
A high-
frequency
custom
CMOS S/390

a rnlcroprocessor

by C. F. Webb
J. S. Liptay

The S/390@ Parallel Enterprise Server
Generation 4 processor is an implementation
of the IBM ESN390'" architecture on a single
custom CMOS chip. It was designed on a
blank slate after consideration of remapping
either a prior CMOS design or a prior bipolar
design. It uses a straightforward pipeline both
to achieve a fast cycle time and to speed the
design cycle. The complex instructions are
implemented using highly privileged
subroutines called millicode. To achieve high
data integrity while maintaining a high clock
frequency, the chip contains duplicate I- and
E-units which perform the same operations
each cycle and have their results compared.

Introduction
A major element of the transformation of mainframe
computing is the transition from bipolar emitter-coupled
logic (ECL) to complementary metal-oxide semiconductor
(CMOS) logic. This change is nowhere more conspicuous
than in the design of the central processing unit (CPU)
of the S/390* Generation 4 (G4) CMOS system. CMOS
technology has a tremendous advantage in circuit density,
such that a high-performance CPU may be contained in a

single CMOS chip, rather than hundreds of ECL chips.
In addition, the low switching current of CMOS greatly
reduces power consumption and eliminates the need for
complex and expensive water-cooled packaging. The result
is an Si390 G4 CMOS system with the CPUs, L2 caches,
and bus-switching logic packaged in a single multichip
module, which delivers performance comparable to
that of a 9021 9x2 system in which the corresponding
logic occupied 52 modules on 12 boards in six
frames.

Designing a CPU, particularly for an architecture as
rich as ESA/390*, is a major undertaking. One of the first
questions to answer is whether the design should be based
on an existing design or done on a clean slate. An existing
design has the advantage that it is tested and proven,
but the disadvantage that it embodies a set of design
assumptions which may not be best for the new design.
It is necessary to balance the characteristics of existing
designs against the requirements for a new design and
against the opportunities offered by a clean-slate design.
The considerations which shaped the Si390 G4 CMOS
design are discussed next.

Design considerations

Requirements
The requirements for this design were as follows:

Wopyright 1997 by Internattonal Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may be copled or distributed royalty free without further permission by computer-based and other information-service systcms. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abatract, but no other portions,

portion of thls pdpcr must be obtaincd from the Editor.

0018-8646/97/$5.00 0 1997 IBM

463

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULYiSEPTEMBER 1997 C. F. WEBB AND J . S . LIPTAY

Full support for the ESA/390 architecture.
Ability to fit on a single chip in CMOS 5X technology to
allow cost-effective packaging of a 10-way symmetric
multiprocessor system.

improvements.
Extendibility to exploit future CMOS technology

Overall performance comparable to that of the 9021 9x2.
Mainframe-class reliability, availability, and serviceability

Mid-1997 delivery to the marketplace.

Existing CMOS design point
The existing design point used in the first three
generations of CMOS S/390 systems was intended to
optimize chip area and cost rather than high-end
performance [l]. Successive refinement of the design,
culminating in the S/390 G3 CMOS system, has yielded
significant performance improvements. However, this
design utilizes a relatively long cycle time, shallow
pipeline, and narrow dataflow, which limits the potential
for further extension and, in particular, for exploiting
custom high-frequency CMOS design.

Existing bipolar design point
The existing bipolar Si390 CPU designs offered different
barriers to their use in this project [2]. These designs had
been created for high-end server use, but the design
points had been optimized for ECL technology. ECL
and CMOS circuits have significantly different electrical
characteristics. For example, ECL logic gates allow high
fan-in and fan-out with little performance loss, whereas
CMOS gates lose performance rapidly with more than
three inputs and have much more limited drive capability.
This allows complex controls in ECL to have significantly
fewer stages of logic than controls in CMOS. Also, greater
sensitivity to output loading in CMOS affects the ability
to drive signals from one section of the chip to another.

Another difference is that ECL technology is much less
dense than CMOS, which means that a processor designed
in ECL is spread across multiple chips on multiple
modules. Such a design must allow for the different delays
involved in crossing such packaging boundaries.

These factors lead to differences between CMOS
and ECL designs in overall processor structure, the
partitioning of the pipeline into machine cycles, and the
organization of dataflow and control logic.

Opportunity for custom design
The availability of custom design techniques for CMOS
circuits adds another dimension to the design process.
Custom design allows CMOS logic to be built in a smaller
area, with faster timing, than is possible using a library of
standard logic gates. This is done by designing at the

464 device (transistor) level and carefully tuning each element.

(RAS) .

However, custom design requires considerable designer
time and is difficult to modify once completed. Therefore,
it is best suited to regular structures, such as arrays and
arithmetic logic, where large functions can be built by
repeated use of smaller components, and pieces can be
physically arranged to minimize wiring delays between and
within functional elements. The logic which controls the
sequencing and execution of instructions is less suited to
custom design because of its irregularity and the need to
change it late in the design cycle to correct problems
found during functional verification. Since it cannot be
custom, but must run at the same clock cycle as the
custom logic, it must be less complex than the control
logic in recent bipolar S/390 processors.

Detection and recovery of hardware faults
One hallmark of “mainframe” computing is its robustness,
even in the presence of hardware failures. A key aspect of
this is the detection of such failures, generally through the
use of redundant logic. In dataflow and address flow
paths, this has traditionally been done via parity or error-
correcting code (ECC). This is straightforward for some
design elements (such as those where checking codes are
passed through unchanged), but in other elements it adds
complexity and adversely affects both chip area and the
time required for the function. Custom circuit design
exacerbates this situation, because the redundant checking
logic disrupts the regularity of functional elements such as
adders and bit rotators.

Fault-detection coverage is typically lower for control
logic than for dataflow logic. This is because it is more
varied in its structure, and commonly practiced procedures
for checking it have never evolved. In some cases invalid-
state checkers are used, but these usually cover only a
small portion of the potential hardware faults. In other
cases, functions are implemented twice and the outputs
of the two copies are compared.

Once a fault has been detected, the processor must
recover from it and continue processing (assuming the
fault was transient). Past bipolar designs have used
complex hardware controls interacting with a service
processor. This has been a difficult area to design
correctly and verify; for a new processor, a simple yet
complete mechanism is needed.

Microcode control store
A key feature of bipolar S/390 processor designs is the use
of horizontal microcode (a form of Licensed Internal
Code) to perform complex functions. This code is
contained in a special array known as the control store,
which has grown as the ESA/390 architecture has grown.
A study of remapping a 9121 CPU showed that the
control store would have occupied over 30% of the
available CMOS chip area. Further, the high performance

C. F. WEBB AND J. S. LIPTAY IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

of horizontal microcode depends on accessing the control
store in one cycle, including the selection of one from a
set of possible next instructions. This access path was
roughly 50% greater than the longest path in the custom
data flow in the 9121 remapping study.

Special register updates
Implementing the ESAi390 architecture requires a large
set of special registers to control instruction processing.
These include not only the ESAi390 control registers,
but also such elements as the prefix register, CPU ID,
interruption controls, and interpretive execution controls.
To minimize timing delays, a high-performance processor
needs copies of parts of these registers distributed
throughout the processor, close to the logic they control.
Updates to these registers are infrequent, but must be
propagated in a timely way. Bipolar designs have typically
used dedicated wires for each register or field. If this were
done on a CMOS chip, it would add significant wiring
complexity; therefore, a more efficient distribution
mechanism is needed.

Complex clocking
Bipolar processors have often relied on complex clocking
schemes to align and balance the various pipeline stages,
particularly around large arrays. This increases the effect
of clock skew on the machine cycle time, since each
adjustment to clock arrival time adds noise to the clock
signal, and since each critical interval between clock edges
must account for skewed arrival times. For a CMOS
processor, with greater variability in logic gate delay, this
has a greater detrimental effect on machine cycle time;
thus, a simpler clocking scheme is needed.

Cache access path
A critical path in every processor is the access to the L1
cache, which includes the access of the translation
lookaside buffer (TLB), the access register translation
lookaside buffer (ALB), the cache directory, and the
cache array itself. To fit with the simplified clock scheme,
this path must be considerably different from previous
bipolar implementations.

Design decisions
The net result of the above considerations was a blank-
slate design, with its principal characteristic being a very
fast cycle time of 3.5 ns in CMOS 5X (later changed to
3.2 ns in CMOS 6s). This was to be achieved even at the
expense of an increased number of cycles per instruction
executed, and dictated a simple pipelined design. In
addition to its other benefits, this simple structure was
expected to, and has, reduced the number of errors in
the design; this has been instrumental in meeting the
mid-1997 delivery to the marketplace.

Custom CMOS design is used throughout the array and
dataflow portions of the design, and the simple pipeline
has helped to keep the control logic paths within the
target cycle time.

instead are duplicated with their outputs compared.
Although costly, this removes checking circuits which
could have limited the cycle time and would have made
the custom design more difficult, particularly in the
arithmetic logic and bit rotator. It also provides more
comprehensive checking than standard techniques,
particularly for the control logic. The buffer control
element (BCE) uses standard parity and ECC checking
because it primarily moves data around without
manipulating them.

The pipeline is one cycle longer than has been used in
recent bipolar Si390 processors. This is necessary in order
to have the cache clocking aligned with the rest of the
processor. It also allowed some movement of function
between cycles, which has helped to achieve the cycle time
and to get all pipeline stages aligned to a single clock.

Since it was impossible to use a standard control store
because of cycle time and space, complicated functions are
implemented by highly privileged Si390 subroutines called
millicode (a different form of Licensed Internal Code).
The millicode has a separate set of general registers and
additional instructions to manipulate system status which
are not available in the ESAi390 architecture.

To make recovery straightforward and comprehensive,

The I-unit and E-unit designs contain no checking, and

all system status which exists between instructions is
collected in a checkpoint array. This array can be used
to reinitialize the processor and retry an instruction
whenever there is a hardware error, all under hardware
control. Also, it can be accessed by millicode, which gives
millicode great generality and power.

Figure 1 shows the major elements on the Si390 G4
CMOS chip. The outputs from the duplicate I-unit and
E-unit go to a compare circuit before going to the register
unit (R-unit) and BCE. All data produced by the E-unit,
whether to be stored or written to an internal register,
come over a single bus from the C-register, simplifying the
compare. The storage addresses from the I-unit, and the
control signals associated with the data and addresses, are
also compared.

translation logic and lookaside buffer, the store queue and
buffer, and the logic for communicating with the L2 cache.

The R-unit contains the checkpoint array and the logic
for retrying in the event of an error. ECC is used for the
data in the checkpoint array.

At the heart of the design decisions described here is a
comparison of different design points. Such a comparison
is difficult to make when the design points are in different
technologies, since it requires a substantial effort to map

The BCE contains a single L1 cache, the address

465

C. F. WEBB AND J. S. LIPTAY IBM J. RES. DEVELOP. VOL. 41 NO. 415 J IULYiSEPTEMBER 1 997

them to a common technology, and there is never enough
time to do this properly. Nevertheless, on the basis of a
combination of measurement, analysis, and projection, the
designers of the Si390 G4 CMOS processor believe that
this design realizes a 70% cycle-time advantage compared
to the Si390 G3 CMOS processor when normalized to the
same CMOS technology, while requiring 30% more cycles
to perform the same work. This gives the Si390 G4 CMOS
design an overall CPU performance advantage of 30%. In
comparison to the ES/9000* Model YO21 processor, were
that mapped into CMOS, it is believed that the Si390 G4
CMOS cycle time is approximately 60% faster, and that
Si390 G4 CMOS requires about 60% more cycles, yielding
roughly equivalent performance. However, the ES/Y000
Model YO21 is a complex, superscalar, out-of-sequence
processor, while the S/3YO G4 CMOS is a much simpler
design, requiring less chip area and enabling a more
aggressive product design schedule. It should be noted in
both of these cases that this is only one component of
system performance, which is also influenced by storage
hierarchy effects and the particular workload being
applied.

Buffer control element
The BCE provides access to ESA/3Y0 storage via a single
store-through 64-kilobyte L1 cache which holds both
instructions and operands. It was not split into separate
instruction and data caches in order to save space and
simplify the controls. The line size is 128 bytes, and the
lines are grouped into 128 sets of four lines. Even and odd

466 doublewords are in separate data arrays (interleaves) that

are separately accessible. There is also a 32-kilobyte read-
only storage extension to the cache, which is described in
the section on millicode. The BCE also includes hardware
for performing ESA/390 address and access register
translation, including support of guests executed under
ESN3Y0 interpretive execution, and a 256-entry TLB to
remember the virtual-to-absolute translations for recently
accessed pages.

The conceptual requirements for fetching data from the
cache are to translate the access-list-entry token (ALET)
to a segment table origin (STO) using the ALB, translate
the virtual address to an absolute address using the TLB,
look in the cache directory to see where the data are, and
then read the data from the cache. The practical problem
is that if those four steps are done sequentially, the cache
access will take much too long; therefore, cache designs
usually do some of the steps at the same time. In the
case of the Si390 G4 CMOS processor, the ALET
translation is done during the cycle in which the address
is being calculated, and the remaining steps are done
simultaneously. At a minimum this means reading two
entries from the TLB (because it is two-way associative),
four entries from the cache directory (because it is four-
way associative), and four doublewords from the cache
data array (because it is four-way associative). Then the
appropriate addresses are compared to see whether there
was a cache hit and to control gating the correct data.

However, this is complicated by the fact that two of the
address bits (18 and 19) needed to read the cache are
subject to translation, which means that they are part of
the TLB output. Since it would take too long to complete
the TLB access before starting the cache, an alternative
is needed. Two approaches have been used on past
processors, and a third approach is used on the S/390
G4 CMOS processor.

directory entries (sixteen), and four times as many
doublewords of data (sixteen), to cover all four possible
values that absolute address bits 18 and 19 could have.
Then all needed information is available, and it is just a
matter of additional compares and gating. Unfortunately,
that extra logic would make it impossible to meet the
target cycle time.

The second approach is to organize the data in the
cache according to virtual address, in which case virtual
address bits 18 and 19 are used for accessing the cache,
and there is no need to read four times as much
information out of the directory and data array. This has
other drawbacks. When a cache miss occurs, it is not
known whether the data are really not in the cache,
or just in a different place because they were previously
referenced using a different virtual address (called a
synonym). While that is infrequent, it is still necessary
to go looking for the data on every cache miss and to

The first approach is to read four times as many cache

C. F. WEBB AND J. S. LIPTAY IBM I. RES, DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

move them if they are found. This movement can be
accomplished either by reading data from the first place
and writing them to the second, or by invalidating data in
the first place and loading them from the L2 cache into
the second place. Also, in a multiprocessing system, when
a cross-interrogate address (an absolute address) is
received, there are now four times more places to look for
it. There are several alternative ways to deal with cross-
interrogation, which represent different trade-offs between
speed and cost, none of which were acceptable.

The S/390 G4 CMOS design is different from the first
two alternatives. Since the data are organized by absolute
address, the problems associated with the second approach
do not exist. To avoid the need to read from so many
extra cache directory and data array locations, a new
structure called an absolute address history table (AAHT)
is introduced for operand requests. The AAHT uses the
values of the base and index GRs specified for an address
calculation to select a predicted value of absolute address
bits 18 and 19. The base GR is used when one is specified;
otherwise, the index GR is used. During the address add
cycle, bits 12 to 19 of the selected G R value are used to
read one of 256 entries in the AAHT. This entry contains
a predicted value of absolute address bits 18 and 19, which
are latched at the beginning of the cache access cycle and
used to address the cache. For instruction fetches, a
prediction for bits 18 and 19 is also made, but using a
small set of registers and a simple algorithm; this is
possible because instruction fetching is more localized in
its addressing pattern.

of misprediction. The predicted absolute address bits
are compared to the actual absolute address bits in the
matching TLB entry; if they do not match, any cache hit is
suppressed, the AAHT is updated, and the storage request
is recycled in the BCE using the correct absolute address
bits 18 and 19.

As with any prediction mechanism, there is a possibility

In addition to accessing the cache with a logical
address, it can be accessed by cache physical address.
Whenever a fetch is made using a virtual or real address,
the physical location of the line in the cache is
remembered, and additional fetches can be made from
that line without using the ALB, TLB, or cache directory.
Fetches made using a remembered cache physical location
are called “continuation fetches.” This allows multiple
requests to be processed by the BCE in a single cycle.
For example, on the same cycle it is possible to make an
operand test request to look for access exceptions, and
also fetch doublewords of data for two different I-buffers.

The strategy for handling stores is that the L1 cache is
store-through and the L2 cache is store-in. Operand stores
are written into the L1 cache as each store instruction is
executed, and are merged with current data from the
cache to form a full doubleword. These doublewords have

ECC applied, are saved in the store buffer, and are
sent to the L2 cache after the storing instruction has
completed successfully. The store buffer can hold up to 64
doublewords from eight different cache lines. This store
design allows the L1 cache to just be reset during a
recovery action, and that in turn allows the L1 cache to
have only parity checking on its data.

The connection to the L2 cache and the rest of the
storage hierarchy is by a single quadword bidirectional
bus. Parity checking is used for the transmission of data
from the L2 cache, and ECC is used for the store buffer
and the transmission of data to the L2 cache. All storage
updates are forwarded to the L2 cache, which uses ECC.
The clock rate of the processor and BCE is twice as fast
as that of the L2. The L2 cache is described in the
companion paper by Mak et al. in this issue [3].

Instruction and execution units
The I- and E-units consist of three parts: the instruction
unit, the fixed-point unit (FXU), and the floating-point
unit (FPU). There are two separate execution units
because the specialized nature of the floating-point logic
prevents it from being integrated with the FXU; however,
only one of the execution units can be executing at a time.
The FPU is described in a companion paper by Schwarz
et al. in this issue [4].

units. The I-unit contains four I-buffers, each containing
four doublewords. Instruction fetching can occur
simultaneously along the decoding path, and along two
alternate branch paths, with a different I-buffer used for
each path. Each I-buffer operates with only a single cache
line at a time, holding up to four consecutive doublewords
from that line. The initial fetch for an I-buffer uses a
logical address, but all subsequent fetches are continuation
fetches. When the data in the earliest doubleword are
used, the doubleword is reassigned 32 bytes farther on.
Fetching proceeds in this manner until the end of the
cache line is reached; then a different, ‘‘linked’’ I-buffer is
started to fetch the next line, and the current I-buffer
becomes inactive when its data are exhausted.

Figure 2 is a simplified dataflow diagram of these

One instruction can be delivered to the I-register for
decoding each cycle, and for most instructions, decoding
takes only a single cycle. Instructions are always decoded
in the order in which they appear in the instruction
stream. When a branch is encountered, an I-buffer is
started along the target path, and fetching continues along
the sequential path. A guess is made as to whether the
branch is taken, and decoding proceeds in whatever
direction is guessed. When the branch is resolved, if the
guess was wrong, the operations along the wrong path are
discarded, and decoding changes to the correct path.

During the decode cycle, a variety of control signals are
generated to control instruction processing, such as

~~

~~ -

467

F. WEBB AND J . S. LIPTAY IBM J . RES. DEVELOP. VOL. 41 NO. 4 15 JULY/SEPTEMBER 1 997 C .

determining whether millicode is required to execute
the instruction, what should be done with the effective
address, and whether certain exceptional conditions are
present. In addition, the X and B general registers are
read in preparation for an address calculation. At the end
of the decode cycle, those values are in registers at the
input to the address adder, and the address calculation
occurs on the next cycle if there are no interlocks to
prevent it. If there are interlocks on the address
calculation, further decoding is also stopped.

is placed in the I-queue, where it remains until it is
Also at the end of the decode cycle, the instruction

468 executed. Instructions are placed in the I-queue, and

removed from it, in program order; there is no out-of-
order execution.

four op-address registers. The I-address registers are
associated on a one-for-one basis with the I-buffers.
Whenever an I-buffer is started, its associated I-address is
also set. For a branch target, it is set from the address
adder, and for a linked I-buffer, it is set from the address
incrementer.

The op-addresses are used for operand requests. They
are assigned to individual instruction operands, and are
used to make the type of references needed for that
operand. If the operand is only stored into, one reference

The address adder feeds four I-address registers, and

C. F. WEBB AND J. S. LIPTAY IBM J. RES. DEVELOP. VOL. 41 NO. 415 JLJLYiSEPTEMBER 1997

is made for each cache line to notify the BCE that stores
will be coming. If data are needed from the operand,
fetches are made to each doubleword; the first fetch in
each cache line uses a logical address, and subsequent
fetches are continuation fetches. If an instruction
references two operands (as many SS instructions do), two
op-addresses are assigned. An op-address fetches the
entire operand to which it is assigned, regardless of how
many cache lines it occupies. An op-address is never used
for two successive instructions: even if they require the
same or consecutive data, a second op-address is assigned
for the second instruction.

The order of operand fetching is strictly defined. All
fetches for instruction N occur after operand fetches for
instruction N-1. Within an operand, fetches occur from
left to right; if an instruction has two fetch operands,
doublewords from those operands are fetched alternately.
Operand data are held in the op-buffers until they are
needed for execution. The op-buffers are assigned as
needed to hold fetched data, and do not have a special
relationship with any op-address.

The I-queue can pass one instruction per cycle to either
execution unit (but not both). Instructions are executed in
program order by them, and whichever unit is executing
must finish before an instruction can go to the other.

The ESAi390 instructions are of three types: 1) those
executed in the FPU, 2) those executed in the FXU, and
3) those executed by millicode. There are also special
instructions, available only in millicode and not directly
available to ESAi390 programs, which for the most part
allow the manipulation of the system state. The FXU
executes all of these except the floating-point instructions.

The FXU includes a binary adder, binary-coded-decimal
(BCD) adder, bit rotator, mask generator, and bitwise
logical and merge elements; all of these except the BCD
adder are 64 bits wide. Since the internal architecture
includes a mixture of 32-bit and 64-bit operations, the
high and low 32-bit words are interleaved in the layout of
the 64-bit dataflow, allowing efficient handling of both
types of operation, including the forwarding of results
from one operation to the next. The FXU also handles
condition code and interrupt processing.

Register unit
The register unit (R-unit) performs a variety of functions
associated with ESA/390 control operations, hardware
fault detection, and error recovery. It is dominated by a
custom CMOS register file known as the checkpoint array,
which buffers all control states, including various mode
controls, interrupt controls, and interpretive execution
controls. It also buffers instruction addresses used by
millicode and hardware, and all architected facilities,
including ESAi390 GRs, access registers (ARs), floating-
point registers (FPRs), and control registers (CRs). All of

these are mapped into an 8-bit register address space, with
room for 128 32-bit and 128 64-bit registers.

As instructions (either ESAi390 or millicode) are
executed, their updates to the processor state are sent to
the R-unit, where the results from the two sides are
compared for equality and placed in an update buffer.
When an instruction completes with no hardware faults
detected, the contents of the update buffer are written to
the checkpoint array.

The R-unit also includes special logic for the ESAi390
timing facility, instruction address and exception registers,
and interfaces with the service processor and an auxiliary
processing unit; the state registers for these are handled
in a manner analogous to the main checkpoint array.

Because some of this state information is needed to
control hardware operations in the I-unit, E-unit, and
BCE, local copies of that state information are provided
there. To maintain correct values in these copies, the
E-unit output bus is routed to each unit along with the
R-unit register address being written. Logic in each unit
monitors this address and updates any local copies of
R-unit registers from data on the E-unit output bus. Thus,
a single bus conveys updates for all register and state
updates to all units in the processor, and has a much
smaller impact on chip wiring than would have been
required for many small dedicated mode and control lines.

Millicode mode
In a complex instruction set (CISC) architecture such as
ESAi390, it is simply not feasible to use hardware controls
for all of the instructions; design time and debug time
both preclude it. Also, as was noted above, conventional
horizontal microcode was also not feasible for the S/390
G4 CMOS processor, because of both chip area required
and cycle time. This led us to use highly privileged
subroutines in 390-like code, which we call millicode. For
this to be successful, it is necessary to have the processor
run efficiently while it is in millimode, enter and leave
millimode rapidly, and give the millicode the capabilities
it needs without adding excessive complexity to the
hardware.

To run efficiently, the millicode is provided with its own
set of general registers, access registers, and control
registers. It therefore has immediate access to its own set
of registers and has no overhead related to saving and
restoring the Si390-architected registers. For those
instances when the millicode must access an S/390-
architected register, there are special instructions which
allow it to be done quickly. Also, there are other special
instructions which allow millicode to perform important
operations quickly.

To enter millicode quickly, all instructions which are
implemented with millicode subroutines are treated by the
hardware as unconditional branches to fixed addresses in 469

F. WEBB AND J. S. LIPTAY IBM J. RES. DEVELOP. VOL. 41 NO. 415 J IULYiSEPTEMBER 1 997 C.

hardware system area storage. They take about five cycles
to execute, since they save a variety of status information,
such as its effective addresses and the instruction text, in
millicode general registers. Thus, the processor executes
one “branch,” and it is in millimode, executing the first
instruction in the subroutine, with its needed status
information loaded into its general registers. The
execution of this “branch” into millicode occurs
overlapped with both preceding and following instructions
to minimize pipeline disturbance.

end instruction which is an unconditional branch to the
updated Si390 instruction address. This is also an
overlapped instruction which causes minimal pipeline
disturbance, and is even faster than millicode entry
because there is no status to save.

The exit from millicode is accomplished with a millicode

The millicode can make use of the full set of hardware-
implemented ESA/390 instructions. Additional instructions
are defined to allow direct millicode access to specific
hardware facilities and to accelerate specific millicoded
operations. These instructions are modeled on ESAi390
instruction formats, so that little unique hardware is
required to support them. One group of special millicode
instructions provides both read and write access to the
R-unit register space, using the 8-bit register addresses.
Since this register file contains all processor states, a
relatively small number of special instructions provide
millicode with access to and control over the entire
processor state. This is an economical mechanism which
gives the millicode generalized, powerful control over the
processor.

an interruption occurs, the processor stops executing the
current instruction stream and forces the processor into
millimode at a fixed address. This is essentially the same
as millicode entry to simulate an instruction, but it is
caused by detecting an interruption condition rather than

Millicode is also used for interruption processing. When

470 by encountering an instruction that must be simulated.

C. F. WEBB AND J. S. LIPTAY

One disadvantage of millicode is that the code occupies
space in the cache, potentially displacing ESA/390 data
and increasing the number of cache misses. This effect is
minimized by addhg a 32KB read-only storage (ROS)
array in the BCE, as an extension to the cache, which
contains frequently executed millicode routines.
When a fetch is made from the portion of HSA storage
corresponding to the ROS, the BCE takes data from
the ROS rather than bringing that line into the cache.
ESAi390 instructions for which the millicode is in ROS
are detected when they are decoded, and the appropriate
ROS address is used rather than the default millicode
routine address for that opcode. The reason for using
ROS rather than increasing the size of the cache is that
the ROS has a much greater density than the cache data
array. While there was room on the chip to add 32 KB of
ROS, there was not room to expand the cache by 32 KB.
If there is an error in a ROS routine, the erroneous
routine may be patched (millicode entry reverts to the
default address for that opcode) without affecting any
other ROS routines.

Instruction pipeline
The basic pipeline of the S/390 G4 CMOS processor is
shown in Figure 3 for an RX-format add- or store-type
instruction. The three lines in the figure represent
instruction fetching, I-unit processing, and E-unit
processing. Normally, instruction fetching occurs well in
advance of decoding, and there is a significant time gap
between the first and second lines in the figure. The
illustrated timing occurs when the processor starts with
the instruction buffers empty.

In the AA/AI cycle, the I-unit passes the starting
address through the address adder or incrementer and
sends an instruction fetch request to the BCE. This
request will return up to 16 bytes of data, depending on
cache interleave availability.

In the IF1 cycle, the BCE accesses the cache, TLB, and
directory and also latches the instruction data. These data
are normally returned to the I-unit in cycle IF2, but are
subject to the same delays described below for operand
fetches.

In the IBR cycle, the instruction is gated from the
I-buffer, or bypassed directly from the cache bus, to the
I-register.

In the DEC cycle, the instruction in the I-register is
decoded and sent to the address adder and I-queue. Also,
the GRs are accessed to obtain the base and index address
values designated by the instruction (if any), and the base
AR is read for use in selecting the operand address space
as needed.

In the AA cycle, the operand address is computed and
sent to the BCE with a fetch request. In parallel, the base
AR is used to read the ALB, which with the operand

IBM J. RES. DEVELOP, VOL. 41 NO. 415 JULYiSEPTEMBER 1997

address controls selects the address space for the access.
Also in cycle AA, bits from the base or index GRs are
used to access the absolute address history table (AAHT)
to predict absolute address bits 18 and 19.

In the OF1 cycle, the TLB, cache directory, and cache
data arrays are read to obtain the data and check for
access exceptions. If all is well, the data are latched at the
end of this cycle and sent to the operand buffers in cycle
OF2. If a TLB or ALB miss occurs, the BCE initiates a
translation sequence, at the end of which the TLB or ALB
is updated and the cache re-accessed. If a cache miss
occurs, the BCE initiates a fetch from the L2 cache. In
either case, the BCE signals the I-unit, and the pipeline is
extended until the miss is resolved. If the TLB and ALB
hit, but absolute address bits 18 and 19 are not as
predicted by the AAHT, the request is recycled, and data
return is delayed by two cycles (or more if a cache miss is
then detected).

In the OBR cycle, the next instruction from the I-queue
is sent to the E-unit for execution. The E-unit performs
additional decoding of the instruction and sets up controls
for the dataflow elements. During this cycle, the operands
for the instruction are read from the registers (GRs, ARs,
or FPRs) and from the operand buffers as needed; data
just being sent from the BCE are bypassed by the operand
buffers directly into the E-unit operand registers,
including any merging and aligning that may be required.
If the storage operands are not yet available, the OBR
cycle is allowed to complete, but the execution of the
instruction is held at the next stage.

In the EX cycle, the actual execution takes place, and
the instruction results (including the condition code) are
generated.

In the PA cycle, these results are forwarded to the
R-unit and/or BCE, and are broadcast to the rest of the
processor to allow updates to local copies of R-unit
registers.

The remaining cycles of the pipeline affect only the
R-unit and BCE, and are never subject to pipeline stalls.
In the EG cycle, the ECC checking code is generated for
R-unit register updates, and store operands are written to
the cache and merged with the unchanged bytes to form a
full DW.

In the CK cycle, the data from the two copies of the
E-unit are compared in the R-unit, and parity is checked
on all bytes of the merged DW for operand stores in the
BCE. ECC is then generated for the doubleword in
preparation for writing it into the store buffer on the
next cycle. For hardware instructions requiring multiple
execution cycles, results are buffered at this stage until
all results have been generated.

The last CK cycle for each hardware instruction
(ESA/390 or millicode) is followed by a CMP cycle, in
which the buffered results are written to the checkpoint

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

array in the R-unit, and stores held in the BCE store
buffer are marked as eligible to be forwarded to the L2
cache. The CMP stage is blocked if any hardware fault is
detected in any prior cycle.

All stages of this pipeline are the same length, and all
are driven by the same system clock. The main portion of
the pipeline is one cycle longer than in the 9021 and 9121
processors because of uneven scaling between bipolar and
CMOS technology, because of the need for a simple
clocking scheme to minimize clock skew, and to move
some cache-related functions to the cycles before and
after the cache access.

Handling of exceptional conditions
As a rule, high-performance processor designs are
optimized for “normal” operations, with minimal circuitry
devoted to interruptions and special hardware actions.
However, when unusual conditions arise, the processor
must respond according to the architectural definition,
which in the case of ESAi390 is very precise. This
precision allows for highly reliable software, but imposes
a significant burden upon the hardware design. In a
pipelined processor, information about unusual conditions
is often not available until the affected instruction is being
executed. Furthermore, with precise program interruption
as in ESAi390, the condition causing an interruption must
be associated with a specific instruction, and often
requires that substantial information be passed from the
hardware to the software. All of this must be dealt with
without adding significant complexity to the logic or
affecting cycle time.

In the Si390 G4 CMOS processor, this is addressed with
a relatively simple concept. During normal pipelined
operation, instructions are monitored for conditions which
might require an interruption or special hardware action.
These conditions include program exceptions, program-
event-recording (PER) events, and certain operand
destructive-overlap conditions for which millicoded
execution is required. They are combined into a single
exception summary bit which is carried in the instruction
queue and passed to the E-unit with each instruction.
When the E-unit begins execution in normal pipelined
mode of an instruction with this bit set, it blocks the
results from that instruction, and the I-unit and E-unit
discard that and any subsequent instructions in the
pipeline. Then the I-unit is restarted at the current
instruction address, in single-instruction mode. In this
mode, a single instruction is passed through the pipeline
by itself. Detailed exception information is accumulated
for that instruction, and the appropriate interruption or
special hardware action is taken, after which the I-unit
resumes fully overlapped operation. In some cases, the
instruction executed in single-instruction mode may
complete with no exceptional condition detected, and then 47

C. F. WEBB AND 1. S. LIPTAY

the processor simply resumes normal operation. Even with
the application of this mechanism to a broad range of
conditions, the net effect of single-execution mode on
overall performance is about 0.1%.

Detection and recovery of hardware faults
To provide thorough hardware fault detection without
complicating the custom design elements and without
impact on the cycle time, the I-unit and E-unit are
duplicated in toto on the SI390 G4 CMOS processor chip.
There is no checking at all within these units other than a
small number of functional checkers intended mainly to
detect millicode errors. The outputs of these units [storage
addresses (instruction and operand from the I-unit),
operand results (storage and register updates from the
E-unit), and exceptional condition status (E-unit)] are sent
to the R-unit andlor the BCE, where the values from the
two copies are compared. A mismatch is considered a
hardware fault. The BCE and R-unit are not duplicated,
but are protected from hardware faults by parity and ECC
(double-error detection, single-error correction) in the
data flow, and consistency checks and local duplication in
the controls. Since most BCE operations are byte-
coherent, including parity merely adds a bit in the path
and usually does not complicate the custom design
elements. The checkpoint array in the R-unit is protected
by ECC, since it must be reliably correct for hardware
fault recovery to be effective. All storage updates are
forwarded to the L2 cache immediately after completion
of the storing instructions. The entire data path for stores,
including the store buffer, the interface to L2, the L2
store stack, and the L2 cache itself, is protected by ECC.
Thus, storage updates are reliably preserved across
hardware faults, and L1 cache contents do not have to be
preserved through recovery from hardware faults.

When a hardware fault is detected anywhere, instruction
completion is halted immediately, which blocks updates to
the checkpoint array and inhibits operand stores from
being forwarded to the L2 cache. The timing of error
detection is such that any error which could affect the
resulting state of the processor is detected prior to the
completion of the instruction (ESAi390 or millicode)
which would update that portion of the state. Thus, all
instructions that have completed at the point at which
an error is detected did so without error, and both the
processor state in the checkpoint array and the storage
state in the storage hierarchy (including the store buffer,
but not the L1 cache) are correct.

After a hardware fault has been detected, a recovery
sequence is performed under direction of the R-unit:

1. The BCE forwards to the L2 cache any remaining
stores for instructions that have completed.

472 2. The I-unit, E-unit, and BCE are reset.

C . F. WEBB AND 3. S. LIPTAY

3. The ALB, TLB, cache directory, and cache data arrays
are purged and written with good parity.

4. An asynchronous interrupt is made pending to log the
recovery event and check for any interrupts lost while
performing recovery. This interrupt is taken at the
next interruptible point, which is after the recovery
sequence.

5. Each element of the checkpoint array is read, checked,
and corrected via ECC, sent to the E-unit, staged to
the FXU output register, and written back to the same
address in the checkpoint array, thus cleaning up any
correctable errors in that array which might otherwise
cause repeated invocations of processor recovery. This
uses the same data and control paths as are used for
special millicode instructions which read and write
registers in the R-unit space. As part of this operation,
any local copies of that register in the I-unit, E-unit,
or BCE are updated with the known good value.

6. The entire checkpoint array is read again and checked
for errors. If any error is found, it is presumed to be a
solid hardware failure, since the entire array was just
written with good ECC; the recovery sequence is
aborted, and the processor is placed in the check-
stopped state.

7. The E-unit forces a hardware serialization interrupt,
which restarts the I-unit at the current instruction
address.

8. Instruction processing resumes, using the state just
loaded from the checkpoint array.

9. If another hardware fault is detected immediately, it is
presumed to be a solid failure, and the processor is
placed in the check-stopped state; otherwise, recovery
is deemed successful, and normal processing continues.

This entire sequence is performed under hardware control,
using relatively simple control logic and the same data
paths that are used in normal operation. Because the
processor state is maintained on a hardware instruction
(either ESA/390 or millicode) basis, recovery can be
performed for faults that occur during millicode operation
without any special action by millicode. This eliminates by
design the majority of special recovery scenarios which
have made instruction retry very complex in bipolar S/390
processors. The only exceptions are millicode sequences
that interact with system components outside the CPU, in
which case responses may be lost while recovery is being
performed. To handle this, a means is provided for
millicode to detect that recovery has been performed
within a given interval in the millicode routine, so that
special action can be taken as necessary.

Conclusion
Through innovative design, the SI390 G4 CMOS processor
implements the complex ESA/390 instruction set and

IBM J. RES. DEVELOP. VOL. 41 NO, 415 JULYiSEPTEMBER 1997

achieves high performance while maintaining or improving
upon traditional S/390 strengths of reliability, availability,
and serviceability. Millicode routines are used to
implement complex ESA/390 functions, minimizing the
chip area and limiting the control complexity impact from
these operations. The duplicate instruction and execution
units and straightforward hardware instruction retry
mechanism not only achieve high reliability and
availability, but also enable efficient custom design.
Through application of custom CMOS design, the S/390
G4 CMOS microprocessor has become the high-frequency
design leader in IBM, with a clock speed of up to 400
MHz in the laboratory.

Acknowledgments
The logic design technical leaders were Charles F. Webb,
John S. Liptay, Barry Krumm, Eric Schwarz, and Mark
Farrell, who respectively led the E-unit, the I-unit, the
BCE, the floating-point unit, and the millicode portions of
the design. Other key contributors included Joe Braun,
Mark Check, Phil Emma, Bruce Giamei, Jin Ji, Chris

Charles F. Webb IBM System1390 Division, 522 South
Road, Poughkeepsie, New York 12601 (cwebh@vnet.ihm.com).
Mr. Webb received his B.S. degree in 1982 and his M.Eng.
degree in 1983, both from Rensselaer Polytechnic Institute.
He joined IBM in 1983 at the IBM Product Development
Laboratory in Poughkeepsie in the Processor Performance
Analysis organization. In 1987 he joined the Processor
Development organization, where he has remained since.
Mr. Webb has worked on the ESl9000 processor and the
SI390 G4 CMOS processor in the areas of performance analysis
and CPU design. He has received seven IBM Invention
Achievement Awards and an IBM Outstanding Innovation
Award. Mr. Webb is an IBM Senior Technical Staff Member.

John s. Liptay IBM System1390 Division, 522 South Road,
Poughkeepsie, New York 12601 (LIPTAY at PK705VMA). Mr.
Liptay received his B.E.E. degree in 1962 and his M.E.E.
degree in 1966, both from Rensselaer Polytechnic Institute.
He joined IBM in 1965 at the Thomas J. Watson Research
Center, transferring shortly thereafter to the IBM Product
Development Laboratory in Poughkeepsie, where he has
remained since. Mr. Liptay has worked on the Systemi360
Models 65 and 85, the System/370 Model 168, the 3033, the
ES19000 processor, and the S/390 G4 CMOS processor, all in
the area of CPU design. He has received five IRM Invention
Achievement Awards. an IBM Outstanding Contribution

Krvpowski. Wen Li, Kai Ann Mueller, Jennifer Navarro, Award, an IBM Division Award, an IBM Technical Excellence

Electrical and Electronics Enginekrs, and the Association for
*Trademark or registered trademark of International Business Computing Machinery.
Machines Corporation.

References
1. H. Schettler, K. Getzlaff, K. Klein, C. W. Starke, L.

Wilczynski, and A. Bhattacharyya, “A CMOS Mainframe
Processor with a 0.5 pm Channel Length,” IEEE J. Solid
State Circuits 25, 1166 (1990).

2. J. S. Liptay, “Design of the IBM Enterprise System/9000
High-End Processor,” IBM J. Res. Develop. 36, No. 4,
713-731 (1992).

“Shared Cache Clusters in a System with a Fully Shared
Memory,” IBM J. Res. Develop. 41, No. 415, 429-448 (1997,
this issue).

4. E. M. Schwarz, L. J. Sigal, and T. J. McPherson, “CMOS
Floating-point Unit for the S/390 Parallel Enterprise
Server G4,” IBM J. Res. Develop. 41, No. 415, 475-488
(1997, this issue).

3. P. Mak, M. A. Blake, C. C. Jones, and P. R. Turgeon,

Received March 19, 1997; accepted for publication
June 30, 1997

473

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997 C. F. WEBB AND J. S . LIPTAY

