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Scope 
This paper describes the Dynamic Multipathing (DMP) feature of the VERITAS Volume Man-
ager, a component of the VERITAS Storage Foundation. The DMP architecture described herein 
was introduced with Volume Manager Version 3.5, and is the current architecture at the time of 
publication. The paper should be used as a guide to understanding. For up-to-date information on 
features and coverage, readers are urged to consult VERITAS documentation and support 
sources.  
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The Importance of Multiple Storage I/O Paths  
The basic techniques for keeping business-critical computer applications and digital data 
available to users despite hardware and software failures are well-known:  
• Applications. Applications can be protected against server failures by interconnecting 

two or more servers to form a cooperative cluster controlled by software that enables 
an application running on any of the servers to fail over and restart on another, should 
its own server fail.  

• Data. Data can be preserved despite storage device failures by techniques such mir-
roring identical copies on two or more disks,1 and writing all updates to both simulta-
neously. Mirroring, sometimes called RAID-1, keeps data available if a disk fails, and 
also improves I/O performance by making two or more disks available satisfy each 
application read request.  

But in enterprise data centers, there is another increasingly important link in the informa-
tion access chain—the I/O path that connects servers with the data they process. The I/O 
path, represented in Figure 1, is a complex chain consisting of host bus adapter, cables, 
storage network switch, storage device adapter port, and, in disk arrays, a disk controller.  

 
Figure 1: General I/O Path Model  

The I/O path shown in Figure 1 begins at a host bus adapter (HBA)2 that connects an I/O 
cable to a server’s internal memory access bus. The cable connects the HBA to a corre-

                                                 
1  In this paper, the term disk refers both to actual disk drives and to the logical units (LUNs) presented to 

storage network ports by disk arrays.  
2  Some HBAs have multiple ports, each of which is the starting point of a separate path through the 

storage network. Since each port is effectively a separate HBA, the model is simplified by treating an 
HBA as a port.  
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sponding port in a storage network switch. As Figure 1 suggests, the switch manages 
logical connections between HBAs and ports within disk array controllers, or between 
HBAs and disk drives. Disk array controllers, which typically have more than one port, 
virtualize disks within the array and present them to the storage network as logical units, 
or LUNs. 3  

Usage Note 
Each unique combination of these elements that can be used to communicate between a 
host server and a LUN within a disk array or a disk connected directly to the network is a dis-
tinct I/O path.  

Why Multiple I/O Paths?  
With increasing deployment of storage networks, IT managers are becoming conscious of 
the important role that I/O paths play in keeping data available. For example, two disks 
mirrored by a host-based volume manager may be connected to their hosting server either 
by the same I/O path, as shown on the left side of Figure 2, or by different paths, as 
shown on the right. If multiple paths are available, mirroring not only protects against 
data loss due to disk failure, it also protects against loss of access to data if an I/O path 
element fails, as Figure 2 illustrates.  

 
Figure 2: Multiple I/O Paths Improve Data Availability 

The server on the left in Figure 2 cannot access its data when the cable between its HBA 
and the network switch port fails, even though the storage itself remains completely func-
tional, because the cable is a single point of failure. The server on the right, on the other 
hand, can continue to access data if one of its HBAs fails, if a cable fails, or even if one 
of the disk array’s controllers fails, because in each case there is an alternate path that 

                                                 
3  In addition to disk array virtualization, both disks and LUNs are sometimes virtualized by appliances or 

switches within the storage network, and by host-based volume managers such as VxVM. The virtual 
devices that result from disk array virtualization are universally referred to as LUNs. Virtual devices 
that result from switch and host-based virtualization are called virtual disks or volumes. 
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does not include the failed element.  
Thus, a second independent path between server and storage increases the number of 
component failures an I/O subsystem can withstand without loss of function. But even 
with an alternate path, I/O path failure can still be tantamount to storage device failure 
unless the system recognizes that it has an alternate path and reroutes I/O requests to it. If 
a server does not recognize an alternate path to a storage device, the device may as well 
have failed. Even with failure-tolerant mirrored devices, for example, only devices on 
still-functioning paths are updated after a path failure. Data redundancy is diminished, 
even though the unreachable device is still functional. Moreover, I/O performance de-
creases because one less device is available to satisfy read requests.  
Thus, an ability to recognize and utilize alternate I/O paths to storage devices would 
clearly be preferable. If a path failed, I/O requests would be rerouted to the alternate. Mir-
rored data would remain fully protected, and the effect on I/O performance would be 
smaller.  
Multiple I/O paths between server and storage device can also improve I/O performance. 
In many applications, disk arrays satisfy a significant percentage of I/O requests from 
cache. For example most disk arrays recognize sequential read patterns, and begin to read 
data into cache in advance of host I/O requests. In this scenario, I/O path bandwidth can 
actually limit LUN performance. With multiple I/O paths to a LUN however, all can be 
deliver concurrently as fast as applications request it. Similarly, if an I/O path that pro-
vides access to multiple LUNs becomes momentarily overloaded due to activity on one 
LUN, other LUNs’ I/O requests can be rerouted to less-busy paths.  

Different Forms of Multi-Path Access  
Disks and disk arrays support multi-path access to LUNs in several different ways. Fun-
damentally, there is a distinction between:  
• Active-active. If a disk array accepts and executes I/O requests to a single LUN on 

two or more ports simultaneously, it is called an active-active (A/A) array. If a path to 
an active-active array fails, I/O requests can simply be rerouted to other paths, main-
taining continuous access to data stored on the array’s LUNs.  
EMC’s Symmetrix and DMX arrays, Hitachi Data Systems’ 9900 Series (Lightning), 
and IBM’s ESS series (Shark) are active-active arrays.  

• Active-passive. If a disk array accepts and executes I/O requests to a LUN on one or 
more ports on one array controller (the primary), but is able to switch, or “fail over,” 
access to the LUN to alternate ports (secondaries) on other array controllers, it is 
called active-passive (A/P).  
EMC’s Clariion Cx600 and Cx700, Hitachi Data Systems’ 95xx and 9200 series, IBM 
FASt-T, and Sun’s T3 and T4 are active-passive arrays.  

In addition to this broad classification, active-passive disk arrays capabilities differ in 
three ways that affect availability and I/O performance:  
• Multiple primary paths. If an active-passive array accepts and executes simultaneous 
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I/O requests to a LUN on two or more ports of the same array controller, it is called 
an active-passive concurrent (A/PC) array. Active-passive concurrent arrays’ LUNs 
fail over to secondary paths on alternate array controllers only when all primary paths 
have failed. Most active-passive arrays can be configured for active-passive concur-
rent operation.  
EMC’s CLARiiON, Hitachi Data Systems’ 9500V series, IBM’s FASt-T, and Sun’s T3 
and T4 are active-passive concurrent arrays.  

• Explicit failover. Some active-passive arrays fail over from primary I/O paths to sec-
ondary ones automatically when they receive an I/O request to a LUN on a secondary 
path. Others fail over only when they receive special array model-specific SCSI 
commands from their hosts. Explicit failover simplifies support for active-passive ar-
rays in clusters, where multiple hosts can issue I/O requests directly to LUNs. With-
out explicit failover capability, cluster software must carefully synchronize all hosts’ 
access to a LUN before initiating implicit failover so that I/O requests from multiple 
hosts do not result in continuous failovers.4  
Sun Microsystems T3 and T4 arrays are capable of explicit failover.  

• LUN group failover: In general, LUNs fail over from one array controller to another 
individually. Some active-passive arrays, however, can fail administratively defined 
groups of LUNs over together. Arrays with this capability are called active-passive 
with group failover capability (A/PG).. If all primary paths to a LUN in an A/PG ar-
ray fail, all the LUNs in its group fail over to secondary paths. LUN group failover is 
faster than failover of individual LUNs, and can therefore reduce the application im-
pact of array controller failure, particularly in disk arrays that present large numbers 
of LUNs.  
Hitachi Data Systems’ 9200 series arrays are capable of LUN group failover.  

As discussed in later sections, the dynamic multipathing (DMP) feature of the VERITAS 
Volume Manager has a modular architecture that makes it possible to integrate support 
for new and different types of multi-path access control quickly and easily.  

Discovering Multiple I/O Paths  
UNIX operating systems “discover” the storage devices that are accessible to them auto-
matically when they start up. Operating system device discovery consists of:  
• Scanning I/O buses or querying storage network fabrics to determine which bus or 

network addresses connect to actual disks or LUNs  
• Creating in-memory data structures in the operating system device tree that identify 

and describe discovered devices  
• Loading any specialized drivers required to utilize the devices  

                                                 
4  At the time of publication, DMP supports explicit failover of Sun Microsystems’ StorEdge T3 and T4 

arrays only when they are connected to Solaris servers. Because disk array capabilities and DMP 
support for them are enhanced frequently, users are advised to consult both VERITAS and disk array 
vendor product documentation and support information sources for up-to-date information.  
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At the end of device discovery, an operating system has an in-memory database, or de-
vice tree, that represents the storage devices with which it can communicate, and has 
loaded the drivers required to control them.  
To an operating system, a storage device is an address on a network that responds appro-
priately to SCSI storage device commands. UNIX operating systems are not inherently 
multi-path aware. They view a storage device accessible on two or more paths as two de-
vices at different network addresses. Path management software, such as VERITAS Stor-
age Foundation’s Dynamic Multipathing (DMP) discussed starting on page 11, is re-
quired to analyze the device tree and identify multi-path devices. DMP’s discovery proc-
ess and the modifications it makes to the operating system device tree are described start-
ing on page 12.  

Common Multi-Path Hardware Configurations  
The hardware elements that comprise I/O paths can be configured in a variety of ways 
that affect both system resiliency and I/O performance. The sections that follow describe 
the most commonly encountered multi-path hardware configurations.  

Directly Connected Disk Arrays  
Although it is not often encountered in practice, the simplest multi-path hardware con-
figuration consists of a disk or disk array that can present LUNs on two or more ports, 
each of which is connected directly to a host bus adapter (HBA) on a hosting server. 
Figure 3 illustrates this configuration.  

 
Figure 3: Directly Attached LUNs5  

The array illustrated in Figure 3 contains four LUNs, each of which is accessible on both 
of its controller ports. UNIX operating systems would discover the same four LUNs on 
both paths, so an operating system device tree would contain a total of eight device en-
tries (two for each LUN).  
This array might be active-active (able to present LUNs on both ports simultaneously), or 
active-passive (able to present a LUN on either port, but not on both). If it were active-

                                                 
5  For simplicity,  and the figures that follow show artificially small numbers of LUNs.  Figure 3
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passive, the array might or might not be capable of explicit failover and LUN group 
failover. With only one port per controller however, the array could not provide active-
passive concurrent LUN access.  

Disk Arrays Connected to a Storage Network  
A more common multi-path configuration, especially in large data centers, uses a storage 
network to connect host computers and disk arrays. Figure 4 illustrates this configuration.  
In the example of Figure 4, each HBA can connect through the switch to each of the disk 
array’s controller ports. There are therefore four unique paths between server and disk 
array:  
• HBA1↔Port1↔Port3↔Port5  
• HBA1↔Port1↔Port4↔Port6  
• HBA2↔Port2↔Port3↔Port5  
• HBA2↔Port2↔Port4↔Port6  
In this configuration, operating system discovery would report a total of 16 devices (four 
LUNs on each of the four paths).  

 
Figure 4: I/O Paths Through a Non-Redundant Storage Network  

As with the configuration in Figure 3, the array illustrated in Figure 4 might be active-
active or active-passive, with or without explicit and LUN group failover capability. 
Again, with only one port per controller, active-passive concurrent operation would not 
be possible. Even if this array were active-passive, concurrent execution of I/O requests 
to a LUN from both HBAs might be possible, although both would access the same con-
troller port, e.g.:  
• HBA1↔Port1↔Port3↔Port5  
• HBA2↔Port2↔Port3↔Port5  
This might be slightly advantageous from an availability point of view, since it eliminates 
failover time for failures of path elements on the host side of the switch, but there is no 
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performance benefit, because access to any given LUN is limited by the performance of 
the single controller port on which it is presented.  

Disk Arrays Connected to Redundant Storage Networks  
A common (and good) storage network design practice, illustrated in Figure 5, is the con-
figuration of identical parallel fabrics connected to the same storage devices and servers, 
but not to each other. With this configuration, even a complete storage network outage 
(e.g., a total switch or director failure) leaves all host servers still able to communicate 
with all storage devices.  
In the configuration illustrated in Figure 5, each HBA is connected to a different fabric 
(represented in the figure by a single switch for simplicity). Similarly, each disk array 
port is connected to a different fabric, creating two paths between any LUN and the host 
computer:  
• HBA1↔Port1↔Port3↔Port5  
• HBA2↔Port2↔Port4↔Port6  
Operating system discovery would report a total of eight devices (four on each of the two 
paths).  

 
Figure 5: Multiple I/O Paths in a Storage Network with Redundant Fabrics 

As in the preceding configurations, this array might be capable of either active-active or 
active-passive operation. If active-passive, it might be capable of explicit and LUN group 
failover. But with only one port per controller, active-passive concurrent LUN access 
would not be possible.  

Disk Arrays with Multi-Port Controllers Connected to Multiple Storage 
Network Fabrics  
The configuration shown in Figure 6 is similar to that of Figure 5 in that it includes two 
parallel fabrics. It differs, however, in that each array controller has two ports. The array 
can present each LUN on any of four ports (for simplicity, only the port connections for 
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LUNs B and C are shown). Operating system discovery would report 16 LUNs—each 
actual LUN would be reported on all four paths:  
• HBA1↔Port1↔Port3↔Port5  
• HBA1↔Port1↔Port7↔Port9  
• HBA2↔Port2↔Port4↔Port6  
• HBA2↔Port2↔Port8↔Port0  
The disk array in Figure 6 might be active-active or active-passive, and if active-passive, 
might be capable of explicit failover and LUN group failover. Because each array con-
troller has two ports, active-passive concurrent operation is possible. LUNs might be pre-
sented on primary ports 5 and 9, for example, with ports 6 and 0 designated as secondary 
ports. EMC Clariion Cx700 arrays can be configured in this fashion.  

 

 
Figure 6: Multi-Port Controllers Connected to Redundant Fabrics  

Disk Arrays with Multi-Port Controllers Cross-Connected to Redundant 
Fabrics  
The configuration illustrated in Figure 7 is identical to that of Figure 6 with the exception 
that each disk array controller is connected to both fabrics. Each LUN can be accessed on 
any of the four ports (again, for simplicity, Figure 7 illustrates only the LUN B and C 
port connections.)  
Operating system discovery would report each LUN on four paths:  
• HBA1↔Port1↔Port3↔Port5  
• HBA1↔Port1↔Port7↔Port6  
• HBA2↔Port2↔Port4↔Port9  
• HBA2↔Port2↔Port8↔Port0  
From a path management point of view, this configuration is identical to the preceding 
one. It might offer slightly better availability since a controller failure would still leave 
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both fabrics usable (unlike the configuration in Figure 6). Similarly, failure of a fabric 
would leave the disk array able to use both of its controllers, eliminating the need for path 
failover.  

 

 
Figure 7: Multi-Port Controllers Cross-Connected to Redundant Fabrics  

VERITAS Storage Foundation Dynamic Multipathing 
(DMP)  
Effective use of  multiple I/O paths requires both awareness of storage network topology 
and an ability to execute pre-defined policies automatically in response to rapidly chang-
ing conditions in the I/O subsystem. The VERITAS Storage Foundation’s Dynamic Mul-
tipathing (DMP) feature automates the management of multiple I/O paths between serv-
ers and storage devices in accordance with pre-defined administrative policies. DMP en-
hances I/O subsystem availability and I/O performance in three ways:  
• Data availability. If an I/O path to a multi-path storage device fails, DMP automati-

cally reroutes I/O requests to an alternate path transparently to applications and with-
out administrator intervention. When a failed path returns to service, DMP restores 
the original path configuration automatically and transparently as well.  

• I/O performance. For disk arrays that support simultaneous access to a single storage 
device on multiple paths, DMP enhances I/O performance by distributing I/O requests 
across all available paths according to pre-defined load balancing policies.  

• Application resiliency. In cluster configurations, DMP improves application avail-
ability by eliminating application failovers that would otherwise result from I/O path 
failures.  

In addition to these, DMP makes it possible to manage both storage virtualization and I/O 
path policies from a single console or graphical interface because it is part of the 
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VERITAS Storage Foundation Volume Manager (VxVM).  

DMP In the UNIX Storage I/O Software Stack  
DMP is a layer in the UNIX storage I/O software stack. While different platforms’ im-
plementations differ in detail, UNIX I/O software stacks share a common overall struc-
ture, simply because all perform the same basic functions to provide I/O services. Figure 
8 shows a simplified model of a generic UNIX storage I/O software stack that includes 
VxVM and DMP.  

 
Figure 8: Generic Model of the UNIX Storage I/O Software Stack  

In a typical server, almost all I/O requests to a server’s I/O subsystem are issued by a file 
system (in some cases, database managers issue I/O requests to “raw” storage). File sys-
tems issue their I/O requests to VxVM virtual volumes (e.g., 
/dev/vx/rdsk/diskgroup/volume). The VxVM virtualization layer converts them 
into equivalent requests to physical disks or LUNs. For example, if a file system issues a 
write request to a mirrored volume, the VxVM virtualization layer converts it into write 
requests to corresponding block ranges of each of the mirrors that comprise the volume.  
Path management software like DMP necessarily occupies a position below virtualization 
in the I/O stack. It receives I/O requests from the VxVM virtualization layer, determines 
which path should carry each one, and issues it to the operating SCSI system driver on 
that path. UNIX operating systems have two layers of storage I/O drivers—a SCSI layer 
that converts operating system I/O request structures into SCSI command data blocks 
(CDBs) and one that sends and receives messages containing CDBs and data on the stor-
age network or I/O bus.  

DMP and Device Discovery  
As discussed earlier (page 6), UNIX operating systems discover the I/O devices that are 
accessible to them when they start up. Following operating system discovery, the VxVM 
configuration daemon, vxconfigd, discovers information that VxVM requires and cre-
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ates in-memory data structures that describe (among other things) devices’ multi-path 
capabilities.  

DMP Multi-Path Devices in the Operating System Device Tree  
For each disk or LUN it detects, a UNIX operating system creates data structures some-
times called nodes or device handles, in its device tree. For example, the Solaris operat-
ing system creates nodes in both the /dev/rdsk and /dev/dsk paths for each device it 
detects. If a device is accessible on two or more paths, operating systems treat each path 
as a separate device, and create nodes corresponding to each path.  
During its discovery process, VxVM’s vxconfigd daemon creates similar structures 
called metanodes in the /dev/vx/rdmp and /dev/vx/dmp trees for each storage device 
it detects. Each metanode represents a metadevice, a VxVM abstraction that corresponds 
to a disk or LUN and all the I/O paths on which it can be accessed. The VxVM virtualiza-
tion layer issues its I/O requests to these metadevices.  
The vxconfigd daemon identifies multiple paths to a device by issuing a SCSI inquiry 
command to each operating system device. A disk or LUN responds to a SCSI inquiry 
command with information about itself, including vendor and product identifiers and a 
unique serial number. An administrator can use the command 
/etc/vx/diag.d/vxdmpinq to issue a SCSI inquiry to a device and display the re-
sponse, as Dialog 1 illustrates.  

dcsun51 $/etc/vx/diag.d/vxdmpinq /dev/vx/rdmp/HDS9970V0_4s2 
Inquiry for /dev/vx/rdmp/HDS9970V0_4s2, evpd 0x0, page code 0x0, flags 0x4 
        Vendor id                        : HITACHI 
        Product id                       : OPEN-9      -SUN 
        Revision                         : 2106 
        Serial Number                    : 045175F30009 

Dialog 1: Information Returned by SCSI Inquiry Command  

If two operating system devices respond to SCSI inquiry commands with the same serial 
number, they are in fact the same physical disk or LUN responding on two different 
paths.6  
If VxVM discovery encounters only one instance of a particular serial number, the device 
can only be accessed on a single path. DMP links its metanode for each single-path de-
vice to the corresponding node in the operating system tree, as Figure 9 illustrates, and 
marks the device for “fast path” access by the VxVM virtualization layer. During system 
operation, the VxVM virtualization layer sends I/O requests to fast-path devices directly 
to the operating system’s SCSI driver without passing them to DMP.  

                                                 
6  A consequence of this method of detecting multiple paths to a device is that DMP can only support 

disks and LUNs that return the same unique disk identifier in response to SCSI inquiry commands on 
all paths. This is generally true for path management software.  

VERITAS ARCHITECT NETWORK 

 13 



Dynamic Multipathing 

 

/dev/vx/rdmp/c1t0d0s2 DMP metanode 

/dev/rdsk/c1t0d0s2 Operating sys-
tem device tree 

node 

 
Figure 9: VxVM Subtree for a Single-Path Device (Solaris)  

A device that is accessible on multiple paths returns the same serial number to inquiry 
commands on all paths. When DMP encounters the same serial number on different 
paths, it creates a metanode and links it to all operating system nodes that represent paths 
to the device, as Figure 10 illustrates.  

/dev/vx/rdmp/c1t0d0s2 DMP metanode 

 
Figure 10: VxVM Subtree for a Dual-Path Device (Solaris)  

An administrator can use the vxdisk path command to display information about 
VxVM metadevices and the paths to which they correspond, as Dialog 2 illustrates.  

# vxdisk path  
SUBPATH DANAME DMNAME GROUP STATE 
c1t0d0s2 c1t0d0s2 mydg01 mydg ENABLED 
c2t0d0s2 c1t0d0s2 mydg01 mydg ENABLED 
c1t1d0s2 c1t1d0s2 mydg02 mydg ENABLED 
c2t1d0s2 c1t1d0s2 mydg02 mydg ENABLED 

Dialog 2: vxdisk path Command for Multi-Path Disks  

For the dual-path device illustrated in Figure 10, the vxdisk path command in Dialog 
2 shows the metanode c1t0d0s2 (in the /dev/vx/rdmp subtree) as corresponding to 
operating system nodes c1t0d0s2 and c2t0d0s2. Information displayed by the VxVM 
vxdisk path command includes:  
• The disk access name (DANAME, or VxVM metanode name, e.g., c1t0d0s2 in Dialog 

2) of each metadevice. The DANAME is the name used by the operating system to 
manage the LUN.  

• The disk media name (DMNAME, or VxVM user-friendly device name, e.g., mydg01 

/dev/rdsk/c1t0d0s2 /dev/rdsk/c2t0d0s2 

Operating system 
device nodes 
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in Dialog 2), of each metadevice. The DMNAME is used in VxVM management opera-
tions.   

• The operating system device nodes (SUBPATHs) corresponding to each metadevice 
(e.g., c1t0d0s2 and c2t0d0s2 corresponding to VxVM metanode c1t0d0s2 in 
Dialog 2)  

• The VxVM disk group membership of metadevices (mydg in Dialog 2)  
• The operational state of each metadevice on all access paths. Dialog 2 indicates that 

all paths are ENABLED, or eligible to handle I/O requests. Paths may also be 
DISABLED, either by administrative command, or by DMP itself it fails to recover 
from an I/O error.  

DMP I/O Load Balancing Policies  
In most instances, DMP is installed primarily to increase data availability by keeping 
storage devices accessible when I/O paths fail. When all paths are operational, however, 
DMP can also improve a device’s I/O performance by routing each request to the most 
appropriate path. Using structures similar to that shown in Figure 10, DMP can choose 
the optimal path on which to route each file system I/O request. 
The “optimal” path to a device can change over time based on I/O load, but path selection 
can also be a matter of system policy. At the time of publication, DMP includes six dif-
ferent I/O request routing policies that can be applied to multi-path storage devices to in-
fluence the balancing of I/O requests across paths. The paragraphs that follow describe 
these six policies.  

Balanced Path Routing  
DMP’s balanced path policy routes I/O requests to paths based on the starting block ad-
dresses they specify. Effectively, this policy divides a device’s block address space into 
as many disjoint regions as there are active paths, and assigns each I/O request to a path 
that corresponds to the region in which the data it transfers falls.  
For LUNs using the balanced path policy, DMP divides the starting data address speci-
fied each I/O request by the system-wide parameter DMP_PATHSWITCH_BLKS_SHIFT 
and discards the remainder. The quotient of the division modulo the number of active 
paths is used to index the active path used to issue the I/O command.  
As an example, Figure 11 illustrates the balanced path I/O policy for an active-active de-
vice with two paths. For graphic simplicity, DMP_PATHSWITCH_BLKS_SHIFT has an ar-
tificially low value of 4. In this example, DMP would route read and write requests that 
specify a starting block addresses between 00 and 03 to path c1t0d0s0, those that spec-
ify one of blocks 04-07 to path c2t0d0s0, those that specify one of blocks 08-11 to path 
c1t0d0s0, and so forth.  
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/dev/vx/dmp/c1t0d0s0DMP metanode 

 
Figure 11: Balanced I/O Policy Path Selection  

To illustrate the general algorithm, for a read or write request specifying a starting ad-
dress of block 13, DMP would divide the address by DMP_PATHSWITCH_BLKS_SHIFT 
(13/4), giving an integer quotient of three. Three modulo the number of active paths (two) 
is one, so DMP would issue an I/O request to the operating system SCSI driver on path 1 
(operating system device c2t0d0s0).  
The balanced path policy is DMP’s default policy for active-active arrays’ LUNs (in ear-
lier versions of DMP, it was the only available policy). It is particularly useful for high-
speed sequential reading from active-active disk arrays and dual-port disk drives with 
read-ahead cache. Aligning the value of DMP_PATHSWITCH_BLKS_SHIFT with the se-
quential I/O request size causes DMP to route successive requests to alternate paths, 
which frequently allows data for two or more requests to transfer concurrently.  
The default value for DMP_PATHSWITCH_BLKS_SHIFT is 2048 blocks, or 1 megabyte. 
The value can be overridden for individual arrays by using the setattr option of the 
vxdmpadm command. Overriding the global PATHSWITCH_BLKS_SHIFT value is useful 
in systems connected to two or more different types of arrays.  

Round-Robin Routing  
The round-robin I/O request routing policy attempts to issue an equal number of I/O re-
quests on each active I/O path to a device. For each request, DMP computes a pseudo-
random number and assigns a path based on the computed number modulo the number of 
active paths.  
The round-robin policy is useful when most I/O requests to a LUN specify approximately 
the same amount of data transfer, and in storage networks whose loading is relatively 
evenly distributed. Round robin is the default DMP policy for active-passive concurrent 
arrays with multiple primary paths enabled.  

Minimum Queue Length Routing  
The minimum queue length policy routes each I/O request to the active path with the 
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smallest number of outstanding requests. Each time DMP assigns a request to a path, it 
increments the path’s outstanding request counter. Each time a request completes, the 
path’s request counter is decremented. For each new request, DMP selects the path with 
the smallest outstanding request counter value. This policy tends to counteract momen-
tary load imbalance automatically, as for example, when a path bottlenecks because of 
error retries or overload from other LUNs.  

Adaptive Routing  
The adaptive routing policy allows DMP to dynamically route I/O requests based on cal-
culated path priorities. When this policy is in effect, DMP records the service time and 
amount of data transferred for each request, and periodically calculates a priority for each 
path based on its recent throughput (bytes per second). The priority calculation algorithm 
produces higher priorities for paths that have recently delivered higher throughput. In-
coming I/O requests are routed to paths in proportion to the paths’ relative priorities. For 
example, if there are three active paths whose priorities are calculated as 3, 2, and 1 re-
spectively, half of incoming requests are routed to path 1, a third to path 2, and the re-
maining sixth to path 3. As total I/O load on higher priority paths increases, the paths 
tend to deliver lower throughput, resulting in lower priorities on the next recalculation 
cycle.  
The adaptive policy is useful with rapidly varying I/O loads, such as database applica-
tions that include both transactions (short transfers) and periodic table scans (long trans-
fers). It is also useful in storage networks where different paths have discernibly different 
average performance, such as paths with different numbers of network “hops” or individ-
ual links of different speeds.  

Priority Routing  
With the priority routing policy, DMP routes requests based on path priority as with the 
adaptive policy. Path priorities are assigned by administrators rather than calculated by 
DMP, however, and do not change without administrative action. The priority routing 
policy allows administrators to assign path priorities based on considerations other than 
performance, such as applications’ relative importance to an enterprise.  

Single Active Path (Preferred Path) Routing  
As its name implies, the single active path policy causes DMP to route all I/O requests to 
one path (called the preferred path). Only if the preferred path fails does DMP route I/O 
to a secondary one. The single active path policy is the default for non-concurrent active-
passive arrays. If this policy is configured for a LUN in an active-active array, DMP 
routes all I/O requests to the single active path; other paths are not used unless the active 
one fails.  
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Usage Note 
I/O performance of active-passive arrays can be influenced by the assignment of different 
LUNs’ preferred paths to different controllers. For example, in an array with two controllers, 
odd numbered LUNs might be assigned to one controller and even numbered LUNs to the 
other. If certain LUNs are known a priori to be heavily loaded, their primary path assign-
ments can be distributed across controllers.  

Determining the Effect of DMP Load Balancing Policies  
Administrators can monitor the effect of any of these load balancing policies by using the 
vxdmpadm iostat  command, as Dialog 3 illustrates.  

dcsun51 $vxdmpadm iostat show all 
                       cpu usage = 19733393us    per cpu memory = 32768b 
                         OPERATIONS             MBYTES            AVG TIME(ms) 
PATHNAME              READS     WRITES      READS     WRITES     READS   WRITES 
c0t1d0s2                159          0         79          0 10.670886 0.000000 
c0t0d0s2                 20          7       1220        162  0.042623 0.203704 
c2t3d13s2               870        236      17426       2158  0.205153 0.101946 
c3t3d13s2               334          4      15684         56  0.173871 0.017857 
c2t3d12s2              9127        507       9236      18365  0.251299 0.076940 
c3t3d12s2                45        649        255      18632  0.152941 0.074281 
c2t3d11s2              1311         11       2068        185  0.133946 0.021622 
c3t3d11s2                 0          1          0          8  0.000000 0.000000 
c2t3d10s2           1241887    1200897   19851284   19849637  0.306276 0.213964 
c3t3d10s2           1241300    1285848   19850538   19968007  0.274636 0.190663 
c2t3d9s2            1240586    1200829   19849347   19850382  0.288218 0.215717 
c3t3d9s2            1240839    1204491   19852391   19886690  0.255909 0.190155 
c2t3d8s2            1240585    1200814   19849319   19850598  0.272347 0.241037 
c3t3d8s2            1241296    1199258   19850357   19878681  0.241508 0.213279 
c2t3d7s2            1240584    1201024   19849315   19850304  0.293359 0.242801 
c3t3d7s2            1246021    1201910   19846281   19881291  0.262374 0.215197 
c2t3d6s2               1311         12       2068        161  0.132495 0.031056 
c3t3d6s2                  0          1          0          8  0.000000 0.000000 
c2t3d5s2                 10         18        131        800  0.473282 0.013750 
c3t3d5s2                  0          1          0          8  0.000000 0.000000 
c2t3d4s2           17059295   11930299  137101333   76064118  0.102189 0.158222 
c3t3d4s2               6703    2242672     625389    2373697  0.034997 0.899039 
c2t3d3s2              82888    1923459     652854    8340732  0.291318 0.180282 
c3t3d3s2              82119     913373     549421    4490416  0.357065 0.189884 
c2t3d2s2                 21          0         10          0  5.600000 0.000000 
c3t3d2s2                  0          0          0          0  0.000000 0.000000 
c2t3d1s2                 21          0         10          0  6.400000 0.000000 
c3t3d1s2                  0          0          0          0  0.000000 0.000000 
c2t3d0s2                 21          0         10          0  5.400000 0.000000 
c3t3d0s2                  0          0          0          0  0.000000 0.000000 

Dialog 3: DMP Collection of I/O Statistics  

The output of the vxdmpadm iostat command displays both the number of read and 
write operations, the amount of data read and written, and the average execution time for 
reads and writes for each path since VxVM’s iostat daemon was started, or since its 
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counters were last reset (using a variant of the same command). The command can be 
executed at intervals to determine the efficacy of a given load balancing algorithm under 
actual system I/O loads.  

DMP Architecture  
Because its value is greatest in large enterprise data centers, DMP is more often used with 
disk array LUNs than with directly attached disks. Although disks and disk arrays adhere 
to standards for data transfer (SCSI, Fibre Channel and iSCSI), each disk array model has 
its own unique way of controlling multi-path LUN and disk access. To support a particu-
lar disk array model, DMP must be customized to handle the array’s multi-path access 
capabilities and to interact properly with its interface protocols. The need to support new 
disk array models as they reach the market rather then on VxVM release cycles prompted 
the introduction of a unique array support architecture in Version 3.2 of VxVM. This ar-
chitecture keeps DMP integrated with VxVM, but at the same time makes it easy to add 
multi-path access support for new disk array models rapidly and efficiently. The DMP 
array support architecture is available in the form of a software development kit (SDK) 
that VERITAS Enabled partners can use to develop DMP support for new disk array mod-
els independently of VxVM releases.  

DMP Support for Different Disk Array Models  
Disk arrays with multi-path LUN access capability may be supportable by DMP without 
custom software. DMP can manage multi-path access to a disk array’s LUNs by treating 
them as disks, provided that the array has the following properties:  
• Multi-path access to LUNs is active-active  
• LUNs respond to SCSI inquiry commands with unique serial numbers, and each 

LUN’s serial number is reported identically on all paths  
• LUNs’ unique serial numbers can be read from the SCSI standard mode page location  
If an array has these properties, the vxddladm command with the addjbod option can 
be used to add its LUNs (identified by the vendor ID and product ID reported in response 
to SCSI inquiry commands) to DMP’s list of JBOD (physical disk) devices.  

Array Support Libraries  
For arrays that require more specialized handling, DMP’s architecture provides for array-
specific array support libraries (ASLs) for discovery and configuration and kernel mode 
array policy modules (APMs) that perform array-specific functions in the I/O path. 
Figure 12 illustrates how ASLs and APMs fit into VxVM’s configuration facilities and 
I/O path, with emphasis on the relationship to the vxconfigd configuration daemon.  
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ASL 1 File System 

 
Figure 12: The DMP Device Discovery Layer (DDL) Architecture  

After operating system device discovery, VxVM’s vxconfigd daemon executes its own 
discovery process to elicit the information it requires to operate, and builds its own de-
vice tree of nodes similar to those illustrated on page 14. For each device in its tree, 
VxVM’s Device Discovery Layer (DDL) calls each installed ASL in turn until an ASL 
“claims” the device based on its vendor and product identifiers (as shown in Dialog 1 on 
page 13). The claim associates an array model with the device, which in turn determines 
the set of APMs that vxdmp invokes to perform such functions as I/O path selection, path 
failover, and SCSI reservation and release.  
All ASLs that ship with VxVM are installed by default during VxVM installation. Dialog 
4 lists the ASLs installed on a typical Solaris system, and the types of storage devices 
they support.  

dcsun51 $vxddladm listsupport 
LIBNAME              VID                            PID 
============================================================================== 
libvxap.so           SUN                            All 
libvxatf.so          VERITAS                        ATFNODES 
libvxeccs.so         ECCS                           All 
libvxemc.so          EMC                            SYMMETRIX 
libvxfujitsu.so      FUJITSU                        GR710, GR720, GR730 
libvxhds.so          HITACHI                        All 
libvxhitachi.so      HITACHI                        DF350, DF400, DF400F 
libvxlsiinf.so       LSI                            INF-01-00 
libvxnec.so          NEC                            DS1200, DS1200F, DS3000SL 
libvxpurple.so       SUN                            T300 
libvxrdac.so         VERITAS                        RDACNODES 
libvxsena.so         SENA                           All 
libvxshark.so        IBM                            2105 
libvxssa.so          SSA                            SSA 
libvxstorcomp.so     StorComp                       OmniForce 
libvxveritas.so      VERITAS                        All 
libvxvpath.so        IBM                            VPATH_NODES 
libvxxp256.so        HP                             All 
libhtc9900V.so       HITACHI                        All 

Dialog 4: Partial Listing of DMP Array Support Libraries  

Because the vxconfigd daemon calls each installed ASL for each device during discov-
ery, deactivating ASLs that are not required (e.g., because no storage devices of the types 
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they support are connected) can dramatically improve the speed with which a system 
starts up. Dialog 5 illustrates the sequence of VxVM commands for deactivating an un-
used ASL (the ASL remains installed and can be reactivated).  

# vxddladm excludearray libname=libvxvpath.so 
# vxdctl enable 

Dialog 5: Deactivating an Unused ASL  

When an ASL is deactivated in this way, the multi-path properties of the LUNs it controls 
do not change until VxVM discovery runs. During VxVM discovery, LUNs that had been 
controlled by a deactivated ASL are classified as generic disks. After the vxddladm 
command in Dialog 5 deactivates an ASL, the vxdctl enable command 
causes DMP discovery and reconstruction of its metanodes to reflect changes in device 
multi-path capabilities.  
ASLs can be installed dynamically while VxVM is running. This makes it possible to add 
multi-path access control for new disk array models without stopping VxVM or rebooting 
the system. Installing an ASL does not automatically cause VxVM to recognize LUNs 
presented by new arrays, however. After ASL installation, the vxdctl enable VxVM  
command must be run to cause VxVM to discover new devices and their multi-path ca-
pabilities. Alternatively, if the locations of newly added devices are known, the vxdisk 
scandisks command can be issued with constraints to cause a (faster) partial device 
scan.  

Array Policy Modules  
Array Policy Modules (APMs) are dynamically loadable kernel modules invoked by the 
vxdmp driver to perform disk array-specific path selection and failover, error processing, 
and SCSI reservation and release. DMP includes default procedures for these common 
functions; installing an APM overrides the default procedure for all arrays whose array 
models refer to it.  
As shipped by VERITAS, DMP APMs support generic active-active, active-passive, ac-
tive-passive with group failover, in both single-host and multi-host configurations. Each 
array model includes a set of vectors that point to functions which implement policies 
such as:  
• I/O request routing, using one of the six built-in policies discussed earlier (page 15)  
• Error handling, including analysis, recovery, and DMP state changes. Built-in error 

handling policies include inquiry (the most common policy, described later), read-
only path (for certain active-active array conditions such as EMC Symmetrix non-
disruptive upgrade), and coordinated failover and failback for active-passive arrays in 
clusters  

• Get Path State, for obtaining information about current path and device configuration 
for use in error handling and elsewhere  

• LUN group failover, for active-passive arrays that support concurrent failover of en-
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tire LUN groups triggered a single event  
• Explicit failover, for arrays that support explicit failover functionality (page 6)  
• Failover path selection, using first available path, primary path preferred, or other 

alternate path selection algorithms  
DMP includes one or more default procedures for each of these policies. Custom APMs 
that implement array-specific procedures can be substituted by creating array models that 
vector to the procedures that implement custom functions.  

DMP Device Discovery during System Operation  
If a system’s storage device configuration changes, for example because a device fails, or 
because additional disks or arrays are added, these must be discovered as well. Rebooting 
an operating system after a storage configuration change causes discovery, but rebooting 
is almost never desirable, especially for enterprise-class systems. UNIX operating sys-
tems therefore provide commands that an administrator can invoke to discover storage 
devices on demand. Table 1 lists the device discovery commands in each of the UNIX 
operating systems supported by DMP.  

Operating 
System Storage Device Discovery Commands  

Solaris devfsadm command performs subsystem scan, updates the device tree and loads 
drivers as necessary  

AIX cfgmgr command performs subsystem scan, updates the device tree and loads 
drivers as necessary  

HPUX 
Administrators should use the ioscan command to survey the old configuration, 
followed by the insf -e command to update the device tree and load drivers as 
necessary.  

Linux makedev command can be used to update the device tree, but I/O subsystem scan 
and driver loading are only done at boot time.  

Table 1: UNIX Operating System Commands for Run-Time Storage Device Discovery 

VxVM Device Discovery During Operation  
Whenever an operating system rediscovers its storage configuration, VxVM must also 
discover any effects of the change on virtualization and multi-path access. Administrators 
can use one of two VxVM commands to cause rediscovery by the vxconfigd daemon:  
• vxdctl enable. This command causes vxconfigd to scan all storage devices and 

reconstruct DMP metanodes and other structures to reflect the current device configu-
ration.  

• vxdisk scandisks. This command may specify complete discovery, or it may be 
constrained to scan only newly added devices, or designated enclosures, array con-
trollers or device address ranges. A limited scan can be considerably faster than a full 
one if a small number of changes have been made to a large storage configuration.  

Both commands use the vxconfigd daemon to re-scan the storage configuration and 
update in-memory data structures to reflect changes since the previous scan. The daemon 
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uses ASL services to determine multi-path capabilities of newly-added devices. VxVM 
on-demand discovery does not interrupt system or application operation.  

I/O Path Failover with DMP  
Typically, the primary motivation for installing I/O path management software is to keep 
data accessible when an I/O path fails. A fundamental problem of I/O path management 
is distinguishing between failure of a path to a device and failure of the device itself. If a 
failed device is able to report its status (e.g., hard read error, unrecoverable positioning 
error, or write to a write-locked device), the determination is easy. More difficult to diag-
nose is a device that simply does not respond to an I/O request:  
• Has the device failed?  
• Has the path to the device failed, leaving the device unable to communicate the status 

of outstanding requests or accept new ones, even though it is functioning?  
• Is the device simply too busy to respond within its timeout period?  
When an I/O request fails, DMP must determine whether to re-route future I/O requests 
to alternate paths.  

Path Failure Analysis  
The dmperrd and restored daemons , both of which run as kernel threads, perform 
path failover and failback respectively. When either DMP or an operating system driver 
times out an I/O request to a multi-path device, DMP moves the request to its error han-
dling queue. The dmperrd daemon diagnoses requests in the error handling queue by 
issuing one or more SCSI inquiry commands to the target device on the suspect path. 
(Most storage devices will respond to SCSI inquiry commands, even if they are unable to 
transfer data). If the daemon receives a valid response within the timeout interval, it con-
cludes that the device was simply too busy to respond, and re-queues the request and any 
others added to the error queue in the interim, on the original path.  

Path Failover  
If the dmperrd daemon’s SCSI inquiries fail within a timeout interval, it fails I/O over to 
an alternate path. For active-active arrays, path failover consists simply of adjusting the 
load balancing algorithm in effect to account for the failed path. For active-passive ar-
rays, DMP initiates failover, either implicitly, by re-queuing outstanding I/O commands 
to an alternate path, or explicitly by invoking services of the APM that corresponds to the 
LUN being failed over.  
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Usage Note 
On Solaris, AIX, and Linux systems, the dmperrd daemon starts immediately when the 
DMP driver, vxdmp, begins to execute at system startup. On HPUX, dmperrd does not 
start until the VxVM volume management daemon, vold, executes its first DMP ioctl 
command. Thus, on HPUX platforms, dmperrd may not be observable immediately upon 
system startup.  

DMP fails paths over on a device-by-device basis. Thus, if a shared resource, such as a 
storage network switch, fails, DMP executes the failure analysis and failover procedures 
described above for all devices affected by the failure. APMs for disk arrays that support 
LUN group failover can fail over entire groups of LUNs in response to a single event.  

Path Failback  
DMP’s restored daemon runs every dmp_restore_daemon_interval seconds 
(300 by default) to check I/O path state. The dmp_restore_daemon_policy tunable 
can be used to specify one of four path checking policies:  
• check_all. This policy causes the restored daemon to issue an inquiry command 

on every path to every device controlled by DMP, irrespective of the path’s state. 
This policy provides timely notification of path failures, but the large number of in-
quiry commands it issues may impact application performance in systems with a large 
number of storage devices.  

• check_disabled. This policy causes the restored daemon to issue inquiry com-
mands to failed paths (but not administratively disabled ones). While it does not pro-
vide proactive notification of path failure, the low overhead of this policy makes it at-
tractive for some data center operations.  

• check_periodic. This policy causes the restored daemon to execute the 
check_disabled policy except during every dmp_restore_daemon_cyclesth 
dmp_restore_daemon_interval, when it executes the check_all policy. For 
example, with a dmp_restore_daemon_interval of 300 seconds and a 
dmp_restore_daemon_cycles of 10, the restored daemon would issue inquir-
ies to FAILED paths every 300 seconds (5 minutes), and to all devices on all paths 
every 3000 seconds (50 minutes). This policy represents a compromise between 
overhead and timely discovery of failed paths.  

• check_alternate. This policy is similar to the check_all policy, except that the 
restored daemon stops issuing inquiry commands to a device when it finds two op-
erational paths. This policy is useful with complex storage network topologies, where 
checking all paths might result in a large number of inquiries, possibly impacting ap-
plication performance. Because it checks for at least one functional alternate path, this 
policy also protects against sudden path failure.  

Administrators use the vxdmpadm utility to adjust the three tunables that control the 
restored daemon’s behavior, dmp_restore_daemon_interval, 

VERITAS ARCHITECT NETWORK 

 24 



Dynamic Multipathing 

 

dmp_restore_daemon_policy, and, for the check_periodic policy only, 
dmp_restore_daemon_cycles.  

DMP Configuration and Tuning Considerations  
There are three key DMP parameters that administrators should understand and actively 
manage, because they can affect system performance and availability significantly. The 
values of these parameters are set differently for each platform implementation of 
VxVM:  
• Solaris. The parameters are found in the /kernel/drv/vxdmp.conf file on So-

laris platforms. The vxdmpadm  command is used to set their values.  
• AIX. The menu-based smit or the graphical smitty configuration management 

utilities are used to set the values of these parameters by selecting the vxvm option, 
navigating to the parameter to be changed, and setting its new value.  

• HP-UX. Current values for DMP parameters can be determined by running the Sys-
tem Administration Manager (SAM) and selecting the Kernel Configuration 
and Configuration Parameters options. The parameters themselves are stored 
in the /stand/system file. Some parameter changes may require re-linking the op-
erating system kernel, and rebooting the system using the new kernel.  

• Linux. The parameters are found in the /etc/vx/vxdmp_tunables file. The 
vxdmptune utility is used to set their values.  

The paragraphs that follow describe functions of the three key parameters.  

DMP_FAILED_IO_THRESHHOLD  
The dmp_failed_io_threshhold parameter represents the amount of time beyond 
which DMP considers an I/O request failure to represent a storage device failure. As 
Figure 8 (page 12) suggests, the VxVM virtualization layer issues I/O requests to DMP 
metadevices. Before forwarding a request to the operating system SCSI driver DMP 
saves the current system time. If the SCSI driver signals that an I/O request has failed, 
DMP samples the time at the moment of failure notification, and computes how long the 
request was outstanding. If the request was outstanding longer than 
dmp_failed_io_threshhold seconds, DMP considers the device to have failed, and 
does not perform error recovery or path failover. If the request fails within 
dmp_failed_io_threshhold seconds, DMP considers path failure as a possible 
cause, and initiates the error analysis and recovery procedures described earlier.  
By default, the dmp_failed_io_threshhold parameter is set to ten minutes. For non-
redundant volumes, this is typically adequate; too low a value can result in I/O request 
failures that are actually due to transient storage network errors. For failure tolerant (mir-
rored) volumes, however, a lower value is usually appropriate, because the VxVM virtu-
alization layer retries a failed I/O request on another of the volume’s plexes. For failure 
tolerant volumes, therefore, the dmp_failed_io_threshhold parameter should typi-
cally be set to a few tens of seconds. Of course, appropriate settings depend on steady-
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state storage network and device loading as well as individual disk or LUN performance 
characteristics.  
The dmp_failed_io_threshhold parameter is not used on the HP-UX platform. The 
HP-UX operating system provides an I/O request timing capability, called pfto that 
causes the SCSI driver to abort I/O requests that remain outstanding for too long. DMP 
treats I/O requests timed out by the HP-UX SCSI driver identically to failed requests on 
other platforms for which the dmp_failed_io_threshhold time is exceeded. The 
pfto parameter can be set separately for each VxVM disk group using the vxpfto util-
ity.  

DMP_RETRY_COUNT  
When a DMP I/O request to a SCSI driver fails within the 
dmp_failed_io_threshhold interval, the dmperrd daemon begins recovery by issu-
ing SCSI inquiry commands to the target device on the suspect path. The daemon issues 
as many as dmp_retry_count inquiries. The default value for dmp_retry_count is 
5.7 To reduce failover times in storage networks with extensive multi-path connectivity, 
this value can be lowered. A value of 2 is usually appropriate for storage networks with 
two or more paths to each device.  
Upper layers of the I/O software stack must ultimately interpret I/O failures. Success of a 
DMP inquiry command followed by repeated failure of an I/O request can occur for a 
variety of reasons, some of them application-related. For example, write commands to 
write-protected devices always fail immediately. The dmperrd daemon’s SCSI inquiry 
will succeed, but the application’s command will continue to fail. Behavior like this usu-
ally indicates an application or administrative error.  
As another example, if a disk that is part of a non-redundant LUN is failing intermit-
tently, an application I/O request to the LUN might fail, but the dmperrd SCSI inquiry to 
the LUN may succeed. In this case, the hardware failure must be detected and diagnosed 
by means external to VxVM (e.g., by the disk array’s error reporting mechanisms) and 
acted upon.  

DMP_PATHSWITCH_BLKS_SHIFT  
For LUNs configured to use the balanced path I/O policy (page 15), DMP divides the 
starting data address specified in each I/O request by the parameter 
dmp_pathswitch_blks_shift and discards the remainder. The quotient of the divi-
sion modulo the number of active paths becomes an index to the active path on which the 
I/O request is issued.  
The dmp_pathswitch_blks_shift parameter is system-wide; it applies to all storage 
devices using the balanced path load balancing policy. Its default value is one megabyte 
(2048 blocks) on all supported platforms, but can be changed to match application re-

                                                 
7  ,On the HP-UX platform, the default value for dmp_retry_count is 30 because the HP-UX SCSI 

driver does fewer retries than those of other platforms.  
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quirements. For example, if an application reads large files sequentially using 2-
megabyte requests, setting the value of dmp_pathswitch_blks_shift to 2 mega-
bytes tends to alternate successive read requests among active paths. If the disk array rec-
ognizes sequential access patterns and reads ahead, application requests may be satisfied 
from data pre-read into cache.  

An Additional AIX-Specific DMP Tuning Consideration  
In addition to the three parameters that affect DMP availability and performance on all 
platforms, the dmp_queue_depth parameter is unique to the AIX platform. The 
dmp_queue_depth parameter limits the number of I/O requests to a single device that 
DMP will forward to the operating system driver in order to limit the time required to 
abort and redirect outstanding requests when a path fails.  
While the dmperrd daemon is analyzing a possible path failure, application I/O requests 
may continue to arrive. If the dmperrd daemon ultimately determines that the path has 
failed, DMP must abort all I/O requests outstanding to the operating system driver and 
reissue them on alternate paths. The operating system driver may take a long time to 
abort a large number of I/O requests, so DMP throttles, or limits the number of I/O re-
quests that it allows to be outstanding to the operating system driver to the value of the 
dmp_queue_depth parameter.  
DMP relays only dmp_queue_depth requests for a single device to the operating sys-
tem driver; it retains any additional ones in its own queue. Each time a request completes, 
the number outstanding drops below dmp_queue_depth. If there are additional requests 
for the device in DMP’s queue, a DMP kernel thread issues another one to the operating 
system driver.  

The default value of the dmp_queue_depth parameter is 32. As with other parameters, 
the value of dmp_queue_depth can be changed by running the AIX smit utility and 
selecting the vxvm subcommand.  

Storage Network Hardware Settings  
In addition to VxVM parameters, parameters that control the operation of host bus adapt-
ers and storage network switches can affect the performance and function of DMP. These 
parameters differ from vendor to vendor, but since similar components perform similar 
functions, conceptual similarity is found between HBAs and switches designed by differ-
ent vendors. The paragraphs that follow describe HBA and storage network settings that 
may affect DMP operation and that are typically adjustable by system administrators.  

Host Bus Adapter Settings  
Host bus adapters (HBAs) send and receive user data, I/O requests, and control messages 
between host server memory and storage devices. To accomplish this, they transform data 
between host memory format and I/O bus or storage network format, and add protocol 
information (for transmission) or remove it (upon reception). The driver software that 
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controls HBAs is at the lowest level of the storage I/O stack (Figure 8 on page 12).  
Because HBA drivers control access to I/O paths, they are often the point at which host 
servers first detect path failures. HBA designers build mechanisms into their drivers to 
help detect and analyze path failures. These mechanisms are typically controlled by ad-
justable parameters. The types of HBA parameters that affect DMP performance include:  
• Link-down timeouts. Operating system driver I/O request timeouts occur either be-

cause a device is unable to respond to a host message in time, or because the path on 
which a message was sent has failed. To detect path failure, HBAs typically start a 
timer each time a message is received, and report link failure if the timer lapses with-
out receipt of a message. Most HBAs provide for user adjustment of a link-down 
timeout period. The link-down timeout interval should approximately equal DMP’s 
dmp_failed_io_threshhold parameter value. If the link-down timeout period is 
significantly shorter than dmp_failed_io_threshhold, DMP will not detect path 
failures as quickly it should. If the HBA link-down timeout is significantly longer 
than dmp_failed_io_threshhold, DMP may time I/O requests out when in fact 
nothing is wrong.  

• Link retry count. Links that are inherently noisy may experience more frequent 
transmission errors than links in less noisy environments. Most HBAs include some 
type of adjustable link retry count that can be adjusted upward if necessary to prevent 
premature failovers on links that experience periodic noise bursts.  

Storage Network Switch Settings  
Storage network switches also expose settable configuration parameters that can affect 
the operation of DMP. The two most common ones are:  
• Interoperability mode. Switch and director vendors often build proprietary enhance-

ments to standard protocols into their products. While these enhancements are useful 
in homogeneous networks (those that include only one vendor’s switches), they may 
not function correctly or optimally in heterogeneous networks, or with disks and disk 
arrays that have not been certified for operation with the switch vendor’s products. 
Switches typically have an interoperability mode in which they adhere strictly to 
standard protocols for I/O and for inter-switch communications. Since DMP assumes 
standards-compliant storage device behavior, it is usually advisable to operate a stor-
age network in this interoperability mode.  

• Buffer credits. Buffer credits are a throttling mechanism used by HBAs and storage 
devices to avoid being swamped by incoming message and user data frames. Accord-
ing to Fibre Channel protocols, an originator is only permitted to send a frame to a re-
ceiver when the receiver has granted it a buffer credit. For long paths, particularly 
those with multiple “hops” between intermediate switches, buffer credit shortages can 
increase latency (the elapsed time for sending a message from originator to receiver) 
well beyond what would be expected given the bandwidth and loading of the link be-
tween the two. Alternate paths with different numbers of “hops” might have signifi-
cantly different average latencies, and if timeout parameters are set for the shorter 
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path, “false” timeouts might occur frequently on the longer one. The best way to 
avoid timeouts caused by a lack of buffer credits is to increase the number of buffer 
credits that HBAs and disk array ports grant for multi-hop links. If this cannot be 
done, DMP and operating system driver timeouts should be raised to accommodate 
typical latencies actually encountered on longer paths.  

Using DMP with other Path Managers  
Path managers that are functionally similar to DMP are available from some disk array 
and system vendors. There are three principal differences between DMP and the path 
managers typically supplied by hardware vendors:  
• Heterogeneity. Typically, hardware vendors’ path managers are optimized to support 

the vendor’s own products, sometimes to the exclusion of other vendors’ storage and 
systems. VxVM on the other hand is inherently heterogeneous, both with respect to 
platforms, storage devices, and in its ability to intermix different types of storage in a 
single virtual device configuration.  

• Integration. VxVM is more closely integrated with the VxFS file system and with 
major database managers than is typical for hardware vendor-supplied virtualization 
and path management software. Integration with adjacent layers in the I/O software 
stack tends to minimize administrative complexity, and therefore, cost.  

• Cost. Vendor path managers are typically extra-cost adjuncts to disk arrays, whereas 
DMP is an integral part of the VERITAS Storage Foundation software, the purchase 
of which is usually amply justified on other grounds.  

For a variety of reasons, hardware vendor-supplied path managers are sometimes present 
on systems where DMP is also installed. Both approaches have their own benefits and 
limitations. To manage systems in which two path managers are present, storage adminis-
trators should appreciate how DMP and other path managers interact with each other.  

Path Managers in the Storage I/O Stack  
Figure 13 represents the main functions performed in a UNIX storage I/O software stack, 
both with and without virtualization and path management. File systems and database 
managers configured to use “raw” devices make their I/O requests directly to operating 
system drivers that interact with disks and LUNs via host bus adapters. UNIX operating 
system drivers consist of:  
• A SCSI layer (sd) that transforms file system and database manager requests into the 

format required by the storage device interface (e.g., Command Data Blocks, or 
CDBs, for SCSI protocol)  

• A host bus adapter (HBA) layer that interacts with HBAs to set up the transfer of 
SCSI CDBs, device responses, and data between host server and storage device.  

Path  in Figure 13 represents the direct software connection between file system and 
storage device. In this scenario, the file system makes I/O requests to the operating sys-
tem’s SCSI driver, which reformats them and passes them to an HBA driver. HBA driv-
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ers treat I/O requests and device responses as messages which they send between source 
and destination without interpretation (a direct memory access, or DMA, mechanism is 
typically used for data transfer).  

 
Figure 13: Functions Performed at Different Layers of the UNIX I/O Software Stack  

Host-Based Virtualization Software  
Host-based storage virtualization software like VxVM adds a layer to the stack. The vir-
tualization layer manages collections of storage devices which it represents to file sys-
tems and database managers as disk-like virtual volumes with improved data availability, 
I/O performance, and functionality. Path  in Figure 13 represents the software stack 
traversed by file system I/O requests to virtual volumes. In this scenario, file system I/O 
requests to virtual volumes are fielded by a virtualization layer such as VxVM. The virtu-
alization layer creates equivalent requests to physical disks or LUNs, and issues them to 
operating system drivers.  
For example, VxVM transforms each application write request to a mirrored volume into 
a write request to each of the volume’s mirrors, and each read request into a request to 
one of the volume’s mirrors. More complex transformations also occur, as for example, a 
write request to a RAID volume which VxVM transforms into a series of read and write 
requests interspersed by computations, all of which collectively maintain parity consis-
tency while user data is updated.  

Path Managers  
As demonstrated earlier, multi-path management further enhances data availability and 
I/O performance. Path  in Figure 13 represents an I/O software stack that includes a 
path manager such as DMP. In this scenario, the file system makes I/O requests to vol-
umes. The virtualization layer transforms file system requests, and makes its I/O requests 
to metadevices presented by the path manager. The path manager selects an I/O path for 
each request according to the load balancing policy in effect, and issues the request to the 
operating system SCSI driver. When host-based virtualization and path management are 
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both in use, file system I/O requests are transformed twice before actually being issued to 
storage devices:  
• Each file system request to a virtual volume is transformed into one or more requests 

to metadevices that represent physical disks or LUNs  
• Each virtualization layer request to a disk or LUN metadevice is transformed into an 

operating system driver layer  request to a device on a specific access path  
No value is gained by performing the second transformation more than once. Historically, 
it has been regarded as poor practice to configure more than one path manager for the 
same device. Generally, path managers are unaware of each other, and therefore do not 
coordinate operating system I/O requests, or more importantly, error recovery actions.  
Typically, hardware vendor-supplied path managers can be enabled or disabled either on 
a per-device basis or system-wide. By default, VxVM manages all devices that it recog-
nizes as disks or LUNs, including controlling access paths, but can be disabled selec-
tively, as Dialog 6 illustrates.  

# mkt1 # vxdiskadm 
Volume Manager Support Operations 
Menu: VolumeManager/Disk 
 1      Add or initialize one or more disks 
 2      Encapsulate one or more disks 
 3      Remove a disk 
 4      Remove a disk for replacement 
 5      Replace a failed or removed disk 
 6      Mirror volumes on a disk 
 7      Move volumes from a disk 
 8      Enable access to (import) a disk group 
 9      Remove access to (deport) a disk group 
 10     Enable (online) a disk device 
 11     Disable (offline) a disk device 
 12     Mark a disk as a spare for a disk group 
 13     Turn off the spare flag on a disk 
 14     Unrelocate subdisks back to a disk 
 15     Exclude a disk from hot-relocation use 
 16     Make a disk available for hot-relocation use 
 17     Prevent multipathing/Suppress devices from VxVM's view 
 18     Allow multipathing/Unsuppress devices from VxVM's view 
 19     List currently suppressed/non-multipathed devices 
 20     Change the disk naming scheme 
 21     Get the newly connected/zoned disks in VxVM view 
 22     Change/Display the default disk layouts 
 23     Mark a disk as allocator-reserved for a disk group 
 24     Turn off the allocator-reserved flag on a disk 
 list   List disk information 
 ?      Display help about menu 
 ??     Display help about the menuing system 
 q      Exit from menus 
Select an operation to perform: 17 

Dialog 6: Disabling DMP for Selected Devices 
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How DMP Coexists with Other Path Managers  
Because all path managers perform essentially the same function, all behave in essen-
tially the same way. They create pseudo-device nodes for the devices they control, and 
redirect file system or virtualization layer I/O requests made to these pseudo-devices 
along one of the paths to an actual device.  
When a UNIX system starts up, it creates entries in its device tree for each block access 
storage device (disk or LUN) it discovers. Device tree entries for multi-path devices are 
referred to as sub-paths. Each storage device sub-path has a DDI_NT_BLOCK_WWN attrib-
ute indicating that it represents a block access storage device. Some path managers sup-
press access paths by turning this indicator off. thus preventing other software from di-
rectly accessing devices they control. For example, DMP’s device discovery layer treats 
suppressed paths as though they did not represent storage devices.  

Path-Suppressing Path Managers  
Path managers that suppress device paths do so in one of two ways:  
• They reset the DDI_NT_BLOCK_WWN indicator for all but one sub-path to each device 

they control. For example, if c1t1d1 and c2t1d1 represent two sub-paths to a de-
vice, a path manager might suppress c1t1d1 and leave the DDI_NT_BLOCK_WWN in-
dicator for c2t1d1 turned on. Path managers that do this include EMC Corporation’s 
Automatic Transparent Failover (ATF) and LSI Logic’s Redundant Disk Array Con-
troller (RDAC), both of which use unsuppressed paths as metanodes for the devices 
they represent.  

• They replace device tree entries that represent paths to devices they control with their 
own metanodes (with the DDI_NT_BLOCK_WWN indicator on). These path managers 
typically name their metanodes in some distinctive form (e.g., cXtWWWdXsX, where 
WWW represents a device worldwide name), rather than the common cXtXdXsX oper-
ating system form. They also enable a DDI_NT_FABRIC property, which causes de-
vices represented by their metanodes to be treated as storage network fabric devices. 
Sun Microsystems’ MPxIO path manager operates in this way.  

In both of these cases, path managers effectively suppress all but one path to each device 
under their control. DMP can create its own metanodes (as illustrated in Figure 9 on page 
14) linked to a path-suppressing path manager’s pseudo-devices, and co-exist with the 
other path manager for most purposes, but because each pseudo-device appears to DMP 
as a single-path device, DMP performs no useful function.  

Path Managers That Do Not Suppress Device Paths  
Other path managers do not suppress sub-paths to the devices they control, but leave 
them visible to other software, including DMP. Non-path suppressing path managers treat 
sub-paths for the devices they control in one of two ways:  
• They leave the sub-paths unmodified, and add their own metanodes to the device tree. 

With such a path manager, a LUN accessible on two paths is represented by three de-
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vice tree entries—two for the operating system-discovered sub-paths and one for the 
path manager’s metanode. Metanodes created by these path managers have character-
istic naming patterns that differ from the typical operating system cXtXdXsX pattern 
(e.g., Sun Microsystems’ Alternate Pathing (AP) driver metanode names follow the 
pattern mcXtXdXsX. IBM Corporation’s Subsystem Device Driver (SDD on the So-
laris platform and VPATH on AIX) metanodes names take the form vpathX).  

• They leave sub-paths intact, and insert their metanodes in a separate file system direc-
tory. Metanodes created by these path managers also have characteristic naming pat-
terns. Vendors of these path managers historically have not provided APIs that would 
allow DMP to determine relationships between metanodes and sub-paths, so DMP 
has historically had difficulty coexisting with them, although this situation is chang-
ing. EMC Corporation’s PowerPath behaves in this fashion.  
Starting with Version 4.1 of VxVM, DMP can co-exist with non-suppressing path 
managers, essentially by locating their metanodes, identifying them with the corre-
sponding operating system paths, and suppressing all but one of the paths. DMP cre-
ates its metanode pointing to the single unsuppressed path.  

Table 2 lists the path suppression characteristics of common path managers.  
Path Management 

Driver 
Vendor Type Arrays Platforms

ATF  
(Automatic Transparent 
Failover)  

EMC 
Corporation 

Path  
suppressing 

FC4700  Solaris 

RDAC 
(Redundant Disk Array 
Controller)  

 IBM 
Corporation 

Path  
suppressing 

Sonoma…….  
FAStT………  

Solaris 
AIX  

STMS  Sun 
Microsystems 

Path  
suppressing 

T3, T4,  Solaris 

SDD (called VPATH on 
AIX platform) 

IBM 
Corporation 

Non-path 
suppressing 

ESS 
(Shark)  

Solaris  

PowerPath  
(Native Mode) 

EMC  
Corporation 

Non-path 
suppressing 

Symmetrix 
CLARiion  

Solaris 
HP-UX 
Linux  

PowerPath  
(Pseudo mode) 

EMC  
Corporation 

Non-path 
suppressing 

Symmetrix 
CLARiion  

Solaris 
 

Table 2: Path Suppression Characteristics of Common Path Managers  

DMP and Foreign Devices  
Unless somehow prevented from doing so, DMP would discover both the sub-paths and 
metanodes of non-path suppressing path managers. DMP and the other path manager 
might both attempt to manage access to the same devices, with obvious conflicts. To 
avoid this, Version 4 of the Storage Foundation introduced the concept of foreign de-
vices. The vxddladm addforeign command is use to declare a device to be foreign. 
DMP does not control path access to foreign devices, but the VxVM virtualization layer 
can still incorporate them in disk groups and use them as volume components.  
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DMP and EMC’s PowerPath  
EMC Corporation’s PowerPath software is frequently-installed on systems together with 
DMP. PowerPath software operates either in pseudo device mode (also called emcpower 
mode) or in native device mode, both of which are non-path suppressing. In both operat-
ing modes, replaces operating system SCSI driver call vectors with calls to its own path 
management routines.  

PowerPath Pseudo Mode 
In pseudo device mode, PowerPath creates an emcpowerX pseudo-device for each device 
it controls. The emcpowerX device is conceptually similar to a DMP metanode. Error! 
Reference source not found. shows the key properties of a PowerPath pseudo-device as 
displayed by the EMC Powermt utility.  

Powermt display  
Pseudo name=emcpower41a 
Symmetrix ID=000184500052 
Logical device ID=0003 
state=alive; policy=SymmOpt; priority=0; queued-IOs=0 
============================================================================== 
---------------- Host ---------------   - Stor -   -- I/O Path -  -- Stats --- 
### HW Path                 I/O Paths    Interf.   Mode    State  Q-IOs Errors 
============================================================================== 
3084 pci@bd/SUNW,qlc@1      c16t50060482BFCFD502d0s0 FA  3aA   active  alive     0     
0 
3085 pci@bd/SUNW,qlc@1      c17t50060482BFCFD51Dd0s0 FA 14bA   active  alive     0     
0 

Dialog 7: PowerPath Pseudo-Device Attributes  

Figure 14 illustrates the three possible paths through the I/O software stack in a system 
with both DMP and PowerPath in pseudo device mode installed.  
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Figure 14: DMP with EMC PowerPath in Pseudo Device Mode  

PowerPath is non-suppressing; it leaves operating system nodes for the devices it controls 
visible in the device tree. DMP does not recognize PowerPath pseudo-devices, but it does 
recognize sub-paths to devices that PowerPath controls, and will create metanodes and 
attempt to control them (center shaded area in Figure 14), unless it is prevented from do-
ing so.  
EMC Corporation delivers a script called powervxvm that makes it possible to use 
emcpower devices with VxVM Version 3.5 and newer versoins. Starting with Version 4 
of VxVM, the powervxvm script declares PowerPath-controlled devices to be foreign. In 
both cases, DMP does not claim the sub-paths of the emcpower devices, so limited coex-
istence, illustrated by the rightmost shaded area in Figure 14, is possible. When coexist-
ing with PowerPath, VxVM Version 4 and earlier versions cannot make emcpower de-
vices portable between different platforms, nor can it use them as shared storage in Stor-
age Foundation for Real Application Clusters (Oracle RAC) configurations. With Ver-
sion 4.1 of VxVM, these restrictions are relaxed, and emcpower devices can be used as 
RAC cluster storage.  
As the leftmost shaded area in Figure 14 suggests, DMP can control path access to stor-
age devices not managed by PowerPath (e.g., devices that PowerPath does not support). 
PowerPath discovery ignores these devices, so their sub-paths are visible to DMP discov-
ery, as they would be in a system without PowerPath installed.  

PowerPath Native-Mode  
Primarily for compatibility with existing applications and scripts, PowerPath also sup-
ports storage devices in non-suppressing native device mode on certain platforms (Table 

HBA2HBA1 

Host Server 

DMP 

Virtualization Layer (e.g., VxVM) 

operating system HBA drivers 

Operating system SCSI driver  

File system or database manager 

Operating
system
drivers

PowerPath  

HBA4 HBA3

Devices not sup-
ported by PowerPath

Devices supported by 
PowerPath

PowerPath 
 only 

DMP only
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2, page 33). Disks and LUNs controlled by PowerPath in native device mode are ac-
cessed by their familiar operating system names, so applications and scripts work without 
modification.  
When operating in native device mode, PowerPath does not create pseudo-device nodes, 
but it does control path access to its devices. Native mode PowerPath directs each I/O 
request to the sub-path indicated by its load balancing policy, no matter which sub-path 
originally received the request. If DMP were to control a PowerPath native mode device, 
as the center shaded area in Figure 15 suggests, VxVM I/O virtualization layer requests 
might reach target devices on a different path than the one on which it was issued.  

 
Figure 15: DMP with EMC PowerPath in Native Mode  

If PowerPath is the only path manager in the stack, its re-routing of I/O requests is imma-
terial to the virtualization layer. But if DMP were also in the stack, it, too, would select a 
path for each I/O request. Native device mode PowerPath would re-route DMP’s I/O re-
quests, possibly affecting I/O performance adversely. Moreover, DMP and PowerPath 
error recovery are likely to conflict, with unpredictable results.  
DMP and native mode PowerPath have been used successfully in cluster applications. 
VERITAS clusters use SCSI persistent group reservations to prevent so-called split brain 
behavior when the connection between two servers breaks. DMP propagates reservation 
requests on all paths to a device, but pseudo-device mode PowerPath does not (this is 
why emcpower devices are not usable as RAC shared storage prior to VxVM Version 
4.1). With native mode PowerPath, however, all device paths are visible to DMP, so it 
can propagate device reservation requests on all paths. While this mode of operation has 
been used successfully, the possibility of the two path managers’ error recovery algo-
rithms interfering destructively with each other remains. Users with applications such as 
RAC, that require persistent group reservasions are therefore advised to upgrade to the 
newest VxVM version promptly.  
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Path managers may have configuration requirements that are incompatible with DMP. 
For example, DMP requires that active-passive EMC arrays (e.g., Clariion Cx600) be 
configured for implicit failover, whereas PowerPath requires that they be configured for 
explicit failover. If a Cx600 array is configured for control by PowerPath, DMP cannot 
control its LUNs correctly, even if PowerPath is disabled.  

Other I/O Path Management Software—STMS  
I/O path management software is also available from other system and storage vendors. 
Sun Microsystems offers a path manager called Storedge Traffic Manager Software 
(STMS) that supports its own disk arrays on major enterprise UNIX, Linux, and Micro-
soft Windows server operating systems.  
STMS creates pseudo-devices called Storedge Traffic Manager Software devices (STMS 
devices). STMS devices are conceptually similar to DMP metadevices; each one repre-
sents a LUN or disk along with all the access paths to it. STMS device names have the 
general form CXtWWNdXsX, where each X represents a number assigned by STMS, and 
WWN represents the device’s Fibre Channel worldwide name. STMS uses a policy similar 
to DMP’s round robin policy (page 16) to balance I/O loads.  
STMS can be enabled or disabled when a system starts. If enabled, it necessarily controls 
all the storage devices it supports (but ignores unsupported devices). To enable STMS, an 
administrator adds the line: ‘mpxio-disable="no";’ to the 
/kernel/drv/scsi_vhci.conf file. To disable STMS, the “no” is replaced with a 
“yes” in the expression. After the line is changed, the system must be rebooted for the 
change to take effect.  
Figure 16 illustrates the I/O stack in a system in which DMP and STMS are both in-
stalled. STMS is path-suppressing (Table 2, page 33), so when it is enabled, other soft-
ware “sees” only single-path STMS devices for disks and LUNs supported by STMS. 
Thus, DMP does not actually manage access paths to STMS devices. DMP can, however, 
manage access paths for devices not supported by STMS, as suggested by the left side of 
Figure 16.  
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Host Server File system or database manager 

 
Figure 16: STMS-DMP Comparison  

Other I/O Path Management Software—SDD  
IBM Corporation offers Subsystem Device Driver (SDD) software that manages access 
paths for its own disk arrays (ESS, DS8000, DS6000) as well as SAN Volume Controller 
switch-based virtualizers. SDD software is available for major enterprise UNIX, Linux, 
Netware, and Windows server operating systems. Figure 17 compares SDD with DMP in 
a system in which both are installed.  

 
Figure 17: DMP and IBM’s Subsystem Device Driver 

SDD is non-path suppressing, so As Figure 17 suggests, higher layers in the I/O software 
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stack “see” all access paths to the devices it controls. By default, SDD manages path ac-
cess to devices it supports, but unlike STMS, SDD does not necessarily control all of the 
devices it supports. In a system with SDD installed, DMP can manage path access to de-
vices not supported by SDD, as well as to SDD-supported devices for which SDD has 
been disabled. An administrator can disable SDD by disabling its ASL and rerunning 
DMP discovery using a command sequence similar to that shown in Dialog 5 (page 21).  

Conclusion 
Effective management of multiple access paths to storage devices keeps data available to 
applications when storage network components fail. For disk arrays that support concur-
rent access to LUNs on multiple paths, balancing I/O load across two or more paths can 
improve I/O performance. To be effective, path management must be automatic, and load 
balancing must be consistent with data center policy.  
The Dynamic Multipathing (DMP) feature of the VERITAS Storage Foundation auto-
mates both failover of storage devices to alternate paths when primary ones fail and bal-
ancing of I/O load across available paths according to any of several policies that can be 
set to achieve a variety of I/O performance goals.  
LUNs may support concurrent access through multiple disk array controllers (active-
active), or through only a single controller (active-passive). Active-passive disk arrays 
may support concurrent access on one or more primary paths (active-passive concurrent). 
In active-passive arrays, failover may be implicit (caused by issuing I/O commands on 
secondary paths) or explicit (caused by array-specific commands). Disk arrays may fail 
LUNs over from primary paths to secondary ones individually or in groups.  
Major system and storage vendors offer path management software, usually to manage 
access paths for their own products. Vendor-supplied path management software can co-
exist with DMP in a system, but configurations in which both attempt to manage the 
same devices should generally be avoided. Typically, DMP and vendor-supplied path 
management software should manage path access for different sets of devices.  
DMP can control more different types of devices than typical vendor-supplied software. 
Additionally, it implements a more comprehensive set of I/O load balancing policies. In 
general, DMP specifications are technically superior to those of most vendor-supplied 
path managers, but care should be used in removing any path management software from 
a system, because unpredictable results may occur.  
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