storage network settings that
may affect DMP operation and that are typically adjustable by system administrators.

Host Bus Adapter Settings
Host bus adapters (HBAs) send and receive user data, I/O requests, and control messages
between host server memory and storage devices. To accomplish this, they transform data
between host memory format and I/O bus or storage network format, and add protocol
information (for transmission) or remove it (upon reception). The driver software that

VERITAS ARCHITECT NETWORK

 27

Dynamic Multipathing

controls HBAs is at the lowest level of the storage I/O stack (Figure 8 on page 12).
Because HBA drivers control access to I/O paths, they are often the point at which host
servers first detect path failures. HBA designers build mechanisms into their drivers to
help detect and analyze path failures. These mechanisms are typically controlled by ad-
justable parameters. The types of HBA parameters that affect DMP performance include:
• Link-down timeouts. Operating system driver I/O request timeouts occur either be-

cause a device is unable to respond to a host message in time, or because the path on
which a message was sent has failed. To detect path failure, HBAs typically start a
timer each time a message is received, and report link failure if the timer lapses with-
out receipt of a message. Most HBAs provide for user adjustment of a link-down
timeout period. The link-down timeout interval should approximately equal DMP’s
dmp_failed_io_threshhold parameter value. If the link-down timeout period is
significantly shorter than dmp_failed_io_threshhold, DMP will not detect path
failures as quickly it should. If the HBA link-down timeout is significantly longer
than dmp_failed_io_threshhold, DMP may time I/O requests out when in fact
nothing is wrong.

• Link retry count. Links that are inherently noisy may experience more frequent
transmission errors than links in less noisy environments. Most HBAs include some
type of adjustable link retry count that can be adjusted upward if necessary to prevent
premature failovers on links that experience periodic noise bursts.

Storage Network Switch Settings
Storage network switches also expose settable configuration parameters that can affect
the operation of DMP. The two most common ones are:
• Interoperability mode. Switch and director vendors often build proprietary enhance-

ments to standard protocols into their products. While these enhancements are useful
in homogeneous networks (those that include only one vendor’s switches), they may
not function correctly or optimally in heterogeneous networks, or with disks and disk
arrays that have not been certified for operation with the switch vendor’s products.
Switches typically have an interoperability mode in which they adhere strictly to
standard protocols for I/O and for inter-switch communications. Since DMP assumes
standards-compliant storage device behavior, it is usually advisable to operate a stor-
age network in this interoperability mode.

• Buffer credits. Buffer credits are a throttling mechanism used by HBAs and storage
devices to avoid being swamped by incoming message and user data frames. Accord-
ing to Fibre Channel protocols, an originator is only permitted to send a frame to a re-
ceiver when the receiver has granted it a buffer credit. For long paths, particularly
those with multiple “hops” between intermediate switches, buffer credit shortages can
increase latency (the elapsed time for sending a message from originator to receiver)
well beyond what would be expected given the bandwidth and loading of the link be-
tween the two. Alternate paths with different numbers of “hops” might have signifi-
cantly different average latencies, and if timeout parameters are set for the shorter

VERITAS ARCHITECT NETWORK

 28

Dynamic Multipathing

path, “false” timeouts might occur frequently on the longer one. The best way to
avoid timeouts caused by a lack of buffer credits is to increase the number of buffer
credits that HBAs and disk array ports grant for multi-hop links. If this cannot be
done, DMP and operating system driver timeouts should be raised to accommodate
typical latencies actually encountered on longer paths.

Using DMP with other Path Managers
Path managers that are functionally similar to DMP are available from some disk array
and system vendors. There are three principal differences between DMP and the path
managers typically supplied by hardware vendors:
• Heterogeneity. Typically, hardware vendors’ path managers are optimized to support

the vendor’s own products, sometimes to the exclusion of other vendors’ storage and
systems. VxVM on the other hand is inherently heterogeneous, both with respect to
platforms, storage devices, and in its ability to intermix different types of storage in a
single virtual device configuration.

• Integration. VxVM is more closely integrated with the VxFS file system and with
major database managers than is typical for hardware vendor-supplied virtualization
and path management software. Integration with adjacent layers in the I/O software
stack tends to minimize administrative complexity, and therefore, cost.

• Cost. Vendor path managers are typically extra-cost adjuncts to disk arrays, whereas
DMP is an integral part of the VERITAS Storage Foundation software, the purchase
of which is usually amply justified on other grounds.

For a variety of reasons, hardware vendor-supplied path managers are sometimes present
on systems where DMP is also installed. Both approaches have their own benefits and
limitations. To manage systems in which two path managers are present, storage adminis-
trators should appreciate how DMP and other path managers interact with each other.

Path Managers in the Storage I/O Stack
Figure 13 represents the main functions performed in a UNIX storage I/O software stack,
both with and without virtualization and path management. File systems and database
managers configured to use “raw” devices make their I/O requests directly to operating
system drivers that interact with disks and LUNs via host bus adapters. UNIX operating
system drivers consist of:
• A SCSI layer (sd) that transforms file system and database manager requests into the

format required by the storage device interface (e.g., Command Data Blocks, or
CDBs, for SCSI protocol)

• A host bus adapter (HBA) layer that interacts with HBAs to set up the transfer of
SCSI CDBs, device responses, and data between host server and storage device.

Path in Figure 13 represents the direct software connection between file system and
storage device. In this scenario, the file system makes I/O requests to the operating sys-
tem’s SCSI driver, which reformats them and passes them to an HBA driver. HBA driv-

VERITAS ARCHITECT NETWORK

 29

Dynamic Multipathing

ers treat I/O requests and device responses as messages which they send between source
and destination without interpretation (a direct memory access, or DMA, mechanism is
typically used for data transfer).

Figure 13: Functions Performed at Different Layers of the UNIX I/O Software Stack

Host-Based Virtualization Software
Host-based storage virtualization software like VxVM adds a layer to the stack. The vir-
tualization layer manages collections of storage devices which it represents to file sys-
tems and database managers as disk-like virtual volumes with improved data availability,
I/O performance, and functionality. Path in Figure 13 represents the software stack
traversed by file system I/O requests to virtual volumes. In this scenario, file system I/O
requests to virtual volumes are fielded by a virtualization layer such as VxVM. The virtu-
alization layer creates equivalent requests to physical disks or LUNs, and issues them to
operating system drivers.
For example, VxVM transforms each application write request to a mirrored volume into
a write request to each of the volume’s mirrors, and each read request into a request to
one of the volume’s mirrors. More complex transformations also occur, as for example, a
write request to a RAID volume which VxVM transforms into a series of read and write
requests interspersed by computations, all of which collectively maintain parity consis-
tency while user data is updated.

Path Managers
As demonstrated earlier, multi-path management further enhances data availability and
I/O performance. Path in Figure 13 represents an I/O software stack that includes a
path manager such as DMP. In this scenario, the file system makes I/O requests to vol-
umes. The virtualization layer transforms file system requests, and makes its I/O requests
to metadevices presented by the path manager. The path manager selects an I/O path for
each request according to the load balancing policy in effect, and issues the request to the
operating system SCSI driver. When host-based virtualization and path management are

HBA2HBA1

Host Server File System or Database Manager

to
storage
devices

Multi-path Management

Virtualization

Operating system HBA driver

Operating system SCSI driver

DMP

VxVM Virtualization
Layer

Operating
system drivers

VERITAS ARCHITECT NETWORK

 30

Dynamic Multipathing

both in use, file system I/O requests are transformed twice before actually being issued to
storage devices:
• Each file system request to a virtual volume is transformed into one or more requests

to metadevices that represent physical disks or LUNs
• Each virtualization layer request to a disk or LUN metadevice is transformed into an

operating system driver layer request to a device on a specific access path
No value is gained by performing the second transformation more than once. Historically,
it has been regarded as poor practice to configure more than one path manager for the
same device. Generally, path managers are unaware of each other, and therefore do not
coordinate operating system I/O requests, or more importantly, error recovery actions.
Typically, hardware vendor-supplied path managers can be enabled or disabled either on
a per-device basis or system-wide. By default, VxVM manages all devices that it recog-
nizes as disks or LUNs, including controlling access paths, but can be disabled selec-
tively, as Dialog 6 illustrates.

mkt1 # vxdiskadm
Volume Manager Support Operations
Menu: VolumeManager/Disk
 1 Add or initialize one or more disks
 2 Encapsulate one or more disks
 3 Remove a disk
 4 Remove a disk for replacement
 5 Replace a failed or removed disk
 6 Mirror volumes on a disk
 7 Move volumes from a disk
 8 Enable access to (import) a disk group
 9 Remove access to (deport) a disk group
 10 Enable (online) a disk device
 11 Disable (offline) a disk device
 12 Mark a disk as a spare for a disk group
 13 Turn off the spare flag on a disk
 14 Unrelocate subdisks back to a disk
 15 Exclude a disk from hot-relocation use
 16 Make a disk available for hot-relocation use
 17 Prevent multipathing/Suppress devices from VxVM's view
 18 Allow multipathing/Unsuppress devices from VxVM's view
 19 List currently suppressed/non-multipathed devices
 20 Change the disk naming scheme
 21 Get the newly connected/zoned disks in VxVM view
 22 Change/Display the default disk layouts
 23 Mark a disk as allocator-reserved for a disk group
 24 Turn off the allocator-reserved flag on a disk
 list List disk information
 ? Display help about menu
 ?? Display help about the menuing system
 q Exit from menus
Select an operation to perform: 17

Dialog 6: Disabling DMP for Selected Devices

VERITAS ARCHITECT NETWORK

 31

Dynamic Multipathing

How DMP Coexists with Other Path Managers
Because all path managers perform essentially the same function, all behave in essen-
tially the same way. They create pseudo-device nodes for the devices they control, and
redirect file system or virtualization layer I/O requests made to these pseudo-devices
along one of the paths to an actual device.
When a UNIX system starts up, it creates entries in its device tree for each block access
storage device (disk or LUN) it discovers. Device tree entries for multi-path devices are
referred to as sub-paths. Each storage device sub-path has a DDI_NT_BLOCK_WWN attrib-
ute indicating that it represents a block access storage device. Some path managers sup-
press access paths by turning this indicator off. thus preventing other software from di-
rectly accessing devices they control. For example, DMP’s device discovery layer treats
suppressed paths as though they did not represent storage devices.

Path-Suppressing Path Managers
Path managers that suppress device paths do so in one of two ways:
• They reset the DDI_NT_BLOCK_WWN indicator for all but one sub-path to each device

they control. For example, if c1t1d1 and c2t1d1 represent two sub-paths to a de-
vice, a path manager might suppress c1t1d1 and leave the DDI_NT_BLOCK_WWN in-
dicator for c2t1d1 turned on. Path managers that do this include EMC Corporation’s
Automatic Transparent Failover (ATF) and LSI Logic’s Redundant Disk Array Con-
troller (RDAC), both of which use unsuppressed paths as metanodes for the devices
they represent.

• They replace device tree entries that represent paths to devices they control with their
own metanodes (with the DDI_NT_BLOCK_WWN indicator on). These path managers
typically name their metanodes in some distinctive form (e.g., cXtWWWdXsX, where
WWW represents a device worldwide name), rather than the common cXtXdXsX oper-
ating system form. They also enable a DDI_NT_FABRIC property, which causes de-
vices represented by their metanodes to be treated as storage network fabric devices.
Sun Microsystems’ MPxIO path manager operates in this way.

In both of these cases, path managers effectively suppress all but one path to each device
under their control. DMP can create its own metanodes (as illustrated in Figure 9 on page
14) linked to a path-suppressing path manager’s pseudo-devices, and co-exist with the
other path manager for most purposes, but because each pseudo-device appears to DMP
as a single-path device, DMP performs no useful function.

Path Managers That Do Not Suppress Device Paths
Other path managers do not suppress sub-paths to the devices they control, but leave
them visible to other software, including DMP. Non-path suppressing path managers treat
sub-paths for the devices they control in one of two ways:
• They leave the sub-paths unmodified, and add their own metanodes to the device tree.

With such a path manager, a LUN accessible on two paths is represented by three de-

VERITAS ARCHITECT NETWORK

 32

Dynamic Multipathing

vice tree entries—two for the operating system-discovered sub-paths and one for the
path manager’s metanode. Metanodes created by these path managers have character-
istic naming patterns that differ from the typical operating system cXtXdXsX pattern
(e.g., Sun Microsystems’ Alternate Pathing (AP) driver metanode names follow the
pattern mcXtXdXsX. IBM Corporation’s Subsystem Device Driver (SDD on the So-
laris platform and VPATH on AIX) metanodes names take the form vpathX).

• They leave sub-paths intact, and insert their metanodes in a separate file system direc-
tory. Metanodes created by these path managers also have characteristic naming pat-
terns. Vendors of these path managers historically have not provided APIs that would
allow DMP to determine relationships between metanodes and sub-paths, so DMP
has historically had difficulty coexisting with them, although this situation is chang-
ing. EMC Corporation’s PowerPath behaves in this fashion.
Starting with Version 4.1 of VxVM, DMP can co-exist with non-suppressing path
managers, essentially by locating their metanodes, identifying them with the corre-
sponding operating system paths, and suppressing all but one of the paths. DMP cre-
ates its metanode pointing to the single unsuppressed path.

Table 2 lists the path suppression characteristics of common path managers.
Path Management

Driver
Vendor Type Arrays Platforms

ATF
(Automatic Transparent
Failover)

EMC
Corporation

Path
suppressing

FC4700 Solaris

RDAC
(Redundant Disk Array
Controller)

 IBM
Corporation

Path
suppressing

Sonoma…….
FAStT………

Solaris
AIX

STMS Sun
Microsystems

Path
suppressing

T3, T4, Solaris

SDD (called VPATH on
AIX platform)

IBM
Corporation

Non-path
suppressing

ESS
(Shark)

Solaris

PowerPath
(Native Mode)

EMC
Corporation

Non-path
suppressing

Symmetrix
CLARiion

Solaris
HP-UX
Linux

PowerPath
(Pseudo mode)

EMC
Corporation

Non-path
suppressing

Symmetrix
CLARiion

Solaris

Table 2: Path Suppression Characteristics of Common Path Managers

DMP and Foreign Devices
Unless somehow prevented from doing so, DMP would discover both the sub-paths and
metanodes of non-path suppressing path managers. DMP and the other path manager
might both attempt to manage access to the same devices, with obvious conflicts. To
avoid this, Version 4 of the Storage Foundation introduced the concept of foreign de-
vices. The vxddladm addforeign command is use to declare a device to be foreign.
DMP does not control path access to foreign devices, but the VxVM virtualization layer
can still incorporate them in disk groups and use them as volume components.

VERITAS ARCHITECT NETWORK

 33

Dynamic Multipathing

DMP and EMC’s PowerPath
EMC Corporation’s PowerPath software is frequently-installed on systems together with
DMP. PowerPath software operates either in pseudo device mode (also called emcpower
mode) or in native device mode, both of which are non-path suppressing. In both operat-
ing modes, replaces operating system SCSI driver call vectors with calls to its own path
management routines.

PowerPath Pseudo Mode
In pseudo device mode, PowerPath creates an emcpowerX pseudo-device for each device
it controls. The emcpowerX device is conceptually similar to a DMP metanode. Error!
Reference source not found. shows the key properties of a PowerPath pseudo-device as
displayed by the EMC Powermt utility.

Powermt display
Pseudo name=emcpower41a
Symmetrix ID=000184500052
Logical device ID=0003
state=alive; policy=SymmOpt; priority=0; queued-IOs=0
==
---------------- Host --------------- - Stor - -- I/O Path - -- Stats ---
HW Path I/O Paths Interf. Mode State Q-IOs Errors
==
3084 pci@bd/SUNW,qlc@1 c16t50060482BFCFD502d0s0 FA 3aA active alive 0
0
3085 pci@bd/SUNW,qlc@1 c17t50060482BFCFD51Dd0s0 FA 14bA active alive 0
0

Dialog 7: PowerPath Pseudo-Device Attributes

Figure 14 illustrates the three possible paths through the I/O software stack in a system
with both DMP and PowerPath in pseudo device mode installed.

VERITAS ARCHITECT NETWORK

 34

mailto:pci@bd/SUNW,qlc@1
mailto:pci@bd/SUNW,qlc@1

Dynamic Multipathing

Figure 14: DMP with EMC PowerPath in Pseudo Device Mode

PowerPath is non-suppressing; it leaves operating system nodes for the devices it controls
visible in the device tree. DMP does not recognize PowerPath pseudo-devices, but it does
recognize sub-paths to devices that PowerPath controls, and will create metanodes and
attempt to control them (center shaded area in Figure 14), unless it is prevented from do-
ing so.
EMC Corporation delivers a script called powervxvm that makes it possible to use
emcpower devices with VxVM Version 3.5 and newer versoins. Starting with Version 4
of VxVM, the powervxvm script declares PowerPath-controlled devices to be foreign. In
both cases, DMP does not claim the sub-paths of the emcpower devices, so limited coex-
istence, illustrated by the rightmost shaded area in Figure 14, is possible. When coexist-
ing with PowerPath, VxVM Version 4 and earlier versions cannot make emcpower de-
vices portable between different platforms, nor can it use them as shared storage in Stor-
age Foundation for Real Application Clusters (Oracle RAC) configurations. With Ver-
sion 4.1 of VxVM, these restrictions are relaxed, and emcpower devices can be used as
RAC cluster storage.
As the leftmost shaded area in Figure 14 suggests, DMP can control path access to stor-
age devices not managed by PowerPath (e.g., devices that PowerPath does not support).
PowerPath discovery ignores these devices, so their sub-paths are visible to DMP discov-
ery, as they would be in a system without PowerPath installed.

PowerPath Native-Mode
Primarily for compatibility with existing applications and scripts, PowerPath also sup-
ports storage devices in non-suppressing native device mode on certain platforms (Table

HBA2HBA1

Host Server

DMP

Virtualization Layer (e.g., VxVM)

operating system HBA drivers

Operating system SCSI driver

File system or database manager

Operating
system
drivers

PowerPath

HBA4 HBA3

Devices not sup-
ported by PowerPath

Devices supported by
PowerPath

PowerPath
 only

DMP only

VERITAS ARCHITECT NETWORK

 35

Dynamic Multipathing

2, page 33). Disks and LUNs controlled by PowerPath in native device mode are ac-
cessed by their familiar operating system names, so applications and scripts work without
modification.
When operating in native device mode, PowerPath does not create pseudo-device nodes,
but it does control path access to its devices. Native mode PowerPath directs each I/O
request to the sub-path indicated by its load balancing policy, no matter which sub-path
originally received the request. If DMP were to control a PowerPath native mode device,
as the center shaded area in Figure 15 suggests, VxVM I/O virtualization layer requests
might reach target devices on a different path than the one on which it was issued.

Figure 15: DMP with EMC PowerPath in Native Mode

If PowerPath is the only path manager in the stack, its re-routing of I/O requests is imma-
terial to the virtualization layer. But if DMP were also in the stack, it, too, would select a
path for each I/O request. Native device mode PowerPath would re-route DMP’s I/O re-
quests, possibly affecting I/O performance adversely. Moreover, DMP and PowerPath
error recovery are likely to conflict, with unpredictable results.
DMP and native mode PowerPath have been used successfully in cluster applications.
VERITAS clusters use SCSI persistent group reservations to prevent so-called split brain
behavior when the connection between two servers breaks. DMP propagates reservation
requests on all paths to a device, but pseudo-device mode PowerPath does not (this is
why emcpower devices are not usable as RAC shared storage prior to VxVM Version
4.1). With native mode PowerPath, however, all device paths are visible to DMP, so it
can propagate device reservation requests on all paths. While this mode of operation has
been used successfully, the possibility of the two path managers’ error recovery algo-
rithms interfering destructively with each other remains. Users with applications such as
RAC, that require persistent group reservasions are therefore advised to upgrade to the
newest VxVM version promptly.

HBA2HBA1

Host Server

DMP

Virtualization Layer (e.g., VxVM)

operating system HBA drivers

Operating system SCSI driver

File system or database manager

Operating
system
drivers

PowerPath native mode

HBA4HBA3

DMP

All paths exposed
to upper layers of

the software
stack

Actual path
assignments

managed
internally by

PowerPath

Devices not supported
by PowerPath

Devices supported by
PowerPath

DMP and Power-
Path

PowerPath
 only

DMP only

VERITAS ARCHITECT NETWORK

 36

Dynamic Multipathing

Path managers may have configuration requirements that are incompatible with DMP.
For example, DMP requires that active-passive EMC arrays (e.g., Clariion Cx600) be
configured for implicit failover, whereas PowerPath requires that they be configured for
explicit failover. If a Cx600 array is configured for control by PowerPath, DMP cannot
control its LUNs correctly, even if PowerPath is disabled.

Other I/O Path Management Software—STMS
I/O path management software is also available from other system and storage vendors.
Sun Microsystems offers a path manager called Storedge Traffic Manager Software
(STMS) that supports its own disk arrays on major enterprise UNIX, Linux, and Micro-
soft Windows server operating systems.
STMS creates pseudo-devices called Storedge Traffic Manager Software devices (STMS
devices). STMS devices are conceptually similar to DMP metadevices; each one repre-
sents a LUN or disk along with all the access paths to it. STMS device names have the
general form CXtWWNdXsX, where each X represents a number assigned by STMS, and
WWN represents the device’s Fibre Channel worldwide name. STMS uses a policy similar
to DMP’s round robin policy (page 16) to balance I/O loads.
STMS can be enabled or disabled when a system starts. If enabled, it necessarily controls
all the storage devices it supports (but ignores unsupported devices). To enable STMS, an
administrator adds the line: ‘mpxio-disable="no";’ to the
/kernel/drv/scsi_vhci.conf file. To disable STMS, the “no” is replaced with a
“yes” in the expression. After the line is changed, the system must be rebooted for the
change to take effect.
Figure 16 illustrates the I/O stack in a system in which DMP and STMS are both in-
stalled. STMS is path-suppressing (Table 2, page 33), so when it is enabled, other soft-
ware “sees” only single-path STMS devices for disks and LUNs supported by STMS.
Thus, DMP does not actually manage access paths to STMS devices. DMP can, however,
manage access paths for devices not supported by STMS, as suggested by the left side of
Figure 16.

VERITAS ARCHITECT NETWORK

 37

Dynamic Multipathing

Host Server File system or database manager

Figure 16: STMS-DMP Comparison

Other I/O Path Management Software—SDD
IBM Corporation offers Subsystem Device Driver (SDD) software that manages access
paths for its own disk arrays (ESS, DS8000, DS6000) as well as SAN Volume Controller
switch-based virtualizers. SDD software is available for major enterprise UNIX, Linux,
Netware, and Windows server operating systems. Figure 17 compares SDD with DMP in
a system in which both are installed.

Figure 17: DMP and IBM’s Subsystem Device Driver

SDD is non-path suppressing, so As Figure 17 suggests, higher layers in the I/O software

DMP

Virtualization Layer (e.g., VxVM)

Operating System HBA Drivers

Operating System SCSI Driver
Operating

system
drivers

Storedge Traffic Manager Software
(STMS)

STMS devices
presented

to virtualization
layer

Paths
managed
by STMS

HBA2HBA1 HBA3 HBA4

Devices not supported
by STMS

Devices supported
by STMS

Host Server File system or database manager

Virtualization Layer (e.g., VxVM)

HBA2HBA1

DMP

operating system HBA drivers

Operating system SCSI driver

Subsystem Device Driver

Operating
system
drivers

HBA3 HBA4

Devices supported
by SDD

Devices not supported
by SDD

VERITAS ARCHITECT NETWORK

 38

Dynamic Multipathing

stack “see” all access paths to the devices it controls. By default, SDD manages path ac-
cess to devices it supports, but unlike STMS, SDD does not necessarily control all of the
devices it supports. In a system with SDD installed, DMP can manage path access to de-
vices not supported by SDD, as well as to SDD-supported devices for which SDD has
been disabled. An administrator can disable SDD by disabling its ASL and rerunning
DMP discovery using a command sequence similar to that shown in Dialog 5 (page 21).

Conclusion
Effective management of multiple access paths to storage devices keeps data available to
applications when storage network components fail. For disk arrays that support concur-
rent access to LUNs on multiple paths, balancing I/O load across two or more paths can
improve I/O performance. To be effective, path management must be automatic, and load
balancing must be consistent with data center policy.
The Dynamic Multipathing (DMP) feature of the VERITAS Storage Foundation auto-
mates both failover of storage devices to alternate paths when primary ones fail and bal-
ancing of I/O load across available paths according to any of several policies that can be
set to achieve a variety of I/O performance goals.
LUNs may support concurrent access through multiple disk array controllers (active-
active), or through only a single controller (active-passive). Active-passive disk arrays
may support concurrent access on one or more primary paths (active-passive concurrent).
In active-passive arrays, failover may be implicit (caused by issuing I/O commands on
secondary paths) or explicit (caused by array-specific commands). Disk arrays may fail
LUNs over from primary paths to secondary ones individually or in groups.
Major system and storage vendors offer path management software, usually to manage
access paths for their own products. Vendor-supplied path management software can co-
exist with DMP in a system, but configurations in which both attempt to manage the
same devices should generally be avoided. Typically, DMP and vendor-supplied path
management software should manage path access for different sets of devices.
DMP can control more different types of devices than typical vendor-supplied software.
Additionally, it implements a more comprehensive set of I/O load balancing policies. In
general, DMP specifications are technically superior to those of most vendor-supplied
path managers, but care should be used in removing any path management software from
a system, because unpredictable results may occur.

VERITAS ARCHITECT NETWORK

 39

Dynamic Multipathing

VERITAS Software Corporation

Corporate Headquarters
350 Ellis Street
Mountain View, CA 94043
650-527-8000 or 866-837-4827

VERITAS ARCHITECT NETWORK

 40
For additional information about
VERITAS Software, its products,
VERITAS Architect Network, or the
location of an office near you, please
call our corporate headquarters or
visit our Web site at
-

© 2005 VERITAS Software Corporation. All rights reserved. VERITAS, the VERITAS Logo, VERITAS Storage
Foundation, and FlashSnap are trademarks or registered trademarks of VERITAS Software Corporation or its affili
ates in the U.S. and other countries. Other names may be trademarks of their respective owners.

	Scope
	The Importance of Multiple Storage I/O Paths
	Why Multiple I/O Paths?

	Different Forms of Multi-Path Access
	Discovering Multiple I/O Paths

	Common Multi-Path Hardware Configurations
	Directly Connected Disk Arrays
	Disk Arrays Connected to a Storage Network
	Disk Arrays Connected to Redundant Storage Networks
	Disk Arrays with Multi-Port Controllers Connected to Multipl
	Disk Arrays with Multi-Port Controllers Cross-Connected to R

	VERITAS Storage Foundation Dynamic Multipathing (DMP)
	DMP In the UNIX Storage I/O Software Stack
	DMP and Device Discovery
	DMP Multi-Path Devices in the Operating System Device Tree

	DMP I/O Load Balancing Policies
	Balanced Path Routing
	Round-Robin Routing
	Minimum Queue Length Routing
	Adaptive Routing
	Priority Routing
	Single Active Path (Preferred Path) Routing
	Determining the Effect of DMP Load Balancing Policies

	DMP Architecture
	DMP Support for Different Disk Array Models
	Array Support Libraries
	Array Policy Modules

	DMP Device Discovery during System Operation
	VxVM Device Discovery During Operation

	I/O Path Failover with DMP
	Path Failure Analysis
	Path Failover
	Path Failback

	DMP Configuration and Tuning Considerations
	DMP_FAILED_IO_THRESHHOLD
	DMP_RETRY_COUNT
	DMP_PATHSWITCH_BLKS_SHIFT
	An Additional AIX-Specific DMP Tuning Consideration
	Storage Network Hardware Settings
	Host Bus Adapter Settings
	Storage Network Switch Settings

	Using DMP with other Path Managers
	Path Managers in the Storage I/O Stack
	Host-Based Virtualization Software
	Path Managers
	How DMP Coexists with Other Path Managers
	Path-Suppressing Path Managers
	Path Managers That Do Not Suppress Device Paths
	DMP and Foreign Devices
	DMP and EMC’s PowerPath
	PowerPath Pseudo Mode
	PowerPath Native-Mode
	Other I/O Path Management Software—STMS
	Other I/O Path Management Software—SDD

	Conclusion

