
A high- 
frequency 
custom 
CMOS S/390 

a rnlcroprocessor 

by C. F. Webb 
J. S. Liptay 

The  S/390@  Parallel  Enterprise  Server 
Generation 4 processor  is  an  implementation 
of the IBM ESN390'" architecture on a  single 
custom CMOS chip. It was  designed  on  a 
blank  slate after consideration of remapping 
either  a  prior CMOS design  or  a  prior  bipolar 
design. It uses  a  straightforward  pipeline  both 
to achieve  a  fast  cycle time and to speed  the 
design  cycle.  The  complex  instructions are 
implemented using  highly  privileged 
subroutines  called  millicode. To achieve  high 
data integrity  while  maintaining  a  high  clock 
frequency, the chip  contains  duplicate I- and 
E-units  which  perform the same  operations 
each  cycle  and  have  their  results  compared. 

Introduction 
A major  element of the  transformation of mainframe 
computing is the  transition  from  bipolar  emitter-coupled 
logic (ECL)  to  complementary  metal-oxide  semiconductor 
(CMOS) logic. This  change is nowhere  more  conspicuous 
than in the design of the  central processing unit  (CPU) 
of the S/390* Generation 4 (G4)  CMOS system. CMOS 
technology has a tremendous  advantage in circuit  density, 
such that a high-performance  CPU may be  contained in a 

single CMOS chip, rather  than  hundreds of ECL chips. 
In addition,  the low switching current of CMOS  greatly 
reduces power consumption  and  eliminates  the  need  for 
complex and expensive water-cooled packaging. The result 
is an Si390 G4  CMOS system with the  CPUs, L2 caches, 
and bus-switching logic packaged in  a  single  multichip 
module, which delivers performance  comparable  to 
that of a 9021 9x2  system in which the  corresponding 
logic occupied 52 modules  on 12 boards in six 
frames. 

Designing  a CPU,  particularly  for an architecture as 
rich  as ESA/390*, is a major  undertaking.  One of the first 
questions  to answer is whether  the design should  be  based 
on an existing design or  done on a clean  slate. An existing 
design has  the  advantage  that it is tested  and  proven, 
but  the  disadvantage  that it embodies a set of design 
assumptions which may not  be best for  the new design. 
It is necessary to  balance  the  characteristics of existing 
designs  against the  requirements  for a new design and 
against  the  opportunities  offered by a clean-slate design. 
The  considerations which shaped  the Si390 G4  CMOS 
design are discussed  next. 

Design  considerations 

Requirements 
The  requirements  for this  design were as follows: 
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Full  support  for  the ESA/390 architecture. 
Ability to fit on a  single chip in CMOS 5X technology to 
allow cost-effective  packaging of a 10-way symmetric 
multiprocessor system. 

improvements. 
Extendibility to exploit future  CMOS technology 

Overall performance  comparable to  that of the 9021 9x2. 
Mainframe-class reliability,  availability, and serviceability 

Mid-1997 delivery to  the  marketplace. 

Existing CMOS design point 
The existing  design point used  in the first three 
generations of CMOS S/390 systems  was intended  to 
optimize  chip  area  and cost rather  than  high-end 
performance [l]. Successive refinement of the design, 
culminating in the S/390 G3 CMOS system, has yielded 
significant performance  improvements.  However,  this 
design  utilizes  a  relatively  long cycle time, shallow 
pipeline,  and  narrow dataflow, which limits the  potential 
for  further  extension  and, in particular,  for exploiting 
custom high-frequency CMOS design. 

Existing bipolar design point 
The existing bipolar Si390 CPU designs offered  different 
barriers  to  their  use in this  project [2]. These designs had 
been  created  for  high-end  server use, but  the design 
points  had  been  optimized  for  ECL technology. ECL 
and  CMOS  circuits have significantly different  electrical 
characteristics.  For example, ECL logic gates allow high 
fan-in  and  fan-out with little  performance loss, whereas 
CMOS  gates lose performance rapidly  with more  than 
three  inputs  and have  much more  limited drive  capability. 
This allows complex controls in ECL  to have significantly 
fewer stages of logic than  controls in CMOS. Also, greater 
sensitivity to  output  loading in CMOS affects the ability 
to drive  signals from  one  section of the  chip  to  another. 

Another  difference is that  ECL technology is much  less 
dense  than  CMOS, which means  that a processor  designed 
in ECL is spread across multiple  chips on multiple 
modules.  Such a  design must allow for  the  different delays 
involved in  crossing  such  packaging boundaries. 

These  factors  lead  to  differences  between  CMOS 
and  ECL designs  in  overall processor  structure,  the 
partitioning of the  pipeline  into  machine cycles, and  the 
organization of dataflow and  control logic. 

Opportunity for custom design 
The availability of custom design techniques  for  CMOS 
circuits adds  another  dimension  to  the design process. 
Custom design allows CMOS logic to  be  built in  a smaller 
area, with faster timing, than is possible  using  a  library of 
standard logic gates. This is done by designing at  the 

464 device (transistor) level and carefully tuning  each  element. 

(RAS) . 

However,  custom design requires  considerable  designer 
time  and is difficult to modify once  completed.  Therefore, 
it is best  suited  to  regular  structures, such  as arrays  and 
arithmetic logic, where  large  functions  can  be  built by 
repeated  use of smaller  components,  and pieces can  be 
physically arranged  to minimize  wiring  delays between  and 
within functional  elements.  The logic which controls  the 
sequencing  and  execution of instructions is less suited  to 
custom design because of its irregularity  and  the  need  to 
change it late in the design cycle to  correct  problems 
found  during  functional verification.  Since  it cannot  be 
custom,  but  must  run  at  the  same clock cycle as the 
custom logic, it  must be less  complex than  the  control 
logic in recent  bipolar S/390 processors. 

Detection and recovery  of  hardware faults 
One  hallmark of “mainframe”  computing is its  robustness, 
even in the  presence of hardware  failures. A key aspect of 
this is the  detection of such  failures, generally through  the 
use of redundant logic. In dataflow and  address flow 
paths,  this  has  traditionally  been  done via parity or  error- 
correcting  code  (ECC).  This is straightforward  for  some 
design elements  (such as those  where checking codes  are 
passed through  unchanged),  but in other  elements it adds 
complexity and adversely  affects both  chip  area  and  the 
time  required  for  the  function.  Custom circuit  design 
exacerbates  this  situation,  because  the  redundant checking 
logic disrupts  the  regularity of functional  elements such  as 
adders  and  bit  rotators. 

Fault-detection  coverage is typically lower for  control 
logic than  for dataflow logic. This is because  it is more 
varied in  its structure,  and commonly practiced  procedures 
for checking  it  have never evolved. In  some cases  invalid- 
state  checkers  are  used,  but  these usually  cover  only  a 
small portion of the  potential  hardware  faults. In other 
cases, functions  are  implemented twice and  the  outputs 
of the two copies  are  compared. 

Once a fault  has  been  detected,  the  processor  must 
recover from it and  continue processing  (assuming the 
fault was transient).  Past  bipolar designs  have  used 
complex hardware  controls  interacting with a  service 
processor.  This  has  been a difficult area  to design 
correctly  and verify; for a new processor, a  simple  yet 
complete  mechanism is needed. 

Microcode control store 
A key feature of bipolar S/390 processor designs is the  use 
of horizontal  microcode  (a  form of Licensed  Internal 
Code)  to  perform complex functions.  This  code is 
contained in  a special  array known as  the  control  store, 
which has grown  as the ESA/390 architecture  has grown. 
A study of remapping a 9121 CPU showed that  the 
control  store would  have occupied over 30% of the 
available CMOS  chip  area.  Further,  the high performance 
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of horizontal  microcode  depends  on accessing the  control 
store in one cycle, including the  selection of one  from a 
set of possible next instructions.  This access path was 
roughly 50% greater  than  the longest path in the  custom 
data flow in the 9121 remapping study. 

Special register updates 
Implementing  the ESAi390 architecture  requires a large 
set of special registers  to  control  instruction processing. 
These  include  not only the ESAi390 control  registers, 
but  also such elements  as  the prefix register,  CPU  ID, 
interruption  controls,  and  interpretive  execution  controls. 
To minimize timing delays,  a high-performance  processor 
needs  copies of parts of these  registers  distributed 
throughout  the  processor, close to  the logic they control. 
Updates  to  these  registers  are  infrequent,  but must be 
propagated in  a  timely way. Bipolar designs  have typically 
used  dedicated wires for  each  register  or field. If this  were 
done on a CMOS  chip, it would add significant wiring 
complexity; therefore, a more efficient distribution 
mechanism is needed. 

Complex clocking 
Bipolar  processors have often  relied  on complex  clocking 
schemes  to align and  balance  the  various  pipeline stages, 
particularly  around  large arrays. This  increases  the effect 
of clock skew on  the  machine cycle time,  since  each 
adjustment  to clock arrival time  adds noise to  the clock 
signal, and since each critical interval  between clock edges 
must account  for skewed  arrival times.  For a CMOS 
processor, with greater variability  in logic gate delay,  this 
has a greater  detrimental effect on  machine cycle time; 
thus, a simpler clocking scheme is needed. 

Cache access path 
A  critical path in every processor is the access to  the  L1 
cache, which includes  the access of the  translation 
lookaside  buffer  (TLB),  the access register  translation 
lookaside  buffer  (ALB),  the  cache  directory,  and  the 
cache  array itself. To fit with the simplified clock scheme, 
this  path must be considerably different  from previous 
bipolar  implementations. 

Design  decisions 
The  net result of the above considerations was a  blank- 
slate design,  with its principal characteristic  being a very 
fast cycle time of 3.5 ns  in CMOS 5X (later  changed  to 
3.2 ns in CMOS 6s). This was to  be achieved  even at  the 
expense of an  increased  number of cycles per  instruction 
executed,  and  dictated a  simple pipelined design. In 
addition  to its other benefits, this simple structure was 
expected  to,  and has, reduced  the  number of errors in 
the design;  this has  been  instrumental in meeting  the 
mid-1997  delivery to  the  marketplace. 

Custom  CMOS design is used throughout  the  array  and 
dataflow portions of the  design,  and  the simple pipeline 
has  helped  to  keep  the  control logic paths within the 
target cycle time. 

instead  are  duplicated with their  outputs  compared. 
Although costly, this removes checking  circuits which 
could  have  limited the cycle time  and would  have made 
the  custom design more difficult, particularly in the 
arithmetic logic and bit rotator.  It also provides  more 
comprehensive checking than  standard  techniques, 
particularly  for  the  control logic. The  buffer  control 
element  (BCE) uses standard  parity  and  ECC checking 
because it  primarily  moves data  around  without 
manipulating  them. 

The  pipeline is one cycle longer  than  has  been used  in 
recent  bipolar Si390 processors.  This is necessary  in order 
to have the  cache clocking  aligned with the  rest of the 
processor.  It also  allowed some  movement of function 
between cycles, which has  helped  to achieve the cycle time 
and  to  get all pipeline  stages  aligned  to a  single clock. 

Since  it was impossible to  use a standard  control  store 
because of cycle time  and  space,  complicated  functions  are 
implemented by highly privileged Si390 subroutines  called 
millicode (a  different  form of Licensed  Internal  Code). 
The millicode has a separate set of general  registers  and 
additional  instructions  to  manipulate system status which 
are  not available in the ESAi390 architecture. 

To  make recovery straightforward  and  comprehensive, 

The  I-unit  and  E-unit designs contain  no checking, and 

all system status which exists between instructions is 
collected in a checkpoint  array.  This  array  can  be used 
to reinitialize the  processor  and  retry  an  instruction 
whenever  there is a hardware  error, all under  hardware 
control. Also,  it can  be accessed by millicode, which gives 
millicode great  generality  and power. 

Figure 1 shows the  major  elements  on  the Si390 G4 
CMOS chip. The  outputs  from  the  duplicate  I-unit  and 
E-unit go to a compare circuit before going to  the  register 
unit (R-unit)  and  BCE. All data  produced by the  E-unit, 
whether  to  be  stored or written  to  an  internal  register, 
come over  a  single bus from  the  C-register, simplifying the 
compare.  The  storage  addresses  from  the  I-unit,  and  the 
control signals associated with the  data  and  addresses,  are 
also compared. 

translation logic and  lookaside  buffer,  the  store  queue  and 
buffer,  and  the logic for  communicating with the L2 cache. 

The  R-unit  contains  the  checkpoint  array  and  the logic 
for retrying  in the  event of an  error.  ECC is used  for  the 
data in the  checkpoint  array. 

At  the  heart of the design  decisions described  here is a 
comparison of different design points. Such  a comparison 
is difficult to  make when the design points  are in different 
technologies, since  it requires a substantial  effort  to  map 

The  BCE  contains a  single L1 cache,  the  address 
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them  to a common technology, and  there is never enough 
time  to  do this properly.  Nevertheless,  on  the basis of a 
combination of measurement, analysis, and  projection,  the 
designers of the Si390 G4  CMOS  processor believe that 
this design  realizes  a 70% cycle-time advantage  compared 
to  the Si390 G3  CMOS  processor  when  normalized  to  the 
same  CMOS technology, while requiring 30% more cycles 
to  perform  the  same work. This gives the Si390 G4  CMOS 
design an  overall  CPU  performance  advantage of 30%. In 
comparison  to  the ES/9000* Model YO21 processor,  were 
that  mapped  into  CMOS, it is believed that  the Si390 G4 
CMOS cycle time is approximately 60% faster,  and  that 
Si390 G4  CMOS  requires  about 60% more cycles, yielding 
roughly equivalent  performance.  However,  the ES/Y000 
Model YO21 is a  complex, superscalar,  out-of-sequence 
processor, while the S/3YO G4  CMOS is a much  simpler 
design, requiring less chip  area  and  enabling a more 
aggressive product design schedule.  It  should  be  noted in 
both of these  cases  that this is only one  component of 
system performance, which is also influenced by storage 
hierarchy  effects  and  the  particular  workload  being 
applied. 

Buffer control element 
The  BCE provides  access to ESA/3Y0 storage via a  single 
store-through 64-kilobyte L1  cache which holds  both 
instructions  and  operands.  It was not split into  separate 
instruction  and  data  caches in order  to save space  and 
simplify the  controls.  The  line size is 128  bytes, and  the 
lines  are  grouped  into  128  sets of four lines. Even  and  odd 

466 doublewords  are in separate  data arrays (interleaves)  that 

are  separately accessible. There is also a  32-kilobyte read- 
only storage extension to  the  cache, which is described in 
the  section on millicode. The  BCE  also  includes  hardware 
for  performing ESA/390 address  and access register 
translation, including support of guests  executed  under 
ESN3Y0  interpretive  execution,  and a  256-entry TLB  to 
remember  the  virtual-to-absolute  translations  for  recently 
accessed  pages. 

The  conceptual  requirements  for  fetching  data  from  the 
cache  are  to  translate  the access-list-entry token  (ALET) 
to a segment  table  origin  (STO) using the ALB, translate 
the  virtual  address  to  an  absolute  address using the  TLB, 
look in the  cache  directory  to  see  where  the  data  are,  and 
then  read  the  data  from  the  cache.  The  practical  problem 
is that if those  four  steps  are  done  sequentially,  the  cache 
access will take much too long; therefore,  cache designs 
usually do  some of the  steps  at  the  same  time. In the 
case of the Si390 G4  CMOS  processor,  the  ALET 
translation is done  during  the cycle in which the  address 
is being  calculated,  and  the  remaining  steps  are  done 
simultaneously. At a  minimum this  means  reading two 
entries  from  the  TLB  (because it is two-way associative), 
four entries  from  the  cache  directory  (because it is four- 
way associative), and  four  doublewords  from  the  cache 
data  array  (because it is four-way  associative). Then  the 
appropriate  addresses  are  compared  to  see  whether  there 
was a cache hit and  to  control  gating  the  correct  data. 

However, this is complicated by the  fact  that two of the 
address bits (18  and  19)  needed  to  read  the  cache  are 
subject  to  translation, which means  that they are  part of 
the  TLB  output. Since  it  would take  too  long  to  complete 
the  TLB access before  starting  the  cache,  an  alternative 
is needed. Two approaches have been  used  on  past 
processors,  and a third  approach is used on the S/390 
G4  CMOS  processor. 

directory  entries  (sixteen),  and  four  times as  many 
doublewords of data  (sixteen),  to cover all four possible 
values that  absolute  address bits 18  and  19  could have. 
Then all needed  information is available, and it is just a 
matter of additional  compares  and gating. Unfortunately, 
that  extra logic would make it  impossible to  meet  the 
target cycle time. 

The  second  approach is to  organize  the  data in the 
cache  according  to  virtual  address, in which case  virtual 
address  bits  18  and  19  are  used  for accessing the  cache, 
and  there is no  need  to  read  four  times  as much 
information  out of the  directory  and  data  array.  This  has 
other drawbacks. When a cache miss occurs, it is not 
known whether  the  data  are really not in the  cache, 
or just in  a different place because they were previously 
referenced using a different  virtual  address (called  a 
synonym). While  that is infrequent, it is still necessary 
to  go  looking  for  the  data on every cache miss and  to 

The first approach is to  read  four  times as  many cache 
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move them if they are  found.  This  movement  can  be 
accomplished either by reading  data  from  the first place 
and writing them  to  the  second, or by invalidating data in 
the first place and  loading  them  from  the L2 cache  into 
the  second place.  Also, in a  multiprocessing  system,  when 
a cross-interrogate  address  (an  absolute  address) is 
received, there  are now four  times  more  places  to  look  for 
it.  There  are  several  alternative ways to  deal with  cross- 
interrogation, which represent  different  trade-offs  between 
speed  and cost, none of which were acceptable. 

The S/390 G4  CMOS design is different  from  the first 
two alternatives. Since the  data  are  organized by absolute 
address,  the  problems  associated with the  second  approach 
do  not exist. To avoid the  need to read  from so many 
extra  cache  directory  and  data  array  locations, a new 
structure called an absolute address history table (AAHT) 
is introduced  for  operand  requests.  The  AAHT  uses  the 
values of the base and index GRs specified for  an  address 
calculation  to  select a predicted  value of absolute  address 
bits 18 and 19. The  base  GR is used  when one is specified; 
otherwise,  the index GR is used. During  the  address  add 
cycle, bits  12  to  19 of the  selected G R  value are used to 
read  one of 256 entries in the  AAHT.  This  entry  contains 
a predicted value of absolute  address bits 18  and 19, which 
are  latched  at  the beginning of the  cache access cycle and 
used to  address  the  cache.  For  instruction  fetches, a 
prediction  for  bits 18 and 19 is also  made,  but using  a 
small set of registers  and a simple  algorithm; this is 
possible because  instruction  fetching is more localized in 
its  addressing  pattern. 

of misprediction.  The  predicted  absolute  address  bits 
are  compared  to  the  actual  absolute  address bits in the 
matching  TLB  entry; if they do  not  match, any cache hit is 
suppressed,  the  AAHT is updated,  and  the  storage  request 
is  recycled in  the  BCE using the  correct  absolute  address 
bits 18  and 19. 

As with any prediction mechanism, there is a possibility 

In addition  to accessing the  cache with a  logical 
address, it can  be accessed by cache physical address. 
Whenever a fetch is made using a virtual  or  real  address, 
the physical location of the  line in the  cache is 
remembered,  and  additional  fetches  can  be  made  from 
that  line  without using the ALB, TLB, or cache directory. 
Fetches  made using  a remembered  cache physical location 
are called “continuation  fetches.”  This allows multiple 
requests  to  be  processed by the  BCE in  a  single cycle. 
For  example, on the  same cycle it is possible to  make  an 
operand  test  request  to look for access  exceptions, and 
also fetch  doublewords of data  for two different  I-buffers. 

The  strategy  for  handling  stores is that  the  L1  cache is 
store-through  and  the  L2  cache is store-in.  Operand  stores 
are  written  into  the  L1 cache as  each  store  instruction is 
executed,  and  are  merged with current  data  from  the 
cache  to  form a  full doubleword.  These  doublewords have 

ECC  applied,  are saved  in the  store  buffer,  and  are 
sent  to  the L2 cache  after  the  storing  instruction has 
completed successfully. The  store  buffer  can  hold  up  to 64 
doublewords  from eight different  cache lines. This  store 
design allows the  L1  cache  to  just  be  reset  during a 
recovery action,  and  that  in  turn allows the  L1  cache  to 
have only parity  checking on its data. 

The  connection  to  the L2 cache  and  the  rest of the 
storage  hierarchy is by a  single quadword  bidirectional 
bus. Parity  checking is used for  the transmission of data 
from  the  L2  cache,  and ECC is used for  the  store  buffer 
and  the transmission of data  to  the L2 cache. All storage 
updates  are  forwarded  to  the  L2  cache, which uses  ECC. 
The clock rate of the  processor  and  BCE is twice as fast 
as  that of the L2. The L2 cache is described in the 
companion  paper by Mak et  al. in  this  issue [3]. 

Instruction and execution units 
The I- and  E-units consist of three  parts:  the  instruction 
unit,  the fixed-point  unit (FXU),  and  the  floating-point 
unit  (FPU).  There  are two separate execution units 
because  the specialized nature of the  floating-point logic 
prevents it from  being  integrated with the  FXU; however, 
only one of the execution units  can  be executing at a time. 
The  FPU is described in  a companion  paper by Schwarz 
et al.  in  this  issue  [4]. 

units. The  I-unit  contains  four  I-buffers,  each  containing 
four doublewords. Instruction  fetching  can  occur 
simultaneously  along  the  decoding  path,  and  along two 
alternate  branch  paths, with a different  I-buffer used for 
each  path.  Each  I-buffer  operates with only a  single cache 
line  at a time,  holding  up  to  four consecutive doublewords 
from  that line. The  initial  fetch  for  an  I-buffer  uses a 
logical address,  but all subsequent  fetches  are  continuation 
fetches.  When  the  data in the  earliest  doubleword  are 
used,  the  doubleword is reassigned 32 bytes farther  on. 
Fetching  proceeds in this manner until the  end of the 
cache  line is reached;  then a different, ‘‘linked’’ I-buffer is 
started  to  fetch  the next  line, and  the  current  I-buffer 
becomes inactive  when  its data  are  exhausted. 

Figure 2 is a  simplified  dataflow diagram of these 

One  instruction  can  be  delivered  to  the  I-register  for 
decoding  each cycle, and  for most instructions,  decoding 
takes only a  single cycle. Instructions  are always decoded 
in the  order in which they appear in the  instruction 
stream.  When a branch is encountered,  an  I-buffer is 
started along the  target  path,  and fetching continues  along 
the  sequential  path. A  guess is made as to  whether  the 
branch is taken,  and  decoding  proceeds in whatever 
direction is guessed. When  the  branch is resolved, if the 
guess  was wrong, the  operations  along  the  wrong  path  are 
discarded,  and  decoding  changes  to  the  correct  path. 

During  the  decode cycle, a  variety of control signals are 
generated  to  control  instruction processing,  such as 

~~ 

~~ - 
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determining  whether millicode is required  to  execute 
the  instruction, what should  be  done with the effective 
address,  and  whether  certain exceptional conditions  are 
present.  In  addition,  the X and B general  registers  are 
read in preparation  for  an  address  calculation.  At  the  end 
of the  decode cycle, those values are in registers  at  the 
input  to  the  address  adder,  and  the  address  calculation 
occurs on  the next cycle if there  are  no  interlocks  to 
prevent  it. If there  are  interlocks  on  the  address 
calculation,  further  decoding is also stopped. 

is placed in the  I-queue,  where it remains  until it is 
Also at  the  end of the  decode cycle, the  instruction 

468 executed.  Instructions  are  placed in the  I-queue,  and 

removed  from  it, in program  order;  there is no  out-of- 
order  execution. 

four  op-address  registers.  The  I-address  registers  are 
associated  on a one-for-one basis  with the  I-buffers. 
Whenever  an  I-buffer is started,  its  associated  I-address is 
also set.  For a branch  target, it is set  from  the  address 
adder,  and  for a linked  I-buffer, it is set  from  the  address 
incrementer. 

The  op-addresses  are used for  operand  requests.  They 
are assigned to individual instruction  operands,  and  are 
used to  make  the type of references  needed  for  that 
operand. If the  operand is only stored  into,  one  reference 

The  address  adder  feeds  four  I-address registers, and 
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is made  for  each  cache  line  to notify the  BCE  that  stores 
will be coming. If data  are  needed  from  the  operand, 
fetches  are  made  to  each  doubleword;  the first fetch in 
each  cache  line uses  a logical address,  and  subsequent 
fetches  are  continuation fetches. If an  instruction 
references two operands (as  many SS instructions  do), two 
op-addresses  are assigned. An  op-address  fetches  the 
entire  operand  to which it is assigned, regardless of how 
many cache lines it occupies. An  op-address is never used 
for two successive instructions: even if they require  the 
same  or  consecutive  data, a second  op-address is assigned 
for  the  second  instruction. 

The  order of operand fetching is strictly  defined.  All 
fetches  for  instruction N occur after  operand  fetches  for 
instruction N-1. Within  an  operand,  fetches  occur  from 
left to  right; if an  instruction  has two fetch  operands, 
doublewords  from  those  operands  are  fetched  alternately. 
Operand  data  are held in the  op-buffers until  they are 
needed  for execution. The  op-buffers  are assigned as 
needed  to hold fetched  data,  and  do  not have  a  special 
relationship with any op-address. 

The  I-queue  can  pass  one  instruction  per cycle to  either 
execution unit (but  not  both).  Instructions  are executed  in 
program  order by them,  and whichever  unit is executing 
must finish before  an  instruction  can  go  to  the  other. 

The ESAi390 instructions  are of three types: 1) those 
executed in the  FPU, 2) those  executed in the  FXU,  and 
3)  those  executed by millicode. There  are also  special 
instructions, available  only in millicode and  not directly 
available to ESAi390 programs, which for  the most part 
allow the  manipulation of the system state.  The  FXU 
executes all of these except the  floating-point  instructions. 

The  FXU  includes a  binary adder, binary-coded-decimal 
(BCD)  adder, bit rotator, mask generator,  and bitwise 
logical and  merge  elements; all of these except the  BCD 
adder  are 64 bits wide.  Since the  internal  architecture 
includes a  mixture of 32-bit and 64-bit operations,  the 
high and low 32-bit words  are  interleaved in the layout of 
the 64-bit  dataflow, allowing efficient handling of both 
types of operation, including the  forwarding of results 
from  one  operation  to  the next. The  FXU  also  handles 
condition  code  and  interrupt processing. 

Register  unit 
The  register unit (R-unit)  performs a  variety of functions 
associated with ESA/390 control  operations,  hardware 
fault  detection,  and  error recovery. It is dominated by a 
custom  CMOS  register file known as  the  checkpoint  array, 
which buffers all control  states, including various  mode 
controls,  interrupt  controls,  and  interpretive  execution 
controls.  It also buffers  instruction  addresses  used by 
millicode and  hardware,  and all architected facilities, 
including  ESAi390 GRs, access registers  (ARs), floating- 
point  registers  (FPRs),  and  control  registers  (CRs). All of 

these  are  mapped  into  an 8-bit register  address  space, with 
room  for  128 32-bit and  128 64-bit  registers. 

As  instructions  (either ESAi390 or millicode) are 
executed,  their  updates  to  the  processor  state  are  sent  to 
the  R-unit,  where  the  results  from  the two sides  are 
compared  for  equality  and  placed in an  update  buffer. 
When an instruction  completes with no  hardware  faults 
detected,  the  contents of the  update  buffer  are  written  to 
the  checkpoint array. 

The  R-unit  also  includes special logic for  the ESAi390 
timing facility, instruction  address  and  exception  registers, 
and  interfaces with the service processor  and  an auxiliary 
processing unit;  the  state  registers  for  these  are  handled 
in a manner  analogous  to  the main checkpoint  array. 

Because  some of this state  information is needed  to 
control  hardware  operations in the  I-unit,  E-unit,  and 
BCE, local copies of that  state  information  are  provided 
there.  To  maintain  correct values  in these  copies,  the 
E-unit  output  bus is routed  to  each unit along with the 
R-unit  register  address being written. Logic in each  unit 
monitors this address  and  updates any local copies of 
R-unit  registers  from  data  on  the  E-unit  output bus. Thus, 
a  single  bus conveys updates  for all register  and  state 
updates  to all units in the  processor,  and  has a  much 
smaller  impact  on  chip wiring than would  have been 
required  for many  small dedicated  mode  and  control lines. 

Millicode mode 
In a  complex instruction  set  (CISC)  architecture such as 
ESAi390,  it is simply not  feasible  to  use  hardware  controls 
for all of the  instructions; design time  and  debug  time 
both  preclude  it. Also, as was noted above, conventional 
horizontal  microcode was also not feasible for  the S/390 
G4  CMOS  processor,  because of both  chip  area  required 
and cycle time.  This  led us to  use highly privileged 
subroutines in 390-like code, which we call  millicode. For 
this  to  be successful,  it is necessary to have the  processor 
run efficiently  while  it is in  millimode, enter  and leave 
millimode  rapidly, and give the millicode the  capabilities 
it needs without adding excessive complexity to  the 
hardware. 

To  run efficiently, the millicode is provided with  its  own 
set of general  registers, access  registers, and  control 
registers. It  therefore  has  immediate access to its own set 
of registers  and  has  no  overhead  related  to saving and 
restoring  the Si390-architected  registers. For  those 
instances when the millicode  must  access an S/390- 
architected  register,  there  are special instructions which 
allow it to  be  done quickly. Also, there  are  other special 
instructions which allow millicode to  perform  important 
operations quickly. 

To  enter millicode quickly, all instructions which are 
implemented with  millicode subroutines  are  treated by the 
hardware  as  unconditional  branches  to fixed addresses in 469 
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hardware system area  storage.  They  take  about five cycles 
to  execute, since  they  save  a  variety of status  information, 
such as its  effective addresses  and  the  instruction text,  in 
millicode general registers. Thus,  the  processor  executes 
one  “branch,”  and it is in  millimode, executing  the first 
instruction in the  subroutine, with  its needed  status 
information  loaded  into  its  general  registers.  The 
execution of this  “branch”  into millicode occurs 
overlapped with both  preceding  and following instructions 
to minimize pipeline  disturbance. 

end  instruction which is an  unconditional  branch  to  the 
updated Si390 instruction  address.  This is also  an 
overlapped  instruction which causes  minimal pipeline 
disturbance,  and is even faster  than millicode entry 
because  there is no  status  to save. 

The exit from millicode is accomplished with  a  millicode 

The millicode can  make  use of the  full  set of hardware- 
implemented ESA/390 instructions.  Additional  instructions 
are defined to allow direct millicode  access to specific 
hardware facilities and  to  accelerate specific millicoded 
operations.  These  instructions  are  modeled  on ESAi390 
instruction  formats, so that  little  unique  hardware is 
required  to  support  them.  One  group of special  millicode 
instructions provides both  read  and  write access to  the 
R-unit  register  space, using the 8-bit register  addresses. 
Since  this register file contains all processor  states, a 
relatively  small number of special  instructions  provide 
millicode  with  access to  and  control over the  entire 
processor  state.  This is an  economical  mechanism which 
gives the millicode generalized, powerful control over the 
processor. 

an  interruption  occurs,  the  processor  stops executing the 
current  instruction  stream  and  forces  the  processor  into 
millimode at a fixed address.  This is essentially the  same 
as  millicode entry  to  simulate  an  instruction,  but it is 
caused by detecting  an  interruption  condition  rather  than 

Millicode is also used  for  interruption processing. When 

470 by encountering  an  instruction  that must be  simulated. 
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One  disadvantage of millicode is that  the  code  occupies 
space in the  cache,  potentially displacing  ESA/390 data 
and  increasing  the  number of cache misses. This  effect is 
minimized by addhg a  32KB read-only  storage  (ROS) 
array in the  BCE,  as  an extension to  the  cache, which 
contains  frequently  executed millicode routines. 
When a fetch is made  from  the  portion of HSA  storage 
corresponding  to  the  ROS,  the  BCE  takes  data  from 
the  ROS  rather  than bringing that  line  into  the  cache. 
ESAi390 instructions  for which the millicode is in ROS 
are  detected  when they are  decoded,  and  the  appropriate 
ROS address is used rather  than  the  default millicode 
routine  address  for  that  opcode.  The  reason  for using 
ROS  rather  than increasing the size of the  cache is that 
the ROS has a  much greater density than  the  cache  data 
array.  While  there was room  on  the  chip  to  add  32 KB of 
ROS,  there was not  room  to  expand  the  cache by 32 KB. 
If there is an  error in  a ROS  routine,  the  erroneous 
routine may be  patched (millicode entry  reverts  to  the 
default  address  for  that  opcode)  without affecting  any 
other  ROS  routines. 

Instruction  pipeline 
The basic pipeline of the S/390 G4  CMOS  processor is 
shown in Figure 3 for  an  RX-format  add-  or  store-type 
instruction.  The  three  lines in the figure represent 
instruction  fetching,  I-unit processing, and  E-unit 
processing.  Normally, instruction  fetching occurs well in 
advance of decoding,  and  there is a  significant time  gap 
between  the first and  second  lines in the figure. The 
illustrated timing occurs  when  the  processor  starts with 
the  instruction  buffers empty. 

In  the  AA/AI cycle, the  I-unit  passes  the  starting 
address  through  the  address  adder  or  incrementer  and 
sends  an  instruction  fetch  request  to  the  BCE.  This 
request will return  up  to 16 bytes of data,  depending  on 
cache  interleave availability. 

In  the IF1 cycle, the  BCE accesses the  cache,  TLB,  and 
directory  and also latches  the  instruction  data.  These  data 
are normally returned  to  the  I-unit in cycle IF2, but  are 
subject to  the  same delays described below for  operand 
fetches. 

In  the  IBR cycle, the  instruction is gated  from  the 
I-buffer,  or bypassed  directly from  the  cache bus, to  the 
I-register. 

In  the  DEC cycle, the  instruction in the  I-register is 
decoded  and  sent  to  the  address  adder  and  I-queue. Also, 
the  GRs  are accessed to  obtain  the  base  and index address 
values designated by the  instruction (if any), and  the  base 
AR is read  for  use in selecting  the  operand  address  space 
as needed. 

In  the AA cycle, the  operand  address is computed  and 
sent  to  the  BCE  with a fetch  request. In parallel,  the  base 
AR is used to  read  the  ALB, which with  the  operand 
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address  controls selects the  address  space for the access. 
Also in cycle AA, bits from  the base or index GRs  are 
used to access the  absolute  address history table  (AAHT) 
to  predict  absolute  address  bits 18 and 19. 

In  the  OF1 cycle, the  TLB,  cache  directory,  and  cache 
data  arrays  are  read  to  obtain  the  data  and check for 
access  exceptions. If all is well, the  data  are  latched  at  the 
end of this cycle and  sent  to  the  operand  buffers in cycle 
OF2. If a TLB  or  ALB miss occurs,  the BCE initiates a 
translation  sequence,  at  the  end of which the  TLB  or ALB 
is updated  and  the  cache re-accessed. If a cache miss 
occurs,  the  BCE  initiates a fetch  from  the  L2 cache. In 
either case, the  BCE signals the  I-unit,  and  the  pipeline is 
extended  until  the miss is resolved. If the  TLB  and  ALB 
hit,  but  absolute  address bits 18 and 19 are  not  as 
predicted by the  AAHT,  the  request is recycled, and  data 
return is delayed by two cycles (or  more if a cache miss is 
then  detected). 

In  the  OBR cycle, the next instruction  from  the  I-queue 
is sent  to  the  E-unit  for  execution.  The  E-unit  performs 
additional  decoding of the  instruction  and  sets  up  controls 
for  the dataflow elements.  During  this cycle, the  operands 
for  the  instruction  are  read  from  the  registers  (GRs,  ARs, 
or FPRs)  and from the  operand  buffers as needed;  data 
just  being  sent  from  the  BCE  are bypassed by the  operand 
buffers directly into  the  E-unit  operand  registers, 
including  any  merging and aligning that may be  required. 
If the  storage  operands  are  not  yet available, the  OBR 
cycle is allowed to  complete,  but  the execution of the 
instruction is held at  the next stage. 

In  the  EX cycle, the  actual  execution  takes  place,  and 
the  instruction  results  (including  the  condition  code)  are 
generated. 

In  the  PA cycle, these results are  forwarded  to  the 
R-unit  and/or  BCE,  and  are  broadcast  to  the  rest of the 
processor  to allow updates  to local copies of R-unit 
registers. 

The  remaining cycles of the  pipeline affect  only the 
R-unit  and  BCE,  and  are  never subject to  pipeline stalls. 
In  the  EG cycle, the  ECC checking code is generated  for 
R-unit  register  updates,  and  store  operands  are  written  to 
the  cache  and  merged with the  unchanged bytes to  form a 
full DW. 

In the  CK cycle, the  data  from  the two copies of the 
E-unit  are  compared in the  R-unit,  and  parity is checked 
on all bytes of the  merged DW for  operand  stores in the 
BCE.  ECC is then  generated  for  the  doubleword in 
preparation  for writing  it into  the  store  buffer  on  the 
next cycle. For hardware  instructions  requiring  multiple 
execution cycles, results  are  buffered  at this stage until 
all results have been  generated. 

The last  CK cycle for  each  hardware  instruction 
(ESA/390 or millicode) is followed by a CMP cycle, in 
which the  buffered  results  are  written  to  the  checkpoint 
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array in the  R-unit,  and  stores  held in the  BCE  store 
buffer  are  marked as  eligible to  be  forwarded  to  the  L2 
cache. The  CMP  stage is blocked if any hardware  fault is 
detected in any prior cycle. 

All stages of this  pipeline  are  the  same  length,  and all 
are driven by the  same system clock. The  main  portion of 
the  pipeline is one cycle longer  than in the 9021 and 9121 
processors  because of uneven scaling between  bipolar  and 
CMOS technology, because of the  need  for a  simple 
clocking scheme  to minimize  clock skew, and  to move 
some  cache-related  functions  to  the cycles before  and 
after  the  cache access. 

Handling of exceptional  conditions 
As a rule,  high-performance  processor designs are 
optimized  for  “normal”  operations, with minimal  circuitry 
devoted  to  interruptions  and  special  hardware actions. 
However,  when unusual  conditions  arise,  the  processor 
must respond  according  to  the  architectural  definition, 
which in the  case of ESAi390 is very precise. This 
precision allows for highly reliable  software,  but  imposes 
a  significant burden  upon  the  hardware design. In a 
pipelined  processor,  information  about  unusual  conditions 
is often  not available until  the  affected  instruction is being 
executed.  Furthermore, with precise  program  interruption 
as in  ESAi390, the  condition causing  an interruption  must 
be  associated with a specific instruction,  and  often 
requires  that  substantial  information  be  passed from the 
hardware  to  the  software. All of this  must  be  dealt with 
without  adding significant  complexity to  the logic or 
affecting cycle time. 

In the Si390 G4 CMOS  processor, this is addressed with 
a  relatively  simple concept.  During  normal  pipelined 
operation,  instructions  are  monitored  for  conditions which 
might require  an  interruption or special hardware  action. 
These  conditions  include  program exceptions, program- 
event-recording  (PER)  events,  and  certain  operand 
destructive-overlap  conditions  for which millicoded 
execution is required. They are  combined  into a  single 
exception  summary  bit which is carried in the  instruction 
queue  and passed to  the  E-unit with each  instruction. 
When  the  E-unit begins  execution in normal  pipelined 
mode of an  instruction with this bit set, it  blocks the 
results  from  that  instruction,  and  the  I-unit  and  E-unit 
discard  that  and any subsequent  instructions in the 
pipeline.  Then  the  I-unit is restarted  at  the  current 
instruction  address, in single-instruction  mode.  In this 
mode, a single  instruction is passed  through  the  pipeline 
by itself. Detailed exception information is accumulated 
for  that  instruction,  and  the  appropriate  interruption  or 
special hardware  action is taken,  after which the  I-unit 
resumes fully overlapped  operation.  In  some cases, the 
instruction  executed in single-instruction  mode may 
complete with no exceptional  condition  detected,  and  then 47 
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the  processor simply resumes  normal  operation.  Even with 
the  application of this  mechanism  to a broad  range of 
conditions,  the  net effect of single-execution mode on 
overall performance is about 0.1%. 

Detection and  recovery  of hardware faults 
To provide thorough  hardware  fault  detection  without 
complicating the  custom design elements  and  without 
impact  on  the cycle time,  the  I-unit  and  E-unit  are 
duplicated in toto on the SI390 G4 CMOS  processor  chip. 
There is no checking at all  within these  units  other  than a 
small number of functional  checkers  intended mainly to 
detect millicode errors.  The  outputs of these  units  [storage 
addresses  (instruction  and  operand  from  the  I-unit), 
operand  results  (storage  and  register  updates  from  the 
E-unit),  and  exceptional  condition  status  (E-unit)]  are  sent 
to  the  R-unit  andlor  the  BCE,  where  the values from  the 
two copies are  compared. A  mismatch is considered a 
hardware  fault.  The  BCE  and  R-unit  are  not  duplicated, 
but are  protected  from  hardware  faults by parity  and  ECC 
(double-error  detection,  single-error  correction) in the 
data flow, and consistency  checks and local duplication in 
the  controls. Since  most BCE  operations  are byte- 
coherent,  including  parity merely adds a bit in the  path 
and usually does  not  complicate  the  custom design 
elements.  The  checkpoint  array in the  R-unit is protected 
by ECC,  since it  must be reliably correct  for  hardware 
fault recovery to  be effective.  All storage  updates  are 
forwarded  to  the L2 cache immediately after  completion 
of the  storing  instructions.  The  entire  data  path  for  stores, 
including the  store  buffer,  the  interface  to L2, the  L2 
store  stack,  and  the L2 cache itself, is protected by ECC. 
Thus,  storage  updates  are reliably preserved across 
hardware  faults,  and  L1  cache  contents  do  not have to  be 
preserved  through recovery from  hardware faults. 

When a hardware  fault is detected anywhere, instruction 
completion is halted  immediately, which blocks updates  to 
the  checkpoint  array  and  inhibits  operand  stores  from 
being  forwarded  to  the L2 cache. The timing of error 
detection is such that  any  error which could  affect the 
resulting  state of the  processor is detected  prior  to  the 
completion of the  instruction (ESAi390 or millicode) 
which would update  that  portion of the  state.  Thus, all 
instructions  that have completed  at  the  point  at which 
an  error is detected  did so without  error,  and  both  the 
processor  state in the  checkpoint  array  and  the  storage 
state in the  storage  hierarchy  (including  the  store  buffer, 
but  not  the  L1  cache)  are  correct. 

After a hardware  fault  has  been  detected, a  recovery 
sequence is performed  under  direction of the  R-unit: 

1. The  BCE  forwards  to  the L2 cache any remaining 
stores  for  instructions  that have completed. 

472 2. The  I-unit,  E-unit,  and  BCE  are  reset. 
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3. The ALB, TLB,  cache  directory,  and  cache  data  arrays 
are  purged  and  written with good parity. 

4. An  asynchronous  interrupt is made  pending  to log the 
recovery event  and check for any interrupts lost  while 
performing recovery. This  interrupt is taken  at  the 
next interruptible  point, which is after  the recovery 
sequence. 

5. Each  element of the  checkpoint  array is read,  checked, 
and  corrected via ECC,  sent  to  the  E-unit,  staged  to 
the FXU output  register,  and  written  back  to  the  same 
address in the  checkpoint  array,  thus  cleaning  up any 
correctable  errors in that  array which  might otherwise 
cause  repeated  invocations of processor recovery. This 
uses  the  same  data  and  control  paths  as  are  used  for 
special  millicode instructions which read  and  write 
registers in the  R-unit  space.  As  part of this operation, 
any local copies of that  register in the  I-unit,  E-unit, 
or  BCE  are  updated with the known good  value. 

6. The  entire  checkpoint  array is read again and  checked 
for  errors. If any error is found, it is presumed  to  be a 
solid hardware  failure, since the  entire  array was just 
written with  good ECC;  the recovery sequence is 
aborted,  and  the  processor is placed in the  check- 
stopped  state. 

7. The  E-unit  forces a hardware  serialization  interrupt, 
which restarts  the  I-unit  at  the  current  instruction 
address. 

8. Instruction processing resumes, using the  state  just 
loaded  from  the  checkpoint  array. 

9. If another  hardware  fault is detected  immediately, it is 
presumed  to  be a  solid failure,  and  the  processor is 
placed in the  check-stopped  state;  otherwise, recovery 
is deemed successful, and  normal processing continues. 

This  entire  sequence is performed  under  hardware  control, 
using relatively simple  control logic and  the  same  data 
paths  that  are used  in normal  operation. Because the 
processor  state is maintained  on a hardware  instruction 
(either ESA/390 or millicode) basis, recovery can  be 
performed  for  faults  that  occur  during millicode operation 
without any special action by millicode. This  eliminates by 
design the majority of special  recovery scenarios which 
have made  instruction  retry very complex in bipolar S/390 
processors. The only exceptions  are millicode sequences 
that  interact with  system components  outside  the  CPU, in 
which case  responses may be lost while  recovery  is being 
performed.  To  handle this,  a means is provided  for 
millicode to  detect  that recovery has  been  performed 
within  a given interval in the millicode routine, so that 
special action  can  be  taken as  necessary. 

Conclusion 
Through  innovative  design,  the SI390 G4 CMOS  processor 
implements  the  complex ESA/390 instruction  set  and 
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achieves  high performance while maintaining  or improving 
upon  traditional S/390 strengths of reliability,  availability, 
and serviceability.  Millicode routines  are used to 
implement complex  ESA/390 functions, minimizing the 
chip  area  and limiting the  control complexity impact  from 
these  operations.  The  duplicate  instruction  and execution 
units  and  straightforward  hardware  instruction  retry 
mechanism  not only  achieve high reliability and 
availability,  but also  enable efficient custom design. 
Through  application of custom  CMOS design, the S/390 
G4  CMOS  microprocessor  has  become  the high-frequency 
design leader in IBM, with a clock speed of up  to 400 
MHz in the  laboratory. 
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