
1 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

DDR Interface Design Implementation

A Lattice Semiconductor White Paper

December 2004

Lattice Semiconductor
5555 Northeast Moore Ct.

Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000

www.latticesemi.com

2 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Memory Overview

Over the past several years the electronics market and, more specifically, the

memory market has undergone significant change. Prior to the electronics

industry downturn in 2000, electronic system designers were less concerned with

the cost of the components going into their next design, and more concerned

with the raw, maximum performance they could achieve.

Today, increasing competition and decreasing profit margins have forced system

designers to reduce next generation product cost while maintaining, or even

increasing, system performance. One industry segment that has experienced

substantial growth as a result of this transition is DRAM memory, particularly

Double Data Rate (DDR) SDRAM memory.

DDR Memory first came on the scene as a high performance, low-cost memory

solution targeted primarily at the personal computer and other cost sensitive

consumer markets. More recently, due to the economic pressures squeezing the

entire electronics industry, non-consumer products have also begun to

incorporate DDR memory (Figure 1).

DDR is an evolutionary memory technology based on SDRAM. DDR SDRAM

access is twice as fast as SDRAM, because DDR data transfers occur on both

edges of the clock, compared to SDRAM, which transfers data only on the rising

edge of a clock. Consequently, DDR can transfer data at up to 2133MB/s. DDR

also consumes much less power than conventional SDRAM, with an operational

Vcc of just 2.5Vdc instead of 3.3Vdc for SDRAM.

3 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Where DRAM Gets Used (4.3B Units)

PC

48%

Other

3%Servers

14%

Peripherals

4%

Consumer

10%

Graphics

9%

Comm

12%

Figure 1

Market analyses indicate that DDR is currently utilized in over 50% of all

electronic systems, and usage is expected to increase to 80% over the next

several years. DDR is not, and will never be, an “all things to all designs”

technology. DDR memory is well suited for those designs that have a high

read to write ratio. Quad Data Rate memory, for example, is designed for

applications that require a 50% read/write ratio. Figure 2 identifies various

state of the art memory technologies and where on the read/write curve they

reside.

4 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 2: Read/Write Ratio Comparison of Various Memory Types

As noted, each system has its own unique memory requirements. In the case

of server applications, the READ-to-WRITE ratio tends to be high, indicating a

need for DDR. In the case of a network processor interfacing a MAC

supporting jumbo packets, where the packets need to be buffered and stored

before being processed, a near equal 1:1 READ-to-WRITE ratio exists,

indicating QDR as a more appropriate memory architecture.

Figure 3 highlights a generic communications line card Printed Circuit Board

(PCB) example. The block diagram shows where several common memory

types may be utilized, based on the system designer’s requirements. A similar

decision process is used in a wide variety of systems in order to choose the

appropriate memory architecture.

5 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

 Figure 3: Utilization of Common Memory Types

The following list indicates the appropriate memory architecture for a variety of

systems and functions. These selections are based on the system architecture

and the respective performance/cost trade off requirements.

•Lookup - Fast Switching/Access time

–Latency Critical, Read Oriented, Smaller Bus Width (32/64bit)

–Memory Choice: ZBT (<10Gb/s) -> QDR/DDR (>10Gb/s)

–Operation: Address Translation

•Lookup - Large Size, High Throughput (Core Router)

6 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

–Parity Required: Wide I/O (>64)

–Bandwidth and Granularity Required is Top Priority

–Memory Choice: SDR (<10Gb/s) -> DDR/FCRAM (10Gb/s) -> RLDRAM/DDR II (10Gb/s-40Gb/s)

–Operation: Address Translation

•Queue/Packet Management

–Latency #1, Random Read & Write - Unpredictable data pattern

–Memory Choice: ZBT -> QDR

–Operation: Queue management and flow control

•Traffic Shaping/Policing

–Burst Oriented, Narrow I/O Bus (x18/x36)

–Memory Choice: ZBT/QDR

–Operation: Policy based routing tables

•Statistics

–Random Read/Write, Read Dominant, Narrow I/O Bus (x18/x36)

–Memory Choice: ZBT/QDR

–Operation: Tracking data for packets, traffic statistics

•Packet Cell Buffer

–Large Granularity, Wide I/O Bus (>64bit)

–Bandwidth top priority

–Cost sensitive

–Memory choice: SDR -> DDR/FCRAM->RLDRAM/DDR II

–Operation: Handling IP Packets that vary in size (128B)

DDR Interface Design Implementation

Until now we have discussed various memory architectures and where they fit

within the system. Due to the relatively high acceptance rate of DDR in a growing

variety of digital designs, the remainder of this article will focus on DDR memory,

and implementation of the DDR interface within an FPGA.

7 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

In many system designs, the engineer will elect to use an FPGA as the memory

controller (Figure 4). The advantage of using an FPGA is its inherent flexibility.

Regardless of the protocol or microprocessor, an FPGA fabric can generally

provide the DDR memory control and required electrical interface. A common

challenge in using an FPGA as a memory controller is the need for the high-

speed interface, such as that required by DDR. The required I/O speeds and

associated clocking are often challenging to implement, due to the non-

deterministic FPGA routing resources and limited I/O speeds of many FPGAs. At

DDR speeds over 200Mbps, environmental conditions such as temperature and

voltage will also affect the performance of the required I/O.DDR memory’s ability

to transfer data at double the standard SDRAM data rate is not an unmixed

blessing. The high speeds of DDR I/O, and the very short data windows of DDR

data, pose significant challenges. The speeds at which the memory controller

must reliably operate (200 MHz across FR-4 PCB traces) make the PCB layout

challenging. Furthermore, incorporating the DDR interface into a flexible FPGA

fabric presents the designer with the related complexity of meeting very critical

and tight timing in an inherently non-deterministic routing fabric. Designers

accustomed to the high-speed and flexibility of FPGAs are often surprised to find

that they have a difficult, if not impossible, experience getting a high-speed DDR

interface operating in an FPGA. These difficulties arise not from a functionality

issue, but from the physical realities of working with data windows that are well

within the magnitude of signal propagation delays in FR4 and FPGA routing.

These timing requirements are further complicated by the variation in logic speed

over process, temperature and voltage. Further complicating the implementation

of a DDR design is the need to handle and pre-process strobe signals, as

opposed to generic clock signals. The design engineer can no longer simply

connect data and address lines and expect to have a robust, high-speed memory

interface.

8 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 4: FPGA As Memory Controller

Each FPGA vendor has approached the problem of DDR memory interfacing in its

own way. At one extreme, where limited resources are allocated in the I/O block,

the data de-muxing and/or clock transfer logic must be implemented in the FPGA

core logic, and the designer is likely to be forced to hand-route the interface logic

in order to guarantee the critical timing. At the other extreme, Lattice

Semiconductor’s recently introduced EC and ECP families provide a complete

hard-wire interface in the I/O block that addresses all of the functionality and

timing issues (including compensation for temperature and voltage) associated

with the interface, eliminating the problem of meeting timing in the FPGA core

routing resources. The latter approach guarantees success by design.

9 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Due to the complexity of a DDR memory design, it is worth considering some of

the aspects of the interface in more detail.

DDR SDRAM Interfaces Overview

In a typical non-DDR system, both the controller and memory in a system

transmit or capture data in response to a single system clock (Figure 5).

Designers became familiar with the timing constraints in these systems, which,

over time, have become tighter as clock speeds have increased.

The typical timing budget for the synchronous common clock system below

would include:

• Memory Access time (tAC)

• Data Propagation Delay (tPROP)

• Clock Skew from Controller to Memory (tSKEW)

• Temperature, Voltage Data-to-Clock (tTV)

10 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 5: Typical Non-DDR System

As designers moved to a Double Data Rate implementation of these systems,

they achieved a 2X effective increase in the bit rate of the system. This

effectively cut the data window in half. Whereas the older common-clock

systems might have a data window of 6ns or more, designers are now faced

with DDR systems with windows of 2.5ns or less. The incremental speed

improvements, provided by smaller process geometries, that designers

depend on for performance gains are insufficient to make up for this halving

of the data window. To further complicate matters, these bit times are now

approaching the propagation time of signals on FR4 and in FPGA routing. Put

another way, a more substantial piece of the timing budget for a memory cycle

is being taken up by physical board routing delays and variations due to

temperature and voltage that do not improve as silicon geometries shrink.

11 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 6: Tight Timing of a 2.5nS Window

Figure 6 illustrates the tight timing of a 2.5nS window, typical of a DDR

transfer. It is clear that the access and propagation times of today’s memories

make it impossible for DDR transfers to take place with a clock-controlled data

launch and capture system. For a DDR system to operate, the ability to launch

the data from the memory device at the same instant as a data-valid signal is

needed. This would effectively eliminate the memory access time and data

propagation time (both the strobe and data would experience the same

propagation time) from the timing budget, and significantly open the data-valid

window. The only remaining skews in this approach would be the small but

finite difference in the ability to launch both the data strobe and the data

simultaneously (tALIGN) (Figure 7).

12 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 7: DDR Timing Margin: A Workable Solution

An Alternate Approach

To accomplish this method of data transfer, DDR SDRAM interfaces rely on the

use of a data strobe signal called DQS. DQS is generated from the differential

clock fed to the DDR memory and a DLL inside the DDR memory used to generate

and align DQS to outgoing data. Although a DDR memory does not use the

differential input clock to launch or capture data, the DQS signal that is used is

related to the incoming clock frequency. Figure 8 illustrates the new timing

parameters of a data window based on a DQS-based READ transfer. As noted

earlier, there is a finite skew between the launch of DQS and the last lane of data

(DQ) to become valid. This data-valid-to-data alignment error is called tDQSQ.

This delay reduces the size of the data valid window. In this system, there is also

13 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

a finite alignment delay between validity of the first valid data line and the last

valid data line. This parameter is tQH. After calculating the real data valid

window, we are left with:

tValid = tQH-tDQSQ

When a read operation is performed, the DDR memory outputs both data and

DQS edge-aligned with each other. In order to capture the data at the controller

(FPGA) input register with proper setup and hold times, the DQS from the

memory needs to be phase shifted 90 degrees. This has the effect of “centering”

the DQS edge with the center of the data window, providing maximum setup and

hold time. Figure 9 illustrates the required DQS phase shift relative to data.

Figure 8: READ Interface Timing Requirements

14 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 9: Required DQS Phase Shift Relative to Data.

It is clear that there is now a reasonable data window from which to capture
data.

The DQS signal has several characteristics:

 DQS is bi-directional

 A DQS line is typically generated for 8 lanes of data from the DDR
memory

 The phase of DQS relative to the data depends on the operation being
performed (Write or Read)

 DQS is not free running

 In the memory device, DQS is generated by DLL to minimize the skew
between it and data

 DQS has a Preamble state just after the signal comes out of tristate
where DQS goes low

 DQS has a Postamble state just before returning to tristate where DQS
goes low

Figure 10 depicts a DDR memory and FPGA controller with the associated data

and control lanes. Again, note that DQS is bi-directional. Note that the clock

signal provided to the memory is differential (CLKP and CLKN) to minimize duty

cycle variations. It is important to understand that it is not the clock signal that is

15 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

used to capture or launch data to or from the memory. DDR memory also

requires a Data Mask (DM) signal, which is used to mask data bits during the

write cycles. This allows writes to the memory on only one of the two edges of

DQS that occur in a cycle.

Figure 10: Typical DDR interface

Figure 11 illustrates the WRITE timing for a DDR interface. Here we are

looking at the signals as they exit from the FPGA controller. Note that the

FPGA controller launches DQS center-aligned with the data window. This

differs from the edge-aligned launch from the memory described earlier. Also

note the requirement that all data (for DDR400) must meet the setup and hold

times of 0.4ns relative to any DQS edge.

16 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 11: DQ-DQS during WRITE

SDRAM interfaces typically are implemented with x8, x16 or x32 bits for each DQS

signal. Note that the ratio of DQS to data bits is independent of the overall width

of the memory.

Implementing DDR Memory Interfaces with FPGA Devices

 Now that we have defined the requirements of a typical DDR interface, we can

turn to implementation of that DDR memory interface in an FPGA.

17 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Memory Read Implementation

Here we will examine the challenges encountered in the design of a READ

interface and the available solutions.

Challenges Encountered by the FPGA During Memory READ

1. DQS-DQ Alignment - DQS must be re-aligned (90 degree phase shift) to
capture read data within the narrow data valid window. The system level skew
and skew across multiple DQ lines must be managed.

2. Data Mux and De-Mux - During READ, the DDR input data must be de-muxed
into two SDR streams.

3. Clock Domain Transfer - After the data is demuxed, the data must be aligned
to a common clock edge and then must be synchronized to an unrelated FPGA
system clock. The transfer to the FPGA clock domain must consider the relative
phase of the DQS strobe and the FPGA system clock to avoid setup and hold
violations.

The Solution

FPGAs include features that simplify the implementation of the READ portion of a
DDR interface. These may include:

• DLL compensated DQS delay elements

• DDR input registers

• Half-Clock transfer register

• Automatic DQS to system clock domain transfer circuitry

DDR Input Circuitry

A full implementation of a DDR receiver or input interface requires all of the

elements listed above. Figure 12 depicts the LatticeECP/EC FPGA

implementation that connects all of these elements together to implement the

read portion of a DDR memory interface.

18 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 12: LatticeECP/EC DDR Input Circuitry

The DQS Delay Block receives the edge-aligned DQS signal from the memory and

performs the phase shift of 90 degrees. This phase shifted DQS signal can now

be used by the FPGA input registers to capture and de-mux the positive and

negative edge data. Note that following the register that captures the positive-

edge data is a negative edge triggered flop. This half-clock transfer register

transfers the positive edge data from the first register to the negative edge of

DQS so that both the positive and negative portions of the data are now

presented to the next register stage on the same negative edge of DQS. Finally,

the last register stage can now clock-in both halves of data on the same FPGA

19 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

system clock edge. This edge, however, must be chosen carefully in order to

maximize the setup and hold time in transferring data from the DQS domain to the

FPGA system clock domain. This is the purpose of the clock edge select mux

shown above. The clock polarity selection method is detailed below.

The Devil is in the Details

It is important to note the very tight timing associated with the 5 registers in the

input section of a high-speed DDR recovery block. With data windows of 2.5 ns,

and even smaller setup and hold times, designers regularly run into routing and

logic delays that overwhelm the system timing requirements. Many FPGA

architectures require the designer to hand place and route these registers if the

design is to operate at speed. Even then, designers have difficulty achieving

DDR400 speeds over operating temperature and voltage.

Lattice Semiconductor now provides LatticeECP/EC FPGAs that incorporate all

five input registers and associated routing in a hard I/O block (IOB). This

guarantees performance and success by design. The designer simply connects

the I/O blocks and DQS sub-modules and is guaranteed a working interface.

On-Chip DLL Calibration

Due to the very tight timing, both skew and the actual delay of the DQS delay

block must be carefully controlled. A low-cost solution may use an open-loop

fixed delay block for DQS delay. The performance of this scheme, however, will

vary with temperature and voltage. This will limit the maximum attainable speed

of the DDR interface. In a more complete solution, the temperature, voltage and

process variations affecting the DQS delay block are compensated for in a

closed-loop fashion. Typically this can be done by dedicated DLL elements on

the FPGA that feed calibration data to each delay element. Figure 13 illustrates

20 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

the DLL compensation method used in the LatticeECP/EC devices. In these

devices the aligned DQS is distributed to the input registers, with each DQS

supporting up to 8 DQ’s.

Figure 13: LatticeECP/EC DQS Alignment using on chip DLL

Automatic Clock Polarity Control

In a typical DDR memory interface design, the phase relation between the

incoming delayed DQS strobe and the internal system Clock (during the READ

cycle) is unknown. Many FPGA devices leave the resolution of this problem to

the user. The LatticeECP/EC families contain dedicated circuits to determine the

necessary system clock polarity, perform this selection and perform the transfer

of data between these domains. To prevent setup and hold violations at the

21 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

domain transfer between DQS (delayed) and the system clock, a clock polarity

selector is used. This requires evaluation at the start of each READ cycle to

determine the proper FPGA system clock polarity (Figure 14). Prior to the READ

operation in DDR memories, DQS is in tristate (determined by termination).

Coming out of tristate, the DDR memory device drives DQS low in the Preamble

State. A dedicated circuit detects this transition and generates a signal indicating

the required polarity for the FPGA system clock (DDRCLKPOL). This signal is

used to control the polarity of the clock to the synchronizing registers.

Figure 14: LatticeECP/EC Automatic Clock Polarity Select

Memory Write Implementation

To implement the write portion of a DDR memory interface, two streams of single

data rate data must first be multiplexed together to form a stream with data

transitioning on both edges of the clock. Furthermore, the FPGA controller must

22 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

launch the DQS signal center-aligned with outgoing data, DQ. The Data Mask

signal (DM) is also used during a write cycle.

It is the responsibility of the FPGA output control to edge-align the DDR output

signals (ADDRCMD, DQS, but not DQ and DM) to the rising edge of the outgoing

differential clock (CLKP/CLKN).

Challenges encountered by the FPGA during Memory WRITE:

1. DQS needs to be center aligned with the outgoing DDR Data and DQ.

2. The FPGA needs to generate Differential CLK signals (CLKP and CLKN).
CLKP needs to be edge-aligned with the Address and Command signals.

3. The FPGA controller must meet the DDR interface specification for tDSS
and tDSH parameters, defined as DQS falling to CLKP rising setup and hold
times.

4. The DDR output data must be muxed from two SDR streams into a single
outgoing DDR data stream.

The Solution

A full-featured FPGA solution includes a pair of DDR output registers, output mux

and tri-state registers, along with PLLs that allow easy implementation of the

various output clock phases necessary in the write portion of the DDR memory

interfaces.

DDR Output Logic

The DDR output register block allows 2 SDR data streams to be muxed to a single

DDR data stream. The DDR tristate registers simplify implementation for bi-

directional signals. Figure 15 illustrates these capabilities for the LatticeECP/EC

devices.

23 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

Figure 15: LatticeECP/EC DDR Output Logic

The Write control circuit must create several phases of the system clock to

appropriately launch the respective control signals from the FPGA:

1. A PLL is used to generate a 90-degree phase shifted clock. This 90-degree
phase shifted clock will be used to generate DQS, address, command and
the differential clocks going to the memory. Note that ADDRESS and CMD
only change at the clock rate (SDR). Address and data are then edge-
aligned with DQS and the CLKP/N signals. This allows the tDSS and tDSH
specs to be met.

2. The DDR clock can be generated by assigning “0” and “1” to the inputs of
the DDR output register pair. This is then fed into a SSTL25 differential
output buffer to generate CLKP and CLKN differential clocks. Generating
the CLKN in this manner would prevent any skew between the 2 signals.

3. Since internally the DQS and ADDR/CMD signals are generated using the
primary FPGA clock, the user will need to implement a _ clock transfer

24 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

from the core logic to the DDR registers. Timing can be hard to meet, so It
is recommended that the user first register these signals with the inverted
Clock, so that the transfer from the core logic to the I/O registers will only
require a _ clock transfer.

4. The data DQ and DM need to be delayed by 90° as they leave the FPGA.
This is to center the data and data mask relative to the DQS when it
reaches the DDR memory. This can be accomplished by inverting the CLK
to the DQ and DM data. The DM signal is generated using the same clock
as the DQ data pin. The memory masks the DQ signals if the DM pins are
driven high.

Figure 16 illustrates DDR Write interface signal generation for the LatticeECP/EC

devices.

Figure 16: LatticeECP/EC Memory WRITE Interface Signal Generation

25 DDR Interface Design Implementation

A Lattice Semiconductor White Paper

SUMMARY

As discussed throughout this article, there are a wide variety of memory options

available to system designers. Careful consideration is essential when

evaluating a specific type of memory for a particular application. We also

conclude that DDR is increasingly becoming the memory of choice for a majority

of systems. The advantages of DDR are significant compared to other memory

options; however, DDR is a high-speed, complex interface that requires special

care for proper implementation. Fortunately, FPGA manufacturers have begun to

implement turnkey solutions that provide design flexibility yet guarantee

performance and a robust solution.

###

