

Introduction to Interactive Media
and Video Game Design with
Macromedia Flash MX

©Rex van der Spuy, 2003

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

2

Introduction to Interactive Media and
Video Game Design with Macromedia Flash MX

TABLE OF CONENTS

Introduction 4
Part 1: Introduction to Non-Linear Media 6
Introduction 7
Setting up Frame Labels 9
Setting up Frame Actions 13
Add Your Content 16
Create Your Buttons 20
Creating a Navigation Bar 30
Case Study: Website Not Yet Written
Assignment: Interactive Storybook 34
Assignment: Interactive Multimedia Project 35

Part 2: Introduction to ActionScript 39
What is ActionScript? 40
Objects 43
Actions 54
Using Object and Actions 57
Properties 71
Using Properties 76
Assignment: Controlling Properties 83
Variables 84
Variable Types and Strings 91
Data Entry 95
Assignment: Calculator 104

Part 3: Introduction to Game Design 106
Introduction 107
Keyboard Control 109
Screen Boundaries 119
“Bumping Into Things”: Collision Detection 126

1. Changing a Dynamic Text Field 127
2. Triggering an Animation 131
3. Blocking Movement 133
4. Updating a Score 135
5. Implementing a Health Meter 140
6. Making Objects Disappear Not Yet Written

Advanced Collision Detection 142
Creating a Maze 151
Case Study: Dungeon Maze Adventure Not Yet Written
Case Study: Car Race Game Not Yet Written
Assignment: Dodge Game 158

Part 4: Advanced Game Design 163

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

3

Introduction Not Yet Written
Advanced Keyboard Control – Natural Motion 164
Objects That Move by Themselves 170
Firing Bullets 177
Creating a Rotating Gun Turret 184
Case Study: Space Shooter Not Yet Written
Running and Jumping Game Not Yet Written
Case Study: Platform Game Not Yet Written
Assignment: Action Game 190
Supplement: Drag and Drop Games Not Yet Written

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

4

Introduction

This is a book for people who know absolutely nothing about computer programming or
interactive media but who want to start creating highly interactive websites and games
as quickly as possible. It is designed to be completely comprehensive and self-
contained.

This book has also been designed to keep in mind the wildly fluctuating state of the
technology and the fact that if you happen to learn the wrong technology or the wrong
series of techniques at the wrong time, all your hard earned skills will be completely out
of date in 6 months time. A very specific effort has been made to concentrate on
techniques that have so far withstood the test of time, and will most likely continue to
do so. It is very likely that essence of the techniques you will learn in these pages will
still be applicable 5 years from now. Certain areas of the technology have started to
stabilize, and it is those areas that are the focus of this book.

What is required is some knowledge of how to use a computer (understanding
concepts such as “turning it on” and “double-clicking” help.) And, a basic working
knowledge of Macromedia Flash MX is essential.

How basic? Well, if you’ve spent a few hours going through the built-in lessons in
Flash, and a few more hours playing around with some of those techniques, that’s all
you need to know. You need to know how to use the drawing tools to create simple
graphics, how to do basic animation, how to convert graphics to symbols, and also
understand the differences between symbols and instances.

(Are you lost yet? Don’t worry, turn on your computer, open up Flash MX, click on
Help and choose Lessons. Follow each lesson step by step and come back to this
book when you are finished! It will only take a few hours.)

Perhaps even more enlightening is what you don’t have to know to be able to make
use of this book:

• Math
• Computer Programming
• Website Design
• Graphic Design
• … or practically anything else!

In fact, I’ll even allow you the odd passing comment along the lines of “I hate
computers” or, even worse perhaps, indulge you in a fantasy of hurtling some
particularly heavy, blunt object at your monitor. Rest assured that the author of this
book has shared exactly those same feelings at some point or another!

I also want to quickly dispel the myth that to be an interactive website or game
designer you need an innate talent or share some kind of extra-sensory relationship
with electronic equipment. “Talent” is only what other people say you have when they

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

5

haven’t seen all the countless hours of hard work and patience that you’ve put into a
skill. As for the extra-sensory relationship – you can fake that by reading this book!

So, given that this book assumes you know as close to nothing about the subject as
possible, how long will it take before you start creating your own interactive web sites
and video games? Somewhere between 40 to 60 hours – so probably a few months if
you spend and hour or two going through these lessons and exercises every day. All it
takes is a little time, a little patience, a willingness to learn, and hopefully you’ll find it
easy. This book is intended to be cutting-edge, without the pain.

And, the payoff? What you’re about to learn is just about the closest thing you can get
to creating magic that the real world allows. Hang on for a wild ride – you’ll be amazed
by what you’re going to start producing very quickly.

- Rex van der Spuy

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

6

Part 1:
Introduction to Interactivity
and Non-Linear Media

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

7

How to Create a Basic Interactive Flash Movie
- Introduction -

The following steps explain how to create an Interactive Flash Movie. This can be
used for something more complex, such as an interactive web site, CD ROM
presentation, interactive storybook, or even a simple game. In the past, creating an
interactive movie was something that was traditionally done using software called
Director. When people talk about creating “interactive multimedia”, they usually mean
something similar to what you will be learning below.

These exercises assume that you have completed all the built in lessons in Flash. If
you haven’t, open Flash, click the Help menu and choose Lessons. Work though the
lessons one at a time; this is the best way to learn Flash. It won’t take you long, and
the lessons are lots of fun. If you find the lesson on Buttons confusing, don’t worry,
you can skip it. We will cover all you need to know about buttons in these exercises.

Up until now, all the work that you have done in Flash has been linear. A linear movie
is one that starts at the beginning and finishes at the end, much like a storybook or film.
In the following exercises you will be creating a non-linear movie. In non-linear
movies, the user (the person viewing or “using” your movie) decides what they want to
see and when they want to see it.

You can think of the difference between a linear movie and a non-linear movie as the
same difference as that between a novel and an encyclopedia. Novels are linear; the
plot of the story follows a straight line. And even though you could possibly jump to the
end of the novel or start reading it at chapter 10, you would probably never want to
because it would either ruin the story for you or you wouldn’t understand what was
happening.

With an encyclopedia, on the other hand, you only need to turn to the page on which
the information you need is presented. The information is non-linear; it doesn’t follow
a straight line. If you were researching Ancient India, for example, the fact that you
hadn’t started reading from the beginning of the encyclopedia makes no difference at
all to understanding the information you’re looking for. In fact, if you had a research
report due the next day, and you had to read volumes A to I of the encyclopedia in
their entirety before you got to India, you may well still be sitting in the school library
long after all your friends have graduated and gone on to university!

So, what does an encyclopedia have that a novel doesn’t have? An index system. To
create an index system, you need the following things:

• An index system needs storage areas: The information must be stored in the
correct place. In an encyclopedia, the storage areas would be the page
numbers and section headings. In Flash, the storage areas are created by
Frame Labels.

• You need a method of getting to the right page. With an encyclopedia, you
would use the index and flip through the pages until you found the right section.
Of course, your computer screen doesn’t have any pages to flip through, so

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

8

Flash uses Buttons to jump to the correct section.
• You need to be able to stop at the right page when you get there. What do you

use to stop at the right page? Well, in real life, the device you would used is
called “your brain” but, unfortunately, Flash isn’t as smart as you, so you need
to use Actions to tell it when to start and when to stop.

Creating an interactive movie in Flash is not difficult, and is the basis for creating much
more complex software like games, CD ROMs and highly interactive websites.

Carefully follow the steps in the following sections to create your first simple interactive
movie.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

9

How To Create a Basic Interactive Flash Movie
PART A: Setting Up Your Frame Labels

The first step in creating an interactive movie is to set up Frame Labels. “Labeling a
frame” means giving that frame a name. This is important because the computer
needs to know which frame to jump to when a certain action, such as clicking a mouse,
occurs. This is similar to a section heading in an encyclopedia – it’s where your
information will be stored. You can create as many frame labels as you need.

1. Create a new Movie in Flash, and save it as "Interactive Movie".

2. Create 2 new layers. Name one layer Labels and the other layer Actions.
These are special layers that will be used to control the sequencing and
organization of the movie. You will always create these layers when you need
to make an interactive movie, and you should get into the habit of creating them
as soon as you start a new movie in Flash.

3. Click on the first frame of the Labels Layer to make it active. Open the
Properties panel at the bottom of the Flash work screen (click on it once to
open it if it isn’t already open). Find the field (a “field” is a text input box) called
Frame.

(For Flash 5 Users: On the right hand side of the Flash work screen, you should
see 4 sets of Panels. The panels control various settings and options. Look
carefully, and you will see a panel called Frame. Click on this panel to make it
fully visible, if it isn’t already.)

4. Enter the word “page1” in the Frame field. For simplicity's sake, make sure all
the letters are lowercase and that there are no spaces.

(Flash 5 Users: Enter “page1” in a field called Label in the Frame panel)

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

10

5. On the Labels Layer, click on Frame 10. Insert a keyframe by pressing F6.
(You can also insert a keyframe by clicking on the insert menu at the top of the
screen and then choosing Keyframe from the list of options. Pressing F6 is
much faster, however, and, as you will be creating keyframes quite a lot, it’s
useful to use this shortcut)

6. Make sure that frame 10 is highlighted as in the picture above. In the Frame
Panel, enter "page2" in the Frame field.

7. On the Labels Layer, click on frame number 20. Insert a keyframe by
pressing F6.

8. In the Frame Panel, enter "page3" in the Frame field.

9. Click on Frame 30 on the Labels Layer and press F5. F5 inserts blank frames,
and you can achieve the same effect by clicking on the Insert menu (at the
very top of the screen) and choosing Frame. This step inserts an additional 10
blank frames so that you can read the label’s name. You don’t really need to
include this step for the interactive movie to work, but your work will be much
easier to understand if you do.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

11

Remember, keyframes indicate that something has changed in your movie: the
graphics, the frame labels, or the actions. Blank frames merely continue
whatever was changed in the last keyframe; they extend its duration.

You now have labels for each of your 3 frames. We called our labels “page1,” “page2,”
and “page3,” but you could have given them any name that was useful to you. If you
were creating a web site on Ancient Asia, you might have labeled your frames “india,”
“china,” and ‘japan.”

Naming Conventions

It’s probably not too early to start talking about naming conventions. Naming
conventions are a standard set of rules that that programmers and software developers
use so that they don’t make mistakes when giving things names, such as frame label
names in Flash. (And, oh yes, if you then think that this doesn’t apply to you because
you’re not a programmer or software developer, I have news for you: if you’re following
these instructions, you are!)

The reason software developers use naming conventions is because “software
development platforms” (things that you make software with, in this case, Flash) are
usually very picky about giving things exact names.

Here’s an example. Let’s say you labeled the first frame of you movie “ancientindia.”
Then, let’s say you programmed your button to jump to a frame called “Ancient India.”
Are they the same? Well, you might think they are, and all of your friends might too,
but Flash considers them to be completely different names. Did I mention that Flash’s
“intelligence” is somewhere between an underdeveloped blade of grass and a rather
precocious pebble?

Well, it is. If you don’t tell Flash something EXACTLY it will have no idea what you’re
talking about. And, it won’t even tell you that it doesn’t understand. That means, if you
make one tiny mistake in any of your names, your movie won’t work.

This is the reason we use naming conventions. If we always label names in the same
way, we’re far less likely to make mistakes. Below is a list of naming conventions that I
use. You’re welcome to use your own system… but I recommend you use mine! It
works well.

• Single Words:
Use lowercase letters, without spaces. If you use numbers, never use
them at the beginning of the name, always at the end:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

12

india
china22

• Multiple Words:
The first word should be lowercase. The second word, and any other
following words, should start with an uppercase letter. Never use spaces;
they always cause problems somehow:

ancientIndia
bangaloreSewageSystem
aroundTheWorldInEightyDaysChapter2

And, try to keep your names short so that you’re less likely to make simple typing
mistakes (“aroundTheWorldInEightyDaysChapter2” is actually too long, by the way. I
just put it in there to show you what you should avoid. Can you see why?) Make sure
that your names are descriptive, but try to keep them under 3 words.

You won’t like using this system at first, but try and force yourself. Almost half of the
mistakes that beginners make when they start using Flash are that they have forgotten
what or how they’ve named something. If you use a standard naming convention, and
stick to it, you’ll encounter far, far fewer problems.

And, oh yes, you may notice that I don’t seem to follow any naming convention with
symbols. Well, that’s probably just sloppiness on my part (you probably should use a
naming convention,) but it’s also because symbol names don’t communicate with
anything else – they just sit there in the library looking pretty.
What you really need to worry about are instance names. Instance names can be
linked to actions, and so it’s crucial that you name them correctly and consistently. But
more on that later….

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

13

How To Create a Basic Interactive Flash Movie
Part B: Setting Up Frame Actions

This next step is your first introduction to Flash's programming language called
ActionScript. What you will be doing is telling Flash to stop playing the movie
whenever it encounters the first frame of a labeled frame.

This is important, because otherwise you won't have any control over when the pages
are displayed - they'll simply play in sequence without stopping, like an ordinary Flash
animation.

1. Click on the first frame of the Actions Layer so that it is highlighted. Next, click
on the Actions Panel (just below the stage) to open it.

 (For Flash 5 Users: Double click on the first frame of the Actions Layer. This
opens up the Frame Actions panel, which is usually hidden. You can also
open the Frame Actions panel by clicking on the Window menu and choosing
Actions.)

Your timeline should look like this:

The Actions Panel should look like this:

2. In the Actions Panel, Click once on Actions and then again on Movie
Control. Double-Click on stop. You should see "stop ();" appear in the
Script Pane (the mini-window just below the plus and minus signs.) The movie
will now stop at this frame.

(For Flash 5 Users: Click on Basic Actions. Choose stop from the list and
double-click on it. You should see "stop ();" appear on the right side of the
panel.)

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

14

3. Click once on Frame 10 of the Actions Layer and press F6 to add a keyframe.

4. The Frame Actions panel should still be open. Click once on Actions and
then again on Movie Control. Double-Click on stop. Make sure that you see
"stop ();" appear in the Script Pane. This is exactly the same procedure
that you followed in step 2.

5. Add a keyframe at Frame 20 of the Actions Layer:

6. Add the stop action to this keyframe as well, in exactly the same way you did
in steps 2 and 4. You should be an expert at this by now! Notice that each time
you add an action to a frame, a small “a” symbol appears in the frame. This
tells you that the frame contains an action.

7. Click on Frame 30 and press F5 to add blank frames. This is the same

technique we used earlier to “fill out” the rest of the frames.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

15

We don’t really need to add these final bank frames because they don’t contain
anything and don’t do anything. However, as you’ll see in the next sections,
there’s a very good reason for them to be there.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

16

How To Create a Basic Interactive Flash Movie
Part C: Add Your Content.

The next thing to do is to add something to each page of your movie for your viewers to
see. In almost all cases, from now onwards, you will be adding Graphic Symbols and
Movie Clip Symbols. Any animation you want to add should be in the form of a Movie
Clip Symbol. Avoid using any animation that is done directly in the main timeline. Your
main timeline should be reserved only for setting up your different sections, organized
using labels and actions.

In this simple exercise, you will add some plain text to each labeled frame of the movie.
This is similar to filling the pages of your encyclopedia with words and pictures.

1. Create a new layer and name it Text. (You can call it anything you like,
however. But remember, layer names should always describe as clearly as
possible what the layer is being used for.)

2. Move the Text Layer so that it is under the Labels and Actions Layer

The Labels and Actions Layer should always be the first two layers of your
movie so that you can find them easily.

3. Click on Frame 1 of the Text Layer. Use the Text Tool from the drawing

toolbar and type the words: "This is Page 1."

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

17

4. Add a new keyframe on Frame 10 of the Text Layer (press F6). On Frame 10

of the Text Layer, add the words: "Welcome to Page 2" with the text tool. You’ll
know that you’ve added the keyframe correctly if you see a small black dot in
Frame 10.

5. Add a new keyframe on Frame 20 of the Text Layer. Add the words: "This is

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

18

Page 3, the last page."

When you are done, your timeline should look something like this:

Have a look at it closely. Do you notice something about the way the information has
been organized? You might notice that columns are beginning to appear. Each
“page” of your movie is organized into its own column.

Your movie is no longer just organized horizontally, it is also organized vertically.
Every column contains one page of your movie, and is completely separate from the
others.

This is essential to understanding how non-linear, interactive multimedia works. You

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

19

need to stop thinking in terms “My movie starts here and stops there” and start thinking
in terms of the columns of information that you want to keep separated.

When you are designing interactive movies, it’s extremely important that you make
sure your separate pages of information line up in neat columns like those above. One
of the most common mistakes that is made by people when creating their first
interactive movies is that information from one column (an image, a sound, or an
action) accidentally overlaps into part of another column. If you create your movie
carefully and make sure that your columns are neatly defined, you won’t run into nearly
as many problems.

Because we added stop actions to the beginning of each frame, there is no way for
any of the pages to interact with the others. “page2” won’t play after “page1”. You can
observe this by testing your movie at this point (hold down crtl and press the Enter
key, or click on the Control menu and choose Test Movie). You should only see Page
1.

But what if we want “page2” to come after “page1”? Or, better still, what if we want to
start at “page1,” view “page3” and then jump back to “page2”?

That’s what buttons are there for, and you’ll learn how to create and program buttons in
the next sections.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

20

How To Create a Basic Interactive Flash Movie
Part D: Create Your Buttons

Buttons are what you use to create your navigation control. When you click on a
button, the button will take you to another labeled frame of your movie.

Buttons are much like the index of an encyclopedia, with the added extra that you don’t
need to flip through pages by hand to find what you are looking for – the button takes
you straight there.

Although you could use any of the pre-made buttons in Flash's "Common Libraries," it's
almost always best to create your own. The following steps explain how to do this:

1. Click on the Insert menu and choose New Symbol.

2. Choose Button as the "Behaviour" and give it a name (You could call it
"Button1".) Click OK when you're done.

3. The Symbol Editing window will open.

Button Symbols have their own unique timeline with only 4 frames. These
frames work in a very special way:

 UP: How the button looks when it's not being pressed.
 OVER: How the button looks when the mouse moves over it.

DOWN: How the button looks when you click on it with the mouse.
HIT: The area of the button that is sensitive to the mouse. (The HIT area is
invisible when the movie plays.)

You don’t use actions to control when these frames are displayed. The button
frames that are displayed are entirely based on how the user interacts with the
button using the mouse.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

21

The next steps involve drawing each frame of the button:

4. Click once on the Up frame and draw something that looks like this:

Make sure the text, background colour and button border are all on different
layers. Don’t forget, you can create as many layers as you need to with buttons,
just as you can with ordinary graphics. Any elements such as text or colours
that are likely to change should be on different layers.

5. Click on the Over frame. Add keyframes to all the layers :

6. Now change the colour of the button's background, so that it's slightly different

from the first frame:

This is how the button will look when the mouse moves over it. Often, designers
make the background a little brighter, to show that the button has become
active.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

22

7. Next, add keyframes to the button’s Down frame on all the layers:

8. Change the button so that it looks like it is being pressed down. The most
common way to do this is to make the background darker. Or, you can use this
trick:

Compare this button image with the image we created in step 6. Do you see the
difference? The border colours have been reversed and the text has been
moved slightly down and to the right. This creates a very realistic 3D button
effect. The button will really look like it is being pushed down.

9. Let’s add some sound to our button. Create a new layer called Sound, and add
a keyframe on the Down frame.

10. Click on the Window menu at the top of the screen, find the Common Libraries
option and click on Sounds.

A new library will open up, with the sounds that come included with Flash. You can
easily import your own sounds into your library, but for now we’ll use these built in
ones.

11. Look through the sound library and find a sound called Plastic Button. Hold

down the mouse button over it and drag the sound into your own library. You

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

23

should now have 2 symbols in your library: Button1 and Plastic Button.

If the Plastic Button symbol is highlighted, you can click on the play button at the
top right corner of the library window to play the sound.

12. Make sure that the Down frame of the Sound Layer is still highlighted. Choose
Plastic Button from the Sound menu. Any sounds that are in your library will
be available here.
(Flash 5 Users: Find the Sound panel and choose the same sound from the
drop-down list.)

13. Check to make sure that the wave pattern (visual shape of the sound… some

squiggly lines) is visible in the frame.

14. Click on Scene 1 to exit the button symbol editing window and return to the

main timeline

15. Make sure that you are on Frame 1 of you movie, and create a new layer called

Buttons.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

24

16. Drag Button1 from the library onto the main stage. Make sure that it’s on the
Buttons Layer.

17. Test your movie. You should now have a fully functioning button.

What about the Hit Frame?

You usually don’t need to add anything in the Hit frame, unless you want your button to
be sensitive to an area that is larger than the images you have placed in the previous
frames. Whatever you draw in the Hit frame, however, remains invisible when the
movie plays – which is good. It’s just there to define the shape of your button.

As an experiment, try creating a button that only contains text (without a background or
border.) When you test it, you will notice that the mouse is only sensitive to the exact
shapes of the letters, not the general area around it. If you then try drawing a rectangle
the same height and width of you letters in the Hit frame, the button will react when the
shape is detected. The shape itself, however, will always be invisible when your movie
plays.

More Than Just Graphics?

It’s important to remember that you don’t just have to add graphics to the button

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

25

frames. You can add animated movie clip symbols if you want to. You can also add
different sounds to any of the button frames. Experiment a little, and with a little
imagination you’ll be amazed at what you come up with.

But it Still Doesn’t Take Me to the Next Page!

I know. We’ve made the button, and we can click on it, but we still haven’t told it what
it needs to do when we click on it. You can think of what we’ve just created as a key
on a keyboard that hasn’t been plugged into the computer yet. You can press the
keys, but they don’t make the computer do anything.

That’s the next step…

How To Create a Basic Interactive Flash Movie
Part E: Program Your Buttons

You will have noticed that when you tested the movie your button didn't actually do
anything productive. It may have looked nice, but it didn't take you to the next page.
What you need to do next is program your buttons. You have to tell them what to do
when someone clicks on them.

1. Click once on the first frame of your Buttons Layer. Next, and this very
important: click once on the button instance on the stage. You need to make
sure that the button itself is selected, not the frame. If the fame is selected, the
next few steps won't work. You’ll know that you have selected the button if
there’s a blue rectangle around it.

2. Open the Actions Panel. It should say Actions – Button in the title bar. In
Flash, you can have Frame actions, Button actions or Movie Clip Actions.
Somewhat confusingly, they all use the same panel, and you have to be very
careful to make sure that the right object has been selected.

(Flash 5 Users: Open the Object Actions panel by either clicking on the
Window menu and choosing actions or by clicking on the small blue arrow at
the bottom of the stage.)

NOTE: If the new window that opens says "Frame Actions" it means that you
haven’t properly selected the button. Click on the button on the stage once to
select it. When the window reads "Button Actions" (or “Object Actions” for Flash
5 users) you're on the right track.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

26

3. Double-click on the goto action from the Movie Control actions. Goto is an

action that is used whenever you want to jump to a different frame. (Flash 5
Users: Make sure that the Basic Actions menu is open. Double click on Go
To. New parameters become available at the bottom of the window that you
can change. Make sure that "gotoAndPlay ("1");" is highlighted in dark
blue - it should be. If it isn't, click on it once.)

4. Change the parameters in the Actions Pane so that it looks like this:

What are we doing here? Well, let’s think about what we want our button to do:
When we click on it, we want it to go to and stop at the frame that we’ve labeled
“page2.” So, all we’re doing is telling Flash, step by step, exactly what it has to do
to accomplish this.

First, we need to tell it that it should stop at the frame we choose. (Although if you
ever wanted it to start playing from a particular frame, you could select “Go to and
Play.”)

Next, we want to make sure that we jump to a Frame Label, not a Frame Number.
We could make our button jump to a specific frame number in the movie, and there

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

27

are some cases where this might be a good thing. However, for most interactive
movies that you’ll be making, you’ll almost always want to jump to a Frame Label.

Why? Because Frame Labels will always remain the same no matter what frame
number they are on. That means that if you ever reorganize your movie and
change the frame number of you labeled frame, your movie will still work. Also,
Frame Labels are easier to use and remember, because they tend to describe the
content on that frame. “Frame 10” has really no meaning, but “ancientIndia” does.
If you were working on a CD ROM with hundreds of pages of information, you could
easily forget what was on frame 460. Wouldn’t it be much easier if that frame was
called “navyBlueTshirts”?

The last thing we need to do is to tell Flash which labeled frame it needs to jump to.
Conveniently, you’ll find all the labeled frames from your movie listed in the Frame
drop down menu.

“But what’s this???”

Oh. That. I was hoping you wouldn’t ask that question. Remember earlier I
mentioned that Flash uses a programming language called ActionScript? Well,
what happens when you choose parameters from the Actions Pane is that Flash
automatically converts your selections into ActionScript programming code. When
you play your movie, Flash is actually reading the ActionScript code; that’s what
that distressingly math-like-looking stuff is. In later lessons, you’ll learn how to
program ActionScript code directly yourself. Don’t be afraid! It only looks scary
because you don’t understand it. Once you understand it, however, you’ll actually
find easier to use than choosing selections from the drop-down menus – I promise!
But, for now, you can safely ignore it.

5. The next thing you need to do is to create keyframes on the Buttons Layer at

frames 10 and 20.

Make sure that you have 3 neatly organized columns.

6. Make sure that frame 10 is highlighted and click the button on the stage with the
arrow tool. Although this button looks the same as the button on frame 1, it isn’t.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

28

Because we created a new keyframe, we’ve created a new button instance so
we can change the way this button behaves without affecting the buttons on
frame 1 and frame 20.

7. Open the Actions Panel for the button on frame 10. Change the parameters so
that they look like this (if you can’t find any parameters to change, click on
“gotoAndStop(“page2”);” in the Actions Pane and they should appear):

You only need to change one thing: change “page2” to “page3” in the Frame
field.

8. See if you can figure out the final step for yourself: Program the button on
Frame 20 so that, when someone clicks on, it jumps back to “page1”.

Test your movie and see if it works.

You now have all the skills you need to make a simple interactive book in Flash. “But,”
you’re thinking, “this all looks a little linear to me. I mean, sure, I can click on the
buttons to go from one page to the next, but I can’t go back or jump to a completely
unconnected page.”

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

29

Actually, if you think about it a little bit, you have all the skills to do just that. I’m sure
you can figure it out….? But, just to help you out a little, have a look at Part F, the next
section.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

30

How To Create a Basic Interactive Flash Movie
Part F: Creating a Navigation Bar

Sometimes, you don’t just want to use buttons to jump from one page to next.
Sometimes, or even usually, you want them to act as an index to the contents of your
movie.

Think of an ordinary website that you use on a regular basis. On the website there are
probably a set of buttons that, when you click on them, take you to a new page, but
never disappear from the site. Usually you’ll find these buttons on the top or left hand
side of the page. As a whole, these buttons are called a Navigation Bar.

Navigation bars are the key to making interactive movies in Flash that contain a lot of
content, like a website or informational CD ROM. They act like an encyclopedia’s
index. You always know where to find them and they always take you to the page or
section you want to visit.

Creating a navigation bar is really quite simple. All you need to do is create a layer of
buttons that are visible across every section of your movie (every column defined by
labeled frames) and whose functionality doesn’t change with each section. That
means that a button called “Ancient India” always takes you to the page called “Ancient
India” no matter which other page you are on.

Carefully follow the instructions below to modify the movie you were working on in
Parts A – E to create a navigation bar:

Duplicate Your Button

The first thing we’re going to do is make a few copies of the button we created in the
previous steps:

1. Make sure the Library is open. Right-click on the Button1 symbol. A new
selection menu will open. Choose Duplicate.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

31

2. Change the name of the new button to “Page1”. Make sure that the behaviour
is set to Button.

3. Double-click on the new Page1 symbol in the Library to open its symbol editing
window. Change the button’s text, in all three frames, to “Page 1”.

4. Duplicate the Page1 symbol in the same way that you duplicated the first button.

Give this new symbol the name “Page2”.

5. Double-Click on the Page2 symbol to open up its symbol editing window and

change the text on all three button frames to read “Page2”

6. Following the same procedure, create a third button called “Page3.” You should
now have 3 new button symbols in the library called Page1, Page2 and Page3.

Add Your New Buttons

1. Return to the main timeline (Scene 1.) Delete all the frames on the Buttons
Layer. The easiest way to do this is to:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

32

• Highlight all the frames with the arrow tool.
• Right-click on them.
• Choose Remove Frames from the option menu.

2. Your Buttons Layer should now be completely blank, like this:

3. Insert a keyframe on the first frame of the Buttons Layer. Then, drag one copy

each of the Page1, Page2 and Page3 buttons from the library onto the stage so
that they line up neatly near the bottom. (You must insert a keyframe on the first
frame of the Buttons Layer, because Flash will not let you insert an object into
an empty frame.)

4. The next step is to program our buttons so that when the user clicks on them,
they take him/her to the correct page. Now, you should know how to do this by
now, but, just in case you need a reminder, this is what the button actions
should look like for the Page1 button:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

33

Remember: Make sure that the button is selected, not the frame. To select the
button, choose the arrow tool and click on the button once. When you see a
blue bounding box surrounding it, you know it is selected. If these instructions
don’t work, it probably means that you accidentally selected the frame.

5. Repeat the above steps for the Page2 and Page3 buttons. The only thing that
you will need to change is the frame name.

6. Click on frame 30. Press F5 to add blank frames across all three columns of

your movie, like this:

You might be thinking that this defies what we discussed earlier about creating
neatly organized columns in the previous section. But just think about it for a
moment: a navigation bar is something that is visible in all sections of your
movie. No matter what page you’re on, you’ll need to see the same buttons.

7. Test the movie and see what happens…a perfect navigation bar! It’s visible on
all pages, and every button you click on takes you exactly where it promises.

What you have learnt in these exercises are the basic procedures for making websites,
interactive storybooks, informational CD ROMS and even simple games with Flash. It
doesn’t get much more complicated than this. As long as you remember to keep your
columns of information separate, while at the same time making sure that your
navigation system (your buttons) are available across all columns, you can’t go wrong.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

34

Assignment: Interactive Storybook

Use the basic Flash interactive techniques you have learnt so far to create a 6 page
storybook for young children. Make sure you include the following:

• Create a title Page.
• Each page should contain a drawing and some text.
• There should be buttons on each page that allow the reader to advance to the

next page or read the previous page.
• When the story is finished, give the reader a chance to return to the beginning.
• Your buttons should containing functioning “Up,” “Over,” and “Down” states.
• When you are finished, publish your movie as a windows projector file.
• If you choose, publish your story as a web page and upload it onto your site.
• The elementary students will be reading these stories, so make sure that your

subject matter is suitable for them.

EVALUATION:

2 MARKS: For a title page and 5 pages of content (text and drawing.)
2 MARKS: For properly creating your buttons, with all states functioning properly.
2 MARKS: For programming your buttons properly to allow for adequate navigation.
2 MARKS: For an interesting and original children’s story.

TOTAL: /8

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

35

Assignment: Interactive Multimedia Project

The final project of the course is an Interactive Multimedia project designed in Flash.
The project will give you a chance to utilize all the skills you have learnt during the
year. It should be the most interesting and sophisticated piece of work you create, and
will be worth 20% of your final grade.

You will have the choice of doing one of any 5 projects. Read the project descriptions and
criteria carefully and decide which project is right for you.

All projects will be marked out of 25, based on the evaluation criteria for each project.

1. Animated Music Jukebox

Use the interactive capabilities of Flash to create an Animated Music Jukebox. A
jukebox is a device that plays different songs depending on which button is pressed.
The jukebox that you create should not only play songs, but present the user with a
visual animation to accompany the music.

Things to Consider:

• You can decide on whatever sort of animation you would like to use: it can either
be cartoon-like or be a purely abstract visual interpretation of the music with
lines and shapes.

• Will your “box” look like a real machine (such as a CD Player) or can you think
of a less conventional way of containing the music (such as creating a map of
an island having different music playing depending on which part of the map the
user clicks on.)

Criteria for Evaluation:

• You must use at least 5 songs.
• Well-designed buttons to allow the user to choose a song.
• Design a visually interesting “box” to showcase the music.
• Create interesting animations to accompany the music.
• You must publish your movie as a windows projector file and copy it onto a CD.

2. Choose-Your-Own-Adventure

Create a simple adventure game where the player has to guide an animated character,
using buttons, through a series of problems and hazards to reach a goal. For example,
if your character was being chased by a dragon and had reached the edge of a cliff,
you could give the player the option of jumping into the river below, or fighting the
dragon.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

36

Things to Consider:

• Will your game be in “first-person” perspective (such as from the player point of
view, like Quake or Half-Life) or will it be “third person” (such as Mario or Zelda,
where you guide a character)?

• Always give the player more than one way of reaching his/her goal. If they fail
at one point of the story, is there another way for them to succeed later?

• Make your game challenging, but not too hard – players will give up if they find it
too difficult to win.

• Decide on your theme. Will it be a mystery story, a mediaeval fantasy, a
science fiction adventure, or a real-world drama?

• Consider designing your game first as a flowchart on a big piece of drawing
paper before you begin. Making a flowchart is like drawing a map of what each
scene will be like, and how the scenes will connect depending on the decisions
the player makes. For a complicated adventure, this step is crucial for your
game to work properly.

• If you want to, create clues for your player to collect, and have them use those
clues to come up with an answer that will help them win the game. For
example, ask the player to type in the secret password to open the magically
locked door to the treasure room. To do this, you will need to know a little more
advanced Flash ActionScript. Don’t worry – it’s not hard – just ask your teacher
to show you.

Criteria For Evalutation:

• Did you create an interesting and well-designed world.
• Is your game hard enough to be challenging but easy enough not to be

frustrating?
• Is there more than one way to win, or achieve a secondary goal?
• Are your choices clear, and can the user play again if they lose?
• Publish you movie on the internet and as a windows projector file.
• You must use sound somewhere in your game.

3. Action Game

You may be surprised to know it, but with the knowledge you have, you can create a
very basic action game. The trick to doing this is by making buttons that move around
the screen so that the player has to chase them with the mouse. When the player
clicks on a button, your movie could advance to another scene (another level) and that
new level could make the game more difficult, or indicate the score. Of course, your
buttons don’t have to look like buttons, they can be any shape you want: cars,
spaceships, or anything you can think of.

Things to Consider:

• For this to work, you need to put a button into a Movie Clip Symbol and then
animate that movie clip symbol on the main stage.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

37

• When the user clicks on a button, Flash will advance to a new “labeled frame”.
You can put anything you like on this new scene: it could be a new level, the
score, or more moving buttons.

• Decide on the theme of your game.
• By learning a little more basic ActionScript, you can control Movie Clip Symbols

in your movie by clicking on buttons. This greatly adds to the complexity and
interest of your game. Ask your teacher if you would like to learn how to do this
– it’s not hard.

Criteria For Evaluation:

• Was your game interesting and challenging?
• Did you have an interesting design and concept for your game?
• Did all your buttons and programming techniques work properly?
• You must use sound in your game.
• You must give the user a chance to play again.
• You must have an introductory screen that gives the user a chance to press

“play” or “start” to start the game.
• You must publish your game on the internet and as a windows projector file.

4. Multimedia Web Site

Flash can do everything HTML can and more. Use the skill you have acquired to
create a web-site using only Flash.

Things to Consider:

• The theme or purpose of your site.
• How will you use animation and sound?
• Be careful not to use too much sound: any sounds more than a few seconds will

take too long to download.
• Make sure you have a consistent Navigation Bar.
• It is easy to add “links” to other web sites in Flash. Ask your teacher for help

with this.

Criteria For Evaluation:

• Was your site visually interesting?
• Did you use animation and sound well?
• Did you use at least 5 pages of information?
• Was your navigation bar easy to use?
• Were your buttons well-designed and properly programmed?

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

38

5. Make Your Own Project:

Maybe you’ve been dying to do something all year and have just been waiting for the
chance. Well, here’s your chance. Complete the form below, discuss it with your
teach, and go for it.

Name:_____________________________________

Project Description:

Criteria For Evaluation:

1.__

2.__

3.__

4.__

5.__

6.__

7.__

8.__

9.__

10.___

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

39

Part 2:
Introduction to ActionScript

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

40

What is ActionScript?

ActionScript is a computer programming language. It’s a language, much
like any other language that you might know, like English, Japanese or Hindi.
However, you don’t use it to communicate with another person; you use it to
communicate with a machine – a computer. It’s a language that you understand
and your computer understands. You use it to tell your computer what it has to
do. Fortunately, however, the computer can’t use it to tell you what you have to
do!

There are lots and lots of different programming languages. Some that you
might have heard of before are BASIC, Pascal, C++ and Java. ActionScript is
the programming language that Flash uses, and it is very closely related (and, in
many ways, identical) to Java and C++. That may not mean much to you now,
but keep it mind because, if you ever go on to study computer programming
further, what you learn in ActionScript will provide you with a huge advantage. In
terms of its flexibility, ease of use, and seamless integration with Flash, it’s the
best programming language that I can think of for beginners to start learning.

So what does it look like? Well, you might remember seeing something like this
in earlier lessons:

The ActionScript code is the just below the plus and minus signs. Whenever you
choose options in the Flash’s Action Pane window, Flash is actually converting
your selections into ActionScript.

“So, if Flash is writing the ActionScript for me, why do I need to learn how to
program with it myself?”

That’s an excellent question. For basic actions, such as programming simple
buttons or starting or stopping frames, you don’t need to learn ActionScript at all.
However, our final objective is to be able to create highly interactive software and
games. We need a degree of control and flexibility that we can’t get unless we
program our ActionScript directly. There are no shortcuts. But, as you’ll soon
see, there don’t need to be. ActionScript is easy!

But I’m Terrible At Math!

So is the person who is writing this book. One of the biggest misunderstandings
non-programmers have about computer programming is that programming is like

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

41

math. It’s not – at all. It might look the same on the surface, and some of the
syntax has been borrowed from mathematics for matters of convenience, but the
whole underlying system is completely different.

That’s not to say you won’t be using any math in these lessons – you will. How
much? Well, have you ever come across rather abstract concepts called
multiplication and division? If not, I can refer you to an excellent grade 3 level
textbook on the subject. That’s as complex as the math gets. These lessons
specifically teach programming from a non-math point of view.

That’s not to say it can’t get more complicated, however. It can get as
complicated as you’d like it to be – but it doesn’t have to. In Part 4 of this book,
when we start applying our ActionScript programming to game design, some of
you might be interested in creating spaceships or cars that can be rotated on the
screen using the keyboard. For that, you’ll need to use some fairly advanced
trigonometry. However, the object of all these lessons is how to use the math,
not necessarily in being able to understand it. That’s what high school math
classes are for! But, think of it this way: you can turn on and turn off a TV without
having to know how the TV actually works. In the same way, you can use math
that you may not necessarily understand to achieve certain effects – you just
need to know where to insert it in the context of the programming code that you
understand.

What These Lessons Are…

These lessons in ActionScript are for intermediate Flash users who have a basic
grounding in creating Interactive Flash Movies; they know how to make
animations and control movies with simple buttons. If you’ve followed Part 1 of
this book, that’s you! These lessons are for people who know nothing about
programming, but who want to start using ActionScript to quickly create games
and other sophisticated, highly interactive software with Flash. They are for
people who want to start using the tools as soon as possible, without having to
struggle through a 1000 page textbook on computer programming hoping that
they might come across the scrap of information they need. They are for people
willing to overcome their belief that they “can’t program” and who are willing to
trust me when I say that “Programming is EASY – Don’t be afraid of it!”

What These Lessons Are Not…

They’re not a comprehensive introduction to computer programming. Ok, so
there is a place for that 1000 page textbook after all…. You will probably find that
after you have completed all these lessons, you will want to learn more. The
best basic introduction to ActionScript on the market is Foundation ActionScript,
by Sham Bengal. Anyone who completes these lessons will find that book very
easy to follow and understand. You might also want to consider taking a basic
high school level course in programming. It doesn’t matter which programming

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

42

language you learn (the concepts are the same for all of them) just make sure it’s
a very basic course. You’ll find that you’ll be able so apply your skills
immediately to Flash.

Your humble author is also working on a greatly expanded version of these
lessons that teaches programming and computer science with ActionScript as
the primary language, so you might also want to check keep an eye out for that in
the future.

What You Will Learn

All the basic ActionScript programming concepts and skills to eventually build
pretty sophisticated action games. And that’s quite a bit!

Just take it slowly, carefully and, above all, don’t be afraid!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

43

Introduction to ActionScript 1: Objects

ActionScript is an object oriented programming language. That means that
objects are the main programming element.

What is an object? Every time you drag a symbol from the library onto the
stage, the instance of that symbol on the stage becomes an object. (If you need
a quick refresher on the difference between symbols and instances, click on the
Windows menu in Flash and choose Lessons. Choose “Creating and Editing
Symbols” in the new window that opens and follow the instructions.)

You can think of the symbols in the library as cookie cutters. You might spend a
lot of time making the cookie cutter, but once it’s finished you can make as many
cookies as you like. Instances are like the cookies that your cookie cutter, the
symbol, makes.

You already know how to create an object in Flash, even though you might not
realize it. Whenever you create an instance of a symbol on the stage, and give
it a name, you are creating an object.

In the diagram above, there are three instances on the stage: fairy1, fairy2, and
fairy3. They were all made from the same symbol called “Fairy’s Face” which

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

44

lives in the library. Only fairy1, fairy2, and fairy3 are objects. Why? Because
they’re on the stage and have unique names. Symbols in the library cannot be
objects.

Why can’t symbols also be objects? Because symbols can’t be controlled with
ActionScript. Only instances on the stage can be controlled with ActionScript.
Think of it this way: You can eat the cookie, but you sure can’t eat the cookie
cutter! In the same way that you can’t play with your toys until you take them out
of the box.

Objects are pretty special things, and there are quite a few ways you can create
and use them. The most common objects that you’ll be using are movie clip
objects. There are also lots of objects built into Flash that are not as easy to see
as movie clip objects. Some of these that you might come across in the next few
lessons are the Key object and the Math object.

Objects have the following features, which you should always keep in mind:

• Objects have names.
• Objects have properties that can be changed.
• Objects have actions that can be used to control themselves and other

objects.
• Objects can have variables that you can create and change.

Names are the focus of this section. We’ll be discussing properties, actions
and variables in following lessons.

Dot Notation – On Earth…

Before we go any further in our discussion of objects, we need to talk a little
about dot notation. Dot notation is the format in which object names are written.
The concepts behind dot notation are crucial to understanding how to program
with ActionScript. The biggest problem that beginners run into when first learning
to program with ActionScript is that they don’t fully understand how dot notation
works.

Let’s have a look at a very simple example. What’s your name? My name is
Rex.

 rex

I Live in India

 india.rex

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

45

Where is India? It’s on the Earth.

 earth.india.rex

(Didn’t I tell you that learning how to program was much like learning a
language?)

The examples above are examples of what my name would look like in dot
notation. Can you see why it’s called dot notation? All of the information is
separated by “dots.”

This should tell you a lot about how dot notation works - and it works exactly the
same way in Flash as in this example.

First of all, my name:

 rex

If I were an object (and I guess that in some strange sense I am!) this would be
my object name at its simplest level.

However, I’m not the only Rex in the world. There’s another Rex: my dog, who
waits for me patiently in Canada. So, we have two Rex’s:

 rex

 and

 rex

How can we tell the difference? Well, one of them wags his tail and barks. I’ll
leave it up to you to guess which one. But, apart from that, we know that they
live in different places. I live in India, so my proper object name might be:

 india.rex

My dog lives in Canada, so his proper object name might be:

 canada.rex

This is another basic feature of dot notation. In front of the most basic bit of
information, the object’s name, we need to indicate where the object lives. You
can add as much or as little information about where your objects live as you
need to. Because both India and Canada are on the Earth, we could go one step
further:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

46

 earth.india.rex

 and

 earth.canada.rex

The objects are still the same, even though we’ve described them a little more
clearly. You’ll always find that your objects share at least one common place –
the biggest place (which, in this case, is the earth.) In Flash, the biggest place is
the main timeline.

You can use this general model for naming objects with dot notation:

 place.objectName

 or

 biggestPlace.smallerPlace.objectName

Dot Notation - in Flash…

This is how dot notation works in Flash:

Have a look at the following image.

This is the stage in Flash. It contains the main timeline (which some of you
might think of as “Scene 1”), where you usually put most of your instances. If

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

47

you look carefully at the top left corner of the stage, you’ll see something that
looks like this:

This shows us that we’re on the main timeline – we’re as far on the surface of
our Flash world as we can get. If you remember the earlier example, this would
the same as the “Earth” that my dog and I share.

You might not know this, but the main timeline actually has a name. It’s called:

 _root

That’s right. That’s its actual name. Make sure you remember it; you’re going to
be using it a lot! Whenever you write anything in ActionScript and you use the
word _root, you’re actually referring to the main timeline and the main stage.
It’s extremely important to remember this.

_root is an object, and the most important one that you will need to know. It’s
not an object you need to create; Flash has created it for you. When you use the
word _root in ActionScript, you can control what happens on the main
timeline. You can also use it to control objects that are on the main timeline.

Now, let’s say that you place a new instance of the symbol “Fairy’s Face” on the
stage.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

48

Select the instance (to select it, click on it once with the arrow tool) and open the
Properties Panel. Enter “fairy1” in the field that says <Instance Name>
(Flash 5 Users: Open the Instance Panel and give the instance the name of
“fairy1”):

You have just created a new object. We can refer to the object using dot
notation, which, again, simply means that we use periods (“dots”) between the
object names. The name of the object we have created is:

 _root.fairy1

_root is where the fairy lives, on the main timeline, and fairy1 is its name.
Now, whenever you use _root.fairy1 Flash will know exactly which instance
you are talking about.

You can create as many instances of the “Fairy’s Head” symbol that you want.
You might have instances on the stage called:

 _root.fairy1

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

49

 _root.fairy2
 _root.fairy3

They might all look the same, but as long as you give them different names,
Flash regards them as completely different objects.

The Steps to Creating Objects

The steps to creating an object which can be controlled using ActionScript are as
follows:

1. Create an instance of a Movie Clip Symbol.
2. Open the Properties Panel (in Flash 5: the Instance Panel) and give the

instance a name.
3. The name should be lowercase, contain no spaces and follow the general

naming conventions discussed in earlier lessons.

It is extremely important to remember the following:

1. You MUST give the instance a name.
2. If you are using Flash 5, the instance MUST be created from a Movie Clip

Symbol. If you’re using Flash MX, it can be a Movie Clip, Button or
Textfield Symbol. Graphic Symbols can never be used to create objects
(although you can use them to help you build other symbols, such as
Movie Clips, that can be used as objects.)

By now you should understand that:

 earth.rex

is a similar concept to

 _root.fairy1

earth and _root both describe the places where the objects live. rex and
fairy1 are the objects’ names.

Objects Inside Objects

But do you remember the problem we ran into earlier? There are two Rex’s, and
both live on the earth. Clearly, they can’t both be called earth.rex otherwise
we wouldn’t know which one we were referring to. If you stood at your front door
with a bowl of last night’s leftovers calling out, “Earth.rex! Earth.rex!” you may
well find yourself with two different Rex’s running down the street and a terrible

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

50

fight would ensue! Flash has the same problem, and if you give two objects the
same name, it will get very confused.

But remember that the two Rex’s are not exactly the same. Even though both
live on the Earth, and both share the same name, one lives in India and the other
lives in Canada. If we used the names:

 earth.india.rex

 and

 earth.canada.rex

We’d know exactly which Rex’s we were referring to. That’s because canada
and india are also objects. One Rex is inside an object called india, and
another is inside an object called canada. If we used their full names, there
would be no confusion.

In Flash, if you want to refer to an object that’s inside another object, you have to
use its full name. Here’s how it works:

Let’s start with our main timeline called _root

Inside it, we create a new object called fairy1

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

51

Because she’s on the main stage, fairy1’s proper dot notation name is now:
_root.fairy1

Next, let’s add something to our fairy1 object. We’ll double-click on the
fairy1 instance so that we enter the object’s symbol editing window:

Look carefully at the top left corner of the stage:

This shows us that we’re no longer on the main timeline. We’re inside the
“Fairy’s Face” symbol.

We’re going to create an instance of a symbol in the library called “Bubble” by
dragging a copy of it onto the stage.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

52

Let’s give our Bubble instance the instance name help.

Doing this turns it into an object.

Now, just think about this for a moment. Where is help? Inside fairy1.
Where is fairy1? On the main timeline: _root.

That means that if we want to refer to our new help bubble object, we need to
use this name:

 _root.fairy1.help

Like this:

It’s important to keep in mind that even though we added the help object inside
the “Fairy’s Head” symbol, we can only refer to it through the fairy1 instance
name. There is an advantage to this. If we created another instance of the

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

53

“Fairy’s Head” symbol called fairy2, the help object would still be there for us
to use; we wouldn’t have to create it again. We’d just need to use the name
_root.fairy2.help.

Understanding how dot notation works is a crucial first step to understanding how
to program with ActionScript. Now that you know how to create and name
objects, you can attach actions, variables, and change object properties. And
that’s when the real fun starts.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

54

Introduction to ActionScript 2: Actions

In ActionScript, actions are special words that perform a pre-determined, built-in
function. They “do” most of the work in your movies.

The first part of this lesson explains what actions are and how to attach them to
objects. Read through this section carefully, but don’t agonize about it too much
if you don’t understand right away or if you find it a bit confusing. The lesson is
followed by a detailed exercise in which, by the end of it, using actions should be
crystal clear.

How to Attach Actions to Objects

You can create actions very easily. Simply attach the action name to the end of
the name of the object that you want to control. Let’s look at our previous
example. Do you remember this?

We had created an object called _root.fairy.help

Let’s imagine that the first frame of the help Movie clip has a stop action on the
first frame. You should remember how to create a stop action from our previous
lessons on creating interactive movies. It looks like this:

 stop();

If, however, you wanted the movie to start playing, you could assign a play
action anywhere in your Flash animation. The play action looks like this:

 play();

To use it, we need to attach it to an object. To start the help movie clip playing,
we could use:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

55

 _root.fairy.help.play();

If we wanted the help movie clip to stop, we could use a stop action, like this:

 _root.fairy.help.stop();

Action names are attached directly to the end of an object’s name with a “dot”,
such as this diagram illustrates:

Another thing you should be aware of is that actions must always end with a
semicolon:

 ;

This tells Flash that, after this line, the action must be performed. Most other
programming languages use semicolons in the same way.

Understanding “Arguments”

Actions also require you to provide arguments in addition to the action name.
Arguments are extra bits of information that the action needs to be able to
complete the task properly. You can always recognize arguments, because they
come directly after the name of the action, and are always enclosed within
brackets, like this:

 ()

You might have noticed that the play(); and stop(); actions were followed
by empty brackets before the semicolon. This is to show that they contain no
arguments. If an action contains no arguments, you must use empty brackets to
indicate this.

Let’s consider our _root.fairy.help object again. If we wanted the help
movie to jump to a specific labeled frame, we could use the gotoAndStop action
or the gotoAndPlay action. These actions look like this:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

56

 gotoAndPlay();
 gotoAndStop();

When you were creating interactive Flash movies in the previous lessons, you
used these actions quite frequently. These two actions must always contain
arguments – they can never be left with empty brackets.

Let’s imagine that our _root.fairy.help movie has a labeled frame called
“theEnd”. If we wanted to create an action that caused the help movie to jump
to that frame, we would write this action:

 _root.fairy.help.gotoAndPlay(“theEnd”);

As you can see, “theEnd” is the argument that the action uses. Without that
argument, the action won’t work. gotoAndPlay and gotoAndStop require that
you use quotation marks inside the brackets to describe your argument. Not all
actions require this – you only need quotation marks if your arguments are words
or letters. If your argument is a number, such as a frame number, you don’t need
quotation marks.

There are lots and lots of actions that you can use in ActionScript, but these are
the most basic and the most useful:

 play();
 stop();
 gotoAndPlay();
 gotoAndStop();

You should be familiar with how these work from the previous lessons on
creating interactive movies. You will learn many more useful actions in the
course of the lessons ahead.

By the way, to see the _root.fairy.help movie clip in action, visit this
website:

 www.kaleidoscope-multimedia.com/trouble

The “help” movie clip is told to play whenever the fairy is stung by a bee.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

57

ActionScript Exercise 1: Using Objects and Actions

The following assignment will give you a chance to practice creating objects and
assigning actions to buttons to control those objects. Make sure that you
understand all of the concepts from the previous lessons before you start. Follow
the directions VERY carefully.

A: Create Your Symbols

1. Create a new symbol. Click on the Insert menu near the top of the screen
and choose New Symbol….

2. Give the new symbol the name “Car’s Body.” Make sure that Movie Clip

is selected and click OK.

3. The editing window for the “Car’s Body” movie clip should new open. You

can confirm this by looking at the top left hand corner of the stage.

If you see something like the image above, you know you’re in the right
place. All the work we’re going to do is now taking place inside the “Car’s
Body” movie clip symbol – not on the main timeline.

Open the library by pressing F11 or clicking on the Window menu and
choosing Library. You should see that the “Car’s Body” Movie Clip
Symbol has been added.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

58

4. Use the drawing tools to create a picture of a car without wheels.
Something like this:

5. Create another movie clip symbol by following the same procedure you
followed in steps 1 and 2. Call this symbol “Wheel”.

6. In the “Wheel” symbol editing window, draw a wheel:

Try drawing a slightly irregular shaped wheel, like this one, and add a bit
of traction around the tire. The effect we’re going to create will be much
clearer if you do. Make sure that you draw the entire wheel on one layer.

Check your library to make sure that you now have 2 Movie Clip symbols in it.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

59

If your library doesn’t look something like this, you’ve made a mistake
somewhere. Check the instructions above and see if you can figure out where
you went wrong before you go any further. You must have 2 separate symbols,
and the must be Movie Clip symbols.

B: Set Up the “Wait” Column

There are actually a few different ways that you can create an animation that can
be started and stopped with ActionScript. The method that we’re going to use is
not the simplest, but it’s very clearly structured, which means that it’s less likely
that you’ll make a mistake.

We need to turn the “Wheel” symbol into a mini interactive movie that can be
controlled with ActionScript. Remember back to the interactive movie you
created in earlier lessons; you’ll need to apply all those skills. You’ll be able to
use this method again and again for all sorts of ActionScript controlled
animations, including those in games.

Make sure that you’re still working inside the “Wheel” Movie Clip symbol, and
follow these instructions

1. First, we need to correctly set up our timeline. We’re going to create 2
separate columns. 1 Column will show the wheel as it is when it’s
stopped. The second column will be an animation loop of the wheel
rotating. Create your Labels and Actions layers:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

60

2. Select the first frame of the Labels Layer. In the Properties Panel, give
the frame the label “wait”.

3. Before we go any further, we should define our column by adding 8 extra

blank frames. Hold down the crtl key and, without letting it go, click on
frame 9 of the Labels, Actions and image Layers.

 holding down crtl allows you to select more than one frame at a time.
 Next, press F5 to add bank frames to all layers:

We’ve added these frames so that we can clearly see where or column is
and read the “wait” label that we’ve created.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

61

4. Click on the first frame of the Actions Layer so that it is selected. Open

the Actions Panel. At the top right corner of the Actions Panel you
should see what looks like a little picture of a list of items with a tiny arrow
underneath. Click on this picture. Choose Expert Mode from the list of
choices.

Expert Mode allows you type in ActionScript code directly into the
Actions Panel. You need to use Expert Mode for any advanced
ActionScript programming. From now on, you should always use it.

5. Type the following action into the Action Panel:

 stop();

This tells your movie clip that it should stop at the first frame and not play
the animation. The Action Panel should now look like this:

Double check to make sure that it says “Actions for Frame 1 of Layer
Name Actions” at the top of the Actions Panel. If it doesn’t, it means that
you’ve entered the Action in the wrong place.

“stop” is displayed in blue letters because it is a word that Flash
recognizes. Any reserved words in ActionScript show up in blue letters.
This is useful, because if you type in an action that you think Flash should
understand, and it doesn’t show up as blue, you know that you’ve made a
mistake entering it. Reserved words are words that Flash reserves
exclusively for ActionScript.

Your Wheel’s timeline should now look like this:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

62

C: Set Up the Animation Loop

1. We’re going to animate the wheel so that it rotates. Click on Frame 10 of

the Labels layer and insert a keyframe. In the Properties Panel, give
the frame the label name “turn”.

2. On the Image Layer, insert a keyframe on frame 10 and frame 22.

3. Highlight frames 10 to 22 on the Image Layer.

Right-click on the highlighted area and choose Create Motion Tween
from the menu that opens.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

63

If you do this correctly, you should see a black arrow extending from frame
10 to frame 22.

4. Select frame 10 on the Image Layer

and open the Properties Panel (Flash 5 Users: Open the Frame Panel.)
You should see something that looks like the image below. Select “CCW”
(which stands for Counter Clockwise) in the Rotate field. Make sure that
it’s set to rotate 1 time.

D: Create the Loop

The next thing to do to is to set the animation up so that when it reaches frame
22 it loops back to frame 10 so that the wheel appears to be constantly turning.

1. Insert a keyframe on frame 22 of the Actions Layer.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

64

2. Open the Actions Panel and enter the following ActionScript code:

 gotoAndPlay(“turn”);

Every time the movie reaches this frame, it will jump to the turn frame,
thus looping the animation. Because this action is on the same timeline
that it is referring to, we don’t need to include an object name.

3. Finally, we need to add a blank frame at frame 22 of the Labels Layer so
that we can read the label clearly.

Again, we don’t really need to add this last step, but it makes it easier for
you to see the columns and read the “turn” label.

We now have two clearly defined columns, each which performs a
different function. The first column, “wait,” is merely a static image of the
wheel. The second column, “turn” is a looped animation of the wheel
rotating.

This is a very simple example, but you can create as many columns as
you need for the different kinds of actions that you want your objects to
perform. Whatever you put into these columns is entirely up to you, and
you can have as many as you like.

For example, if you were creating a car race game, you might want a
column called “flat” which displays an image of a punctured wheel when
your car drives over an opponent’s thumb-tack trap.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

65

 We’re now ready to add wheels to our car’s body.

E: Build the Wheel and Car Objects

1. Double click on the “Car’s Body” symbol in the library to enter its symbol
editing window. Confirm that you are in the correct place:

2. Create a new layer called Wheels.

3. Make sure that the Wheels Layer is still selected and drag an instance of
the of the “Wheel” symbol onto the image of the car’s body. Position it so
that it fits neatly in the front wheel space you created for it.

4. Make sure that the wheel is selected…

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

66

… open the Properties Panel, and give it the instance name
frontWheel.

5. Create another instance of the “Wheel” symbol in the other empty spot.

 and give it the instance name backWheel.

You’ve now created 2 objects, backWheel and frontWheel inside the “Car’s
Body” Movie Clip symbol. Before we can control them with ActionScript, we
need to turn the “Car’s Body” itself into an object.

D: Create the Car Object

1. Click on “Scene 1” to return to the main timeline.

2. Rename Layer1 to Car.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

67

3. Drag an instance of your “Car’s Body” Movie Clip symbol onto the main
stage. Make sure that it’s selected, and, in the Properties Panel give it
the instance name car.

You now have three objects that you can control:

 _root.car
 _root.car.frontWheel
 _root.car.backWheel

…Oh, you actually have four objects. You can control the main timeline directly
by using the following, all by itself:

 _root

It’s very important to remember that you have all of these objects at your
disposal. You can control any of the wheels by using ActionScript like might look
like this:

 _root.car.frontWheel.gotoAndPlay(“turn”);

This would tell the frontWheel object to start playing from the labeled frame
called “start” that we created in the “Wheel” Movie Clip’s timeline. Because the
frontWheel object was created from the “Wheel” Movie Clip symbol, it inherits

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

68

all of that symbol’s actions, frames and any objects that might have been inside
it.

If you had included some animation in the “Car’s Body” symbol, you could control
it by using ActionScript that might look like this:

 _root.car.play();

If you made the car animate from the right side of the screen to the left, the
wheels would move along with it because they’re inside the car object.

You could also control any labeled frames that you might have on the main
timeline by using _root followed by an action. For example, you could tell the
main timeline to start playing with the following bit of ActionScript:

 _root.play();

Or, if you had a series of labeled frames, you could jump to them with a
gotoAndStop or gotoAndPlay action, such as:

 _root.gotoAndPlay(“page2”);

You might wondering, where do we put these actions? There are few places you
can put them:

• On Buttons
• On Frames
• Directly on Objects

Over the course of these lessons, we’re going to be looking at all these methods.
Often the most convenient place to put them is on buttons, because that means
the user can directly control them.

E: Program Your Buttons

1. Create a simple button or use one from the Common Libraries. Create a
new layer called Buttons and drag a copy of the button onto the main
stage.

2. Select the button, and open the Actions Panel. Make sure that you are in

Expert Mode. Double check to make sure that the button is selected and
that you are entering the ActionScript in the correct place:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

69

3. Type the following into the Actions Panel:

 on (release) {
 _root.car.frontwheel.gotoAndPlay(“start”);

}

Your Actions Panel should look like this:

Test your movie and click the button. If you’ve done everything correctly, the
front wheel should turn.

on (release) - A New Action

on (release) is a special action used by buttons. Essentially, it tells Flash,
“When the mouse button is released, you should do whatever is between the
curly brackets.”

Curly brackets enclose the actions:

 { }

Curly Brackets are used to keep all the actions together that should be performed
when the mouse button is released. Anything ActionScript code outside of the
curly brackets is not performed. Curly brackets are used in exactly the same way
in Java and C++. In Pascal, begin and end are used instead.

In plain English, the ActionScript code that we wrote above translates as this:

 When the mouse button is released, do this: {
 Tell the front wheel to play;
 }

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

70

Once you understand the concepts, it’s not difficult at all. Soon you’ll start to
realize how easy, efficient and fun it is to program Flash with ActionScript.

Exercise Extension

Now that you understand the basics, add the following extras to your movie:

1) Create a button that tells the back wheel to play

2) Create a button that tells both wheels to play

3) In the Car Movie Clip’s timeline (NOT the main timeline,) animate the car so
that it moves from one side of the screen to the other. Assign a stop action to the
first frame to prevent it from playing. Then, create a button, on the main timeline,
that makes the car move.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

71

Introduction To ActionScript
4) Properties

Once you have created an object, you have a great deal of control as to what you
can do with it. With objects, you can:

• Attach Actions
• Modify Properties
• Create and alter Variables

In the previous lesson, we looked at how you can attach actions to objects that
can be controlled with buttons. In this lesson we’re going to explain how to
modify object properties and, in later lessons, how to attach and alter variables.

Once you know how to use actions, properties and variables, you will be able
to control every aspect of you objects in a completely interactive way..

What are Properties?

A Property is a characteristic of an object. A property can define how an object
looks, where it is, or its size.

Properties are what you use to describe certain aspects of your object. If you
think of yourself as an object, how would you describe yourself? You might list
the following items:

• 150 kg
• 170 cm
• green eyes

These are your properties. Unfortunately, if you don’t like any of these
properties, you’re stuck with them. You can’t change or alter them in any way.

In Flash, however, you can change the all the properties of your objects.
Properties can be changed whenever you need them to be changed: either with
the click of a button or whenever something else important happens in your
game or interactive movie.

In Flash, you can change the following properties of your objects:

• an object’s transparency (called it’s alpha)
• an object’s height
• an object’s width
• the rotation of an object

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

72

• an object’s visibility
• an object’s position on the screen (it’s x and y position)
• the size or scale of an object
• an object’s name

There are a few more object properties, but those above are the ones that you
will use most frequently, particularly for games.

There are also some special properties that provide information on the position of
the mouse on the screen, but we’ll look at those later.

How To Use Properties

The most important thing to know about properties is this: Properties contain
information (values) that describe how your objects should look or behave.

In ActionScript, you can spot a property because its name is preceded by an
underscore symbol (_). Here are some examples of properties:

 _rotation
 _height
 _width
 _x

To use a property, you attach the property name at the end of an object name.
For example, if you wanted to refer to an object’s height, you might write:

 _root.car._height

This is exactly the same way that you attach an action to an object.

In the above example, “_height” stores information about how high the object
is, as measured in pixels.

Properties always “know” what their original value is. A value is a number that
the property uses to change the way the object looks. If you created an object
that was 50 pixels high, the object’s “_height” property would store that
information. (Pixels are the little dots that make up an image; if you look at your
computer monitor closely, you should be able to see them.)

We can easily change the value of any property. For example, if we wanted to
change the height of an object to an exact size of 20 pixels, we could write:

 _root.car._height = 20;

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

73

This would change the height of the object so that it’s exactly 20 pixels. The
equal (“=”) sign is used to give the property its new value, and the semicolon (“;”)
is used to activate the change.

What is important to remember is that once the value of the property has been
set, it will always remain at that value until we change it again.

We can also assign one object’s property value to another object’s property. For
example, we could write:

 _root.flower._height = _root.car._height;

This would change the “_height” of a flower object so that it is the same as the
height of the car object.

This might seem a little confusing at first. Let’s look at it this way: Suppose we
initially set the car’s “_height” property to “50” and the flower’s “_height”
property to “20”. We could do that with 2 lines, like this:

 _root.car._height = 50;
 _root.car._height = 20;

… or just draw our objects on the screen with those heights.

Next, let’s say we were creating a game with a monster flower. Whenever the
car in our game bumps into the flower, the flower increases its size to that of the
car. The easiest way to make the flower do this, is to tell the flower to become
the same height as the car, and that we can do with the line of ActionScript code
we looked at earlier:

 _root.flower._height = _root.car._height;

This essentially tells Flash: “Make the flower as high as the car.” Or, “Assign the
value of the car’s _height property to the flower’s _height property.” And, the
advantage here is that we don’t even need to know how high the car is. Because
the height of the car (50 pixels) is stored in its “_height” property, Flash already
knows that it should be 50 pixels.

We can also assign values from different properties in the same object. This
means that we can tell an object to be exactly as high as it is wide. Such as:

 _root.car._height = _root.car._width;

This would change the “_height” of the car so that it is the same as its
“_width” - resulting in a perfect square shape. Again, we don’t need to know

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

74

the original values of these properties; Flash and ActionScript know what they
are.

Another option is to add a mathematical calculation to the property value, such
as:

 _root.car._height = _root.car._height / 2;

This would divide the current “_height” of the object by 2. The object would
then be half as high as it was originally.

Properties give you almost limitless scope to change your objects in an
interactive way. Once you start experimenting with them, you’ll be amazed at
how useful and fun they are to use.

You can use any of the following properties:

Property Name What it Does Unit of Measure
_alpha Alters the transparency of an object. A

value of 100 means that the object is
opaque, 50 that it is translucent, 0 that it
is completely transparent.

Percentage.
Any number
between 0 or
100

_height The height of the object Pixels
_width The width of the object Pixels
_rotation Controls the angle of rotation of the

object. A positive value results in a
clockwise rotation, a negative value
results in a counterclockwise rotation.

Any positive or
negative number
between 1 and
360

_visible Controls object visibility. Accepts
Boolean values: either true or false.
eg. root.car._visible = false;

Boolean. true
or false

_x An object’s horizontal pixel position on
the stage.

Pixels

_y An object’s vertical pixel position on the
stage.

Pixels

_xscale The same as “_height” only measured
as a percentage of the object’s height.

Percentage

_yscale The same as “_width” only measured as
a percentage of the object’s width.

Percentage

_xmouse Tells you the current “x” position of the
mouse. You can only read this value,
not change it. For example:
_root.car._x = _root._xmouse;
Sets the car’s “_x” property to horizontal
position of the mouse.

Pixels

_ymouse Tells you the current “y” position of the Pixels

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

75

mouse. You can only read this value,
not change it.

_name Tells you the name of the object, and
lets you alter it if you need to. This
property is rarely used, but as has some
application in certain aspects of game
design, so is worth remembering.

Any valid object
name, such as
“car” or
“flower”

These are the most important object properties that you need to know. By
modifying these properties, you will have an enormous amount of control over
how your objects can be controlled on the screen, as we will see in the next
lesson.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

76

Introduction To ActionScript
5) Using Properties

The following lesson explains how to use properties, and specifically provides an
in-depth example of how to use the _x and _y properties. If you understand how
the _x and _y properties work (and these are the most complex properties,) you
can apply exactly the same skills to the other object properties mentioned in the
previous lesson.

The _X and _Y Properties

Two particularly useful properties, especially for creating games, are the “_x” and
“_y” properties. These properties control where the object is on the stage.

 “_x” refers to the object’s horizontal position and “_y” refers to its vertical
position. The values that “_x” and “_y” store are pixel values.

Remember that pixels are the little dots that make up graphics on the screen.
Each of these dots has a number, known as its value. Even if you don’t know
that, Flash does! However, you can easily see the _x and _y position of all your
objects on the stage by selecting an object and opening the Properties Panel:

Using ActionScript and the “_x” and “_y” properties, we can tell our objects to go
to a specific point on the screen. This is the basis for creating interactive
movement and animation.

When you create a new movie in Flash, you are automatically given a stage size
of 550 by 400 pixels. 550 is the width (“_x”) and 400 is the height (“_y”). You
can imagine this as a grid of squares, with the numbering starting at the top left
hand corner of the stage.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

77

At the top of the screen, _y is equal to zero. At the bottom, _y is equal to 400.
_x is zero on the left side of the screen and 550 on the right. If you wanted to
place an object in the exact center of the stage, you could write:

 _root.car._x = 275;
 _root.car._y = 200;

This is confusing at first, but with a little practice, you’ll start to learn the logic
behind it.

Using _X and _Y Properties

There are many ways to change an object’s properties. You can change the
property when a movie reaches a certain frame, when the user clicks on a
button, or when an object bumps into another object. In the following example,
you will learn how to change an object’s _x and _y properties by clicking on a
button.

1. Create a new Flash movie.

2. Draw a square on the stage and convert it into a Movie Clip Symbol. Give

it the object name “square”.

_y = 0

y = 400

x = 0 x = 550

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

78

Position the square as close to the center of the stage as you can.

3. Create 2 button symbols. One should be labeled with the name “X” and

the other with the name “Y”. Drag instances of these buttons from the
library and position them near the bottom of the stage. The stage should
look something like this when you are done:

4. Click once on the “X” button to select it. Open the Actions Panel, and type

in the following ActionScript code:

 on(release){
 _root.square._x = 30;
 }

This action is telling Flash: When the mouse button is released, move the
square’s X position to 30.

5. Click once on the “Y” button to select it. Open the Actions Panel, and type

in the following actions:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

79

 on(release){
 _root.square._y = 50;
 }

This action is telling Flash: When the mouse button is released, move the
square’s Y position to 50.

Now, test your movie and watch what happens when you click the buttons. If you
followed the above instructions correctly, the square will be positioned at X
position 30 and Y position 50 on the stage (near the top left corner.)

Next, try changing the numbers 30 and 50 to other numbers and observe how
that affects the position of the square.

Changing Property Values Incrementally

Often you will want to reposition an object only slightly when a button is clicked,
and have the object continue to move further along on every click. This is called
incremental movement.

With incremental movement, you don’t know exactly what the new pixel position
of the object is going to be. You only know that, whenever the user clicks a
button, that you want the object to move forward along the X or Y axis by, say, 5
pixels at a time.

Follow the instructions below to modify your Flash Movie so that the buttons you
created in the previous steps move the square incrementally on each click

1. Click once on the X button to select it and open the Actions Panel.
Change the ActionScript code so that it looks like this:

on(release){
 _root.square._x = _root.square._x + 5;
}

2. Next, select the Y button and change its ActionScript code so that it looks

like this:

on(release){
 _root.square._y = _root.square._y + 5;
}

Test your movie, and see what happens. You should notice that every time you
click one of the buttons, the position of the square is advanced 5 pixels along
either the X or Y axis.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

80

How It Works

Let’s look at the X Button actions:

on(release){
 _root.square._x = _root.square._x + 5;
}

In plain English, we are telling Flash:

“When the mouse button is released, the circle’s X position should be the same
as its current X position, plus 5 pixels”

The most important line is this one, and deserves a slightly closer look:

_root.square._x = _root.square._x + 5;

What this line is doing is telling Flash to add 5 to the current value of
“_root.circle_x”. And the current value of “_root.circle._x” is already
stored in “_root.circle._x”

A lot of people new to computer programming find this confusing. Well, it is!

If we had just written:

 _root.circle._x = 5;

… the circle would have jumped to the left hand side of the screen, just 5 pixels
to the left of its edge, and stayed there, no matter how many times we clicked the
button.

What we had to do was tell the circle to add 5 pixels to where it already is. That
means that the first time we click the button, the circle moves 5 pixels to the right.
The second time we click the button, it is already in a new position, so the 5
pixels are added to whatever that new position is.

Ok, did you have to view that last sentence though a mirror and stand on your
head to make sense of it? Here’s another way of looking at it:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

81

If you’re still having problems, cut the above diagram out, tape it to your
computer monitor, and follow it blindly whenever you need to move an object.
Don’t worry, with a little practice, you’ll get it!

This technique is called incrementation. If we were subtracting a value, we
would call it decrementation. (We could easily decrement the above value by
replacing the plus sign with a minus sign – try it in your movie!)

Modifying Other Properties

You can apply these same techniques to any property that accepts numbers as a
value. This includes _rotation, _height, _width, _xscale, _yscale and
_alpha (transparency.) Changing any of these properties is just as easy as
changing the _x and _y properties.

For example, if you wanted to change the _rotation property of your square,
you could change one of your button actions so that it looked like this:

on(release){
 _root.square._rotation = _root.square._rotation + 5;
}

It’s exactly the same technique we used earlier; only the property name has been
altered.

Remember, if you use a minus sign, you will be able to alter your object
properties in an opposite way. For example, if you wanted your square to
gradually become transparent, you could use this ActionScript code:

on(release){
 _root.square._alpha = _root.square._alpha - 5;
}

And, remember that you can don’t need to always use the number “5”! Larger
numbers, such as 10, will cause the effect to be more obvious, because the

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

82

change from the old value to the new value will be more drastic. Lower numbers,
such as 2, will alter the property more gradually.

Changing values incrementally is at the heart of creating truly interactive
animations. With a little practice, you’ll find it easy.

Hint:

(If you’re feeling a little over saturated with new information, skip this next
section. But any brave souls who think they can tarry further, read on….)

Because incrementation is such a common procedure, there is a special operator
you can use:

 +=

This operator tells the property to add the new value to itself. So, you could write
the above example that we were looking at as:

 _root.circle._x += 5;

… and it will work in exactly the same way! It’s exactly the same as writing

 _root.square._x = _root.square._x + 5;

… but involves less typing.

To decrement a value, use: -=.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

83

ActionScript Assignment 1: Controlling Properties

The following assignment practices the techniques you have learnt in
ActionScript so far: controlling objects, assigning button actions, changing
property values and using incremental and decremental values. Follow the
instructions carefully:

1. Create a movie clip symbol, drag it onto the stage and give it a name.
2. Copy 18 instances of a button symbol onto the stage. Make sure that

they’re small, and organize them into 2 neat columns on the left or right
hand side of the screen.

3. Program the buttons so that they do the following:

 a) Increase and decrease the object’s _x position.
 b) Increase and decrease the object’s _y position.
 c) Increase and decrease the object’s _height.
 d) Increase and decrease the object’s _width.
 e) Increase and decrease the object’s _rotation.
 f) Increase and decrease the object’s _xscale.
 g) Increase and decrease the object’s _yscale.
 h) Set the object’s visibility on.
 i) Set the object’s visibility off.

4. Label all your buttons so that you know what they do and make sure
they’re organized in a neat and logical way on the screen.

Evaluation:
4 Marks: For properly programming the buttons, as described above.
1 Mark: For clearly labeling your buttons
1 Mark: For a neat organization of the all the elements on the stage.

TOTAL: /6

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

84

Introduction To ActionScript
6) Variables

You can think of variables as boxes that store information:

If you need to use the information inside the box, you just need to refer to the
box’s name. You can also empty the box and put new information in at any time.

Variables act like an object’s memory. They contain information that an object
needs to perform whatever task you have set it.

Unlike actions and properties, variables are not predefined. Its up to you to
decide what kind of variables you will need, what kind of information they will
store, and then create them.

You create variables by attaching words, any words you like, to the end of an
object name. The words can represent numbers, letters or Boolean (true/false)
values. The following are all examples of variables:

 _root.car.speed
 _root.car.distance
 _root.highScore

None of these variables have been created by Flash. They were decided on by
the person who was creating the movie. And, it’s up to you to decide what kind
of information they store.

Initializing Variables

To create a variable, you need to do the following:

 a) Give your variable a descriptive name.
 b) initialize the variable.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

85

Initializing a variable means giving the variable its first value. You can always
change that value later, but a variable must always have an initial value.

Let’s imagine that you’re creating a game, and you want a variable that will keep
track of the score. First, you would decide on a name for your variable. “score”
would seem to be a good name. Then, you would have to decide on an initial
setting for the score. When you start a game, what is the score? Well, in most
games it’s usually zero. So, we can initialize our variable by writing the following:

 _root.score = 0;

The most common place to initialize a variable is on the first frame of the actions
layer of the main timeline. And, actually, if you initialized it there, or anywhere on
the main timeline, you would simply have had to write:

 score = 0;

The variable already knows that it’s on the main timeline, so you don’t really need
to add “_root”. The main timeline is the _root.

If we think of our variable as a box, the above line would have put the number “0”
into a box called “score”:

Assigning New Values to Variables

After you have assigned an initial value, you can change a variable’s value at a
later time. In fact, that’s why it’s called a “variable” because its value can “vary.”

Let’s imagine that we have a very simple race game. It’s so simple, in fact, that
the score can be either 0 or 1. The player would get a score of 1 if he or she
beat the computer to the end of the racetrack. Let’s imagine that after a long,
difficult race, the player reaches end of the track, and wins by a hair’s breadth.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

86

At the end of the race we would update the score to show that the player has
won. We would then simply add:

 _root.score = 1;

This would now fill our score box with the number 1:

Easy, isn’t it?

You can also, at any time, change the value of “_root.score” if you need to by
simply giving it a new value. The following are some examples:

 _root.score = 23;
 _root.score = _root.car._height;
 _root.score = (_root.playerOneScore - _root.playerTwoScore);
 _root.score = “You Lost!”;

Whatever information you tell the variable to store, it will remember. You can
then use that information whenever you need it, simply by referring to the
variable’s name. And, like property values, a variable value can be the result of a
mathematical equation.

Now let’s imagine that we’ve got a slightly more complex game, where the player
has to shoot down invading aliens. The player starts with a score of 0, but every
time he or she hits an alien, 1 is added to the total score. In other words, the
score is incremented. You’ve heard that word before somewhere…remember?
In this case, we would write the following whenever an alien spaceship is hit:

 _root.score = _root.score + 1;

This means that 1 is added to our old score, 0, resulting in the new value: 1. The
next time an alien is hit, 1 would be added to “_root.score” again, resulting a
new value: 2. On the third hit, 1 would be added to “_root.score” again, so
that it would become 3.

The logic behind this is the same as incrementing property values.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

87

Local and Global Variables

Variables can either be local or global.

Global variables can be used anywhere in the Flash movie, at any time. They
are always preceded by a “_root” prefix, without an object name. The following
are examples of global variables:

 _root.score = 30;
 _root.speedLimit = 40;
 _root.maximumBullets = 10;

They’re not attached to any objects.

Local variables can only be used inside the object they were created in. They
only exist for as long as that object exists.

Let’s imagine that we created 3 variables inside our “car” Movie Clip. We only
want to use these variables to control the car’s animation, and no other objects.

 _root.car.speed = 15;
 _root.car.distanceCovered = 30;
 _root.car.tankIsEmpty = false;

Because we don’t need to use these variables anywhere else, we’ve made them
local variables. They’re attached directly to the car object.

Local and Global variables can share information. Let’s say that we’ve got a
local variable, that stores the car’s speed, and a global variable, that keeps track
of the speed limit for all the cars in the game:

 _root.car.speed = 15;
 _root.speedLimit = 25;

If we wanted to set the car’s speed to the global speed limit, we could write:

 _root.car.speed = _root.speedLimit;

Now, “_root.car.speed” would equal 40, exactly the same as
“_root.speedLimit”. “_root.speedLimit” hasn’t changed, but it has
shared its value with “_root.car.speedLimit”.

It also works the other way around. For example, we might want to determine
the score of our game by subtracting the car’s speed from the speed limit.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

88

 _root.score = _root.car.speed - _root.speedLimit

Which are better to use, local variables or global variables? In most cases, I
would recommend that you use global variables. Although local variables can be
very useful, especially in a complex project, you are far less likely to make
mistakes if you stick with global variables - while you are learning, at least.

Using “Dynamic Text” to Display Variable Values

Often you will want to display the value of a variable on the screen. The
following exercise will show you how to use Dynamic Text to do this. It will also
give you a very concrete example of how variables actually work.

The first thing we need to do is create a global variable called “number”, and
initialize it.

1. Create a new layer and name it “Actions”.

2. Make sure that Frame 1 of the Actions Layer is selected and open the

Actions Panel. Enter the following into the Actions Panel:

 _root.number = 0;

This is how we initialize the variable. We’re giving it its first, initial, value.
This is almost always done in Frame 1, because Frame 1 is the first frame
that Flash loads when the movie starts.

Next we need to add a button.

3. Open the Buttons library from the Common Libraries. Choose any
button that you like and drag it onto the main stage.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

89

4. Make sure that the button is selected, and open the Actions Panel. Enter

the following button object actions:

on (release){
 _root.number = _root.number + 1;

}

5. Choose the Text tool and use it to create an empty text field on the main
stage.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

90

6. Make sure the Text Field is still selected, and open the Properties Panel.
Choose Dynamic Text from the drop-down menu on the far left-hand
side.

Dynamic Text is text that can be changed according to the value of a
variable.

7. With the Properties panel still open, find the field called “Var:” and enter

the following:

_root.number

This is the same variable we initialized earlier. Assigning a variable here
will cause the value of that variable to be displayed in the Dynamic Text
Field.

Test you movie… what happens???

Exercise Extension:

1. Create another button to subtract 1 from _root.number each time it is
clicked. What happens when _root.number goes below zero?

2. Initialize _root.number to “2.” (Remember, you initialized

_root.number on the first frame of the Actions layer on the main
timeline.) Create another button that multiplies _root.number by 2 each
time it is pressed. How high can you go? (Remember, use an asterisk, *,
to perform multiplication.)

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

91

3. Create another button, and, in the on(release) action, enter the
following:

 _root.number = _root._xmouse;

Click on the button and see what happens. What information is it giving
you?

Reposition the button on the stage, and then test your movie again. Is
there a change in the value of _root.number? If so, why?

4. On the Actions Layer of the main timeline, add 10 keyframes spaced 15

frames apart. In each new keyframe, enter the following:

 _root.number = _root.number + 1;

Test your movie. What happens?
This is an easy way to make a time-lapse counter in Flash. Usually, it
would be created as a self-contained Movie Clip animation, and dragged
onto the stage wherever you need it.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

92

Introduction To ActionScript
7) Variable Types and Strings

“Type” refers to the kind of information that a variable stores. Words are a
different type of information than numbers. When you are using variables, you
must be aware of what type of information they contain, as this can be very
important to how your variables are used.

In ActionScript, as in other computer programming languages, there are 4 major
types:

1. Integer (whole number):
_root.age = 12;

2. Real (decimal number):
_root.total = 2.4455623;

3. String (letters and words, surrounded by quotes):
_root.message = “You Won!”

4. Boolean (true or false):
_root.car.empty = false;

Unlike many other programming languages, however, ActionScript “knows” what
type of information variables store. You don’t need to worry about declaring
integer, real or string types, as you would if you were programming with Java or
C++. Also, ActionScript is usually not picky about the difference between
integers and real numbers. If it sees a number with a decimal place, it
assumes it is a real number. Likewise, numbers without decimal places are
assumed to be integers. Integers and real numbers can be combined freely.

There are a few rules that you need to remember when creating new variables
from combinations of other variables:

• You can combine any number variables (integer and real numbers.)
• You can combine any string (word) variables.
• You can’t combine Boolean (true/false) variables with anything, even

other Boolean variables.
• You can’t combine string (word) and number variables if the result is a

number.
• You can combine string (word) and number variables if the result is a new

string of words.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

93

Combining Variable Types: Examples

The following examples demonstrate how variable types can (and can’t) be
combined

1. Let’s imagine that we have initialized the following variable values. To
initialize a variable means setting it to the value we want it to start out at:

_root.newTotal = 0;
_root.age = 12;
_root.total = 20;
_root.message = “You Lost!”

The following combination would be acceptable:

 _root.newTotal = _root.age + _root.total;

Both _root.age, _root.total and _root.newTotal are all number
variables, so they can be combined without any problem.

 The following combination would not be acceptable:

 _root.newTotal = _root.age + _root.message;

Can you see why? _root.age and _root.newTotal are number
variables and _root.message is a string (word) variable. These
different types can’t be combined in this way.

How does _root.newTotal know that it is a number variable? By the
last type of information that was stored in it, which was “0”.

2. You can, however, combine any string variables to form a new string
variable. For example, let’s say we’ve initialized these variables:

 _root.name = “James”;
 _root.greeting = “Hello, my name is “;
 _root.message = “”;
 _root.age = 10;

(Notice that _root.message was initialized to “”. When you’re dealing
with words, this is equivalent to setting a number variable to 0. It means
that the variable is blank.)

We could then add this line of ActionScript to combine the string variables
together:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

94

 _root.message = _root.greeting + _root.name;

This would result in:

 Hello, my name is James

Because all the variables are strings, it works.

In computer programming, when strings are combined in this way it is
called concatenation.

3. You can combine strings and number variables if the final result is a string.
For example:

_root.message = _root.greeting + _root.name +
 ". I am " + _root.age + " years old.";

(The above would be all on one line.) This would result in:

 Hello, my name is James. I am 10 years old.

Combining strings in this way can produce very interesting results.

Notice that spaces also need to be added as part of your strings, if you
want your words to be spaced evenly. ActionScript doesn’t know where
you want to include spaces and punctuation, so you have to make sure
that you carefully consider where you want them to appear and add them
at the correct places yourself.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

95

Introduction To ActionScript
8) Data Entry Exercise

In the following exercise you will learn how to enter words and numbers into
Flash with the “Input Text” feature. You will then learn how to output that text on
the screen, and combine it with additional text. You will also learn how to use
these techniques to perform simple mathematical calculations.

A) Initialize Your Variables

The first thing you need to do is initialize your variables, so that Flash knows
what values they should be set to first.

Start a new movie. Create an Actions Layer and, on the first frame of that layer,
enter the following actions:

 _root.input = “”;
 _root.output = “”;

Variables are almost always initialized on Frame One of the Actions Layer.

B) Set Up an Output Field

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

96

Next, you need to create a Dynamic Text Field to display the variables on the
screen. (By the way, a text field is a box in which you can enter or display
words.)

1. Click on the Text Tool and draw a blank text field on the stage. Make sure
that you don’t draw it on the Actions Layer.

2. Make sure that the new Text Field is still selected. Open the Properties

panel and choose Dynamic Text.

Dynamic Text allows you to display the values of variables.

3. In the Var: field, enter the following:

 _root.output

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

97

This tells Flash that this Dynamic Text field should display whatever the
value of _root.output is. It will display the value of any variable you
enter here.

To make sure that your text field is clearly visible when you test your
movie, click the Show Border Around Text button.

Once you’ve tested the functionality of your text field, you may want to
make the border invisible again and draw your own custom border, using
Flash’s drawing tools, on another layer beneath the one that your text field
is on.

Optionally, you may at another time want to change the Single Line
option to Multiline, if you need to display a lot of information.

C) Set Up an Input Field

You now need to set up a text field to enter words or numbers.

1. Click on the Text Tool and draw a blank text field onto the stage, just
below the previous one you created.

2. Open the Properties panel and choose Input Text.

Input Text allows you to enter information (numbers or words) into the
text field.

3. In the Var: field, enter the following:

 _root.input

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

98

This tells Flash that whatever is entered into this field becomes the value
of _root.input. You could, of course, use choose any name for your
variable.

D) Create a Button To Activate the Input Text Entry

The next step is to add a button to activate the user’s text entry.

1. Drag one of the buttons from the Common Library onto the stage.
Position it next to the Input Text field.

2. Add the following to the button’s Object Actions:

 on (release, keyPress "<Enter>") {
 _root.output = _root.input;

}

The additional “keyPress “<Enter>”” argument for the “on” action tells
flash to accept the change if the user presses the button OR the “Enter”
key on the keyboard.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

99

Test your movie. Enter some text in the Input Text field, and click the button.
You should see the same text you entered displayed in the Dynamic Text field.

E) Clearing the Input Text Field

You might have noticed that after you type in some words and press Enter, that
the Input Text field does not become blank. If you want to enter new text, you
need to erase what you have written first. To clear the Text Input field
automatically, so that the user can enter some more text, add the following to
your Button Object Actions:

 _root.input = “”;

Your button object actions should now look like this:

 on (release, keyPress "<Enter>") {
 _root.output = _root.input;
 _root.input = "";

}

Test your movie and observe the effect. Can you see why this works?

D) Performing Simple Text Manipulation

Ok, that’s all fine and well, but what can you do with the kind of simple
input/output system we set up above? In the following example you will see how
you can use this technique to create a very basic simulation of artificial
intelligence.

1. Create a Static Text Field just above the Input Text Field. A Static Text
Field is one that does not contain any variables, and cannot be changed
or updated. This is the kind of text that you have been used to using in
Flash in the past. Type in the following:

 Please Enter Your Name:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

100

2. Now, change the Button Object Actions, so that it looks like this:

on (release, keyPress "<Enter>") {
 _root.output = "Hello, " + _root.input + ". How are you?";
 _root.input = "";
}

The only change is on the second line. What we’ve done, using simple
plus symbols, is combine “Hello, ” and “.How are you?” with the
_root.input variable. In computer programming, combining strings
together like this is called concatenation.

Test your movie, and see what happens now.

E) Performing Simple Mathematical Calculations

You can use these same techniques to do mathematical calculations.

1. In the first frame of the Actions Layer, change your variable values so that
they’re initialized to 0.

 _root.input = 0;
 _root.output = 0;

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

101

This tells Flash that we’re now dealing with numbers rather than strings.

2. Next, change the Button Object Actions so that they look like this:

 on (release, keyPress "<Enter>") {
 _root.output = _root.input * 10;
 _root.input = 0;

}

This tells Flash that _root.output should be _root.input multiplied
by 10. In ActionScript, as in all other programming languages, the asterisk
(“*”) symbol is used to represent multiplication.

3. Change the Static Text so that it reads, “Please Enter a Number:”.

Test the movie and observe the result. The Dynamic Text field will display any
number you entered, multiplied by 10.

Experiment with a few other mathematical operators and see what happens. The
operators you could use are:

 / Division
 - Subtraction
 + Addition

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

102

 * Multiplicaion

You might notice an unexpected result when you use the addition operator. Why
do you think this might be occurring?

Performing Addition with Input Text Field Entries

When you enter text into an Input Text field, ActionScript automatically assumes
that what you’ve entered is a string. If you enter a number, it converts the
number into a string. This is a real problem if you want to add a number from an
Input Text field to another variable.

To see this in action, change your Button Object Actions so that they look like
this:

on (release, keyPress "<Enter>") {
 _root.output = _root.input + 10;
 _root.input = 0;
}

Test the movie, and try entering “23” into the Input Text field. After you press the
button, you should see this:

2310

Of course, 23 plus ten is not 2310! What is happening is that ActionScript is
interpreting the number you entered in the Input Text field as a string, and
concatenates (combines) it with the number 10 instead of adding the two
numbers together.

To perform the addition, you need to force ActionScript to interpret the entry from
the Input Text field as a number. To do this, you need to use a special built in
function called Number.

Change your ActionScript code so that it looks like this (the code you need to
change is highlighted in bold text):

on (release, keyPress "<Enter>") {
 _root.output = Number(_root.input) + 10;
 _root.input = 0;
}

We’ve done two things:

• Surrounded _root.input in brackets

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

103

• Added a special ActionScript word called Number in front of the brackets.

Number forces everything inside the brackets to be interpreted as a number by
ActionScript. Very importantly, Number is spelt with a capital “N.” You’ll know
that you’ve entered it correctly if it appears in dark blue in your Actions Panel.
Flash colour codes all reserved words (special words that ActionScript uses) as
dark blue. This is useful to know, as it is an easy way of confirming whether you
have entered any ActionScript reserved words correctly.

Test your movie now. The addition should work properly.

Keep this technique in mind whenever you need to add numbers obtained from
Input Text fields. You do not need to use Number when adding together number
variables from any other source.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

104

Calculator Assignment

You should now have all the skills you need to build a very simple calculator in
Flash. Your calculator should do the following:

• Ask the user to enter his or her name.
• Greet the user with a welcome message, after the user presses an “Enter”

button.
• Ask the user to enter 2 numbers. You will need to create 2 Input Text

fields to allow this.
• Provide the user with 4 choices as to how they might wish to calculate the

numbers: Addition, Subtraction, Division or Multiplication. You need to
create 4 buttons to allow for this.

• Display the result of the calculation.

When you are finished, your calculator should look something like this:

Can you think of a design to make your calculator look like a “real” calculator –
something someone might be able to put in their pocket?

Hints:

• You will need at least 5 buttons

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

105

• You will need at least 3 Input Text fields
• You will need at least 2 Dynamic Text fields
• You will need to use the following variables (you can create your own

names for these variables if you like):

 _root.name
 _root.greeting
 _root.number1
 _root.number2
 _root.result

Remember to initialize these variables on the first frame of your Actions layer.

Evaluation:

4 Marks: For properly providing 4 calculator operations
2 Marks: For correctly setting up and using Dynamic, Input and Static Text
1 Mark: For a properly formatted greeting
1 Mark: For properly initializing your variables
2 Marks: For an interesting well thought out layout/design for your calculator.

TOTAL: /10

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

106

Part 3:
Introduction to Game Design

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

107

Video Game Design: An introduction

You’ll be pleased to know that the most difficult part of the journey is over. Now
that you have a basic understanding of how ActionScript works and how you can
use it to make highly interactive software, you can now extend that knowledge
into the realm of video game design. Flash also happens to be the best tool
currently available for making 2D games – by far. The next best software you
could use, Director, just doesn’t come close when it comes to ease of use and a
fully integrated programming environment. There’s just no easier and more
versatile way to make games than with Flash.

The first thing that I should point out is that all the programming techniques you
will be learning are very well defined and very specific to game design. Once
you learn these basic techniques, you’ll find that you use them over and over
again. And, you’ll find that once you’ve worked through these exercises, you can
simply copy and paste most of the ActionScript code you’ve written, with minor
modifications, to create your own completely unique games.

We’ll be covering the following topics, step by step, in the chapters and sections
ahead:

Part 3: Introduction to Game Design

• How to move a player object with the keyboard
• How to prevent your player from moving beyond the edges of the screen
• How to check to see whether your player is bumping in to other objects,

such as enemies, and then take some kind of action, such as updating a
score.

• How to create a maze environment for the player to move through

Part 4: Advanced Game Design

• How to create objects that move by themselves
• How to have your player fire bullets
• How to create a vehicle with a rotating gun turret
• How to create a “running and jumping” game

And, throughout the sections, we’ll also look at four specific case studies that
show you, step-by-step, how you can use these techniques together:

• Dungeon Maze Adventure
• Car Racing Game
• Space Shooter
• Running/Jumping Game (also known as a Platform Game)

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

108

• Drag-and-Drop Game

The final chapter of this book explains how to create a simple drag-and-drop
matching game for young children. There are just a few new techniques to learn
which you’ll find when combined with the other techniques you already know,
give you almost limitless scope to pursue any type of game you might think of.

It’s important to point out, however, what our limitations are. Flash only allows us
to create 2 Dimensional games – it just does not yet have the technical
capabilities to handle 3D. This is not a bad thing, however, because it is exactly
3 times more difficult to make 3D games than it is to make 2D games with the
technology currently available. And, as all the basic techniques for creating 3D
games are the same for 2D, you’re far better off getting a good grounding in 2D
games first. When you do enter the fascinating realm of 3D, you’ll find that
you’ve already got all the groundwork covered and, with your background in
Flash game design, you’ll find it just that much easier.

The other area of game design that is not covered is word/number games (like
hangman.) or text based adventure games (like the classic Zork or Kings Quest
series.) The reason for that is that the programming concepts involved are quite
heavy, as you need to able to create and search a database for information. The
techniques you would be required to learn begin to fall into the realm of computer
science, which is just beyond the scope of this book. For those of you interested
in pursuing this area, Foundation Action Script by Sham Bhangal contains an
excellent chapter on the subject of word games.

Finally, there is no mention made here of on-line multiplayer games. There are a
few reasons for this. Firstly, the techniques involved are highly specialized and
require knowledge of other software, technologies and programming languages
outside of Flash and ActionScript. Secondly, the technology is changing so
rapidly that it is likely to be out of date by the time you are reading this. So, it
may amount to a lot of ultimately wasted effort in the long run, which is not
something I want to burden you with while you are still learning the basics. For
multi-user Flash environments the technology seems to be moving in the
direction of the Flash Communication Server – but the verdict is still out. For
those of you who feel you have a good grasp of the techniques covered in this
book and would like to extend those skills into the multiplayer arena, the best
book on the subject is currently Flash Games Studio published by Friends of Ed.

Based on these limitations, however, you’ll find that what you will actually be able
to produce by the time you have worked through these exercises and examples
is quite extraordinary. There is no 2D video game from the 80 and 90 that you
can’t reproduce with Flash if you want to, and any possible game you can dream
up you’ll have the technical capabilities to achieve. Have fun, and send me your
games when you’re done!!!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

109

Introduction to Game Design
1) Keyboard Control

Control Structures and the “If…Else” Statement

All computer programming languages need a way to figure out the order in which
actions should happen, and what kinds of actions should happen based on
certain conditions.

For example, if you were creating a computer game where the player controls a
car, the computer might need to know that the car should only move forward if it
has enough petrol or if it hasn’t crashed into a wall. Normal cars know this by
themselves, but computer generated cars have to be told exactly what to do.

Computer programming languages use things called control structures to figure
out these sorts of problems. Control structures organize what happens when.

One of the most useful control structures is the If Statement. As in the example
of the car game mentioned above, an “If” statement performs an action if a
certain condition is true. If the condition is not true, the action doesn’t happen.

The following is an example, in plain English, of an “If” statement in action. (Plain
English examples of computer programming code are called pseudocode, (“fake
code”) by the way, and can be useful way of working out complex logic):

If the car’s tank is full, move the car.
If the car’s tank is empty, stop the car.

Not too difficult, is it? We can modify our pseudocode so it uses the correct
ActionScript syntax (the addition of brackets, braces and semi-colons,) like this:

 if (the car’s tank is full){
 move the car;

}

if (the car’s tank is empty){
 stop the car;
}

As you can see, the keyword here is If. Right after the “If” are a pair of brackets
which enclose a conditional statement. If the conditional statement is true
(such as “the car’s tank is full”) the action surrounded by the curly brackets {…}
activates. If it is not true, the action is skipped and nothing happens.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

110

Of course, “the car’s tank is full” or “move the car” is English, not ActionScript
programming code. We need to translate our English into ActionScript. To do
this, our conditional statement needs to check some kind of values. These
values are usually in the form of variables.

Let’s imagine that we’ve created a Boolean (true/false) variable called
“_root.car.tankIsEmpty” that keeps track of the car’s petrol. And let’s say
we’ve created a labelled frame on the “car” movie clip called “Go” and “Stop”.
Our Action Script code might look like this:

 if (_root.car.tankIsEmpty == false){
 _root.car.gotoAndPlay(“Go”);

}

if (_root.car.tankIsEmpty == true){
 _root.car.gotoAndStop(“Stop”);
}

The conditional statement uses a double equal sign (==) to check to see if the
statement is true. A single equal sign won’t work.

“If” statements are often (but not always) followed by an Else Statement. “Else”
statements tell the computer what to do if the “If” statement above it was not true.
We could therefore have written the above ActionScript code as:

 if (_root.car.tankIsEmpty == false){
 _root.car.gotoAndPlay(“Go”);

}else{
 root.car.gotoAndStop(“Stop”);
}

This code does exactly the same thing as the first example but the code that
comes after the “Else” statement will always be activated if the first “If” statement
isn’t. With a bit of practise, you will learn when you need to use just a series of
“If” statements or whether you need to combine them with an “Else” statement.

Comparison Operators

A comparison operator is a symbol, like the double equal sign (==) that helps
the computer decide when it should do what. Comparison operators are always
used in conditional statements. Conditional statements are what are between
the brackets of an “If” Statement, such as “(_root.car.tankIsEmpty ==
false)”.

The following is a list of the most useful comparison operators you can use:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

111

 == is equal to
 != not equal to (you can also use <>)
 < less than
 > greater than
 || Or
 && And
 <= less than or equal to
 >= greater than or equal to

By combining these simple operators, you can create remarkably complex
“artificial intelligence.”

A few examples of how conditional operators might be used appear below:

Greater Than and Less Than…

Let’s imagine that our car’s petrol tank can be not just full or empty, but, like a
real car, can become gradually less full as it goes along. Our imaginary car is full
when the fuel tank reads “10” and empty when it reads “0” Let’s also imagine
that our fuel is represented by a variable called “_root.car.fuel” and that
we’ve initialized it to “10” at the very start of the game. As the game progresses,
perhaps every few kilometres, the car’s fuel could drop by 1.

We can use a greater than or less than comparison operator to check to see
whether the fuel is more or less than zero.

 if (_root.car.fuel < 1){
 _root.car.gotoAndPlay(“Stop”);

}

In this example, if the car’s fuel drops below 1 (becomes zero) the car will stop.

We can also check to see if a value is less than or equal to a certain value,
such as this example:

 if (_root.car.fuel <= 3){
 _root.car.warningLight.gotoAndPlay(“Blink”);

}

In this example, if the car’s fuel is equal to or less than 3, the car’s warning light
will blink.

OR and AND…

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

112

You can also combine tests for certain conditions. For example, we might want
to flash the car’s warning light when the car’s fuel drops below 3 or if the engine
becomes too hot. In that case, we might use a comparison operator called Or.

if ((_root.car.fuel <= 3) || (_root.car.engineTooHot == true)){
 _root.car.warningLight.gotoAndPlay(“Blink”);

}

 “Or” is represented by 2 vertical lines: ||. (This is sometimes called the pipe
symbol and is just above the backward slash key on the keyboard.) The above
“If” statement will activate if either of these conditions are true. Both conditions
have to be within their own pair of brackets, and both sets of brackets must be
inside the “If” statement’s own pair of brackets.

The And comparison operator is another useful one, and checks to see whether
two or more different conditions are true. The “And” operator is represented by a
double “And” symbol: &&. In the following example, the warning light only blinks
if the engine is too hot and the fuel is low:

if ((_root.car.fuel <= 3) && (_root.car.engineTooHot == true)){
 _root.car.warningLight.gotoAndPlay(“Blink”);

}

Using If Statements to Build a Simple Keyboard Control

Follow the exercise below to create a simple object that can be controlled using
the arrow keys on the keyboard:

1. Create a new movie. Set the Frame Rate (Frames Per Second) to 30.

2. Think of a game that you would like to create, and create a new Movie

Clip Symbol that represents the player’s character. It might be a
spaceship, a car or a person.

3. Copy an instance of this Movie Clip symbol onto the stage and give it the

object name: player

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

113

4. Open the Movie Clip Actions of your player instance. Make sure that
Actions – Movie Clip appears at the top of the Actions Panel. (If it
doesn’t click on the player Movie Clip instance you created above.) Copy
the following ActionScript code into the Actions Panel:

onClipEvent(enterFrame) {

 if (key.isDown(39)) {
 this._x = this._x + 5;
 }

 if (key.isDown(37)) {
 this._x = this._x - 5;
 }

 if (key.isDown(40)) {
 this._y = this._y + 5;
 }

 if (key.isDown(38)) {
 this._y = this._y - 5;
 }

}

Don’t forget the final curly bracket! Test your movie and see if it works.

How It Works:

The above bit of ActionScript introduces a few new actions. The first one is:

 onClipEvent(enterFrame) {

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

114

 }

onClipEvent (enterFrame) tells the computer that whatever is betweens its curly
brackets, { } , should happen all the time. This is a loop.

The ActionScript code that is inside this action repeats for as long as the object is
on the stage. That means that the “If” statements inside the loop are checked 30
times every second. In games, things can change in a split instant, so it is
important that your object is constantly looking for new information. As far as
we’re concerned, it loops forever.

And what is the computer looking for? 30 times every second it is looking for
which keys the player is pressing so that it knows which direction to move the
object in. That brings us to the next few lines:

 if (key.isDown(39)) {
 this._x = this._x + 5;
 }

First, we have an “If” statement. The “If” statement checks to see if the Right
Arrow is being pressed on the keyboard. “39” is the code for the right arrow.
“Key.isDown” is a special action that listens for key presses. (If you want to see
all the keyboard codes, for all the keys, press “F1” in Flash to open the help file,
click on “Action Script Reference“ and then “Keyboard Key Code Values.”)

If the right arrow key is being pressed, the next line, “this._x = this._x +
5;” tells the computer to move this object’s “x” position 5 pixels to the right.
Remember, “_x” is the object’s horizontal position.

What’s “this”???

You could easily have used the following code, and the movie would have
worked exactly the same way:

if (key.isDown(39)) {
 _root.player._x = _root.player._x + 5;
}

So why are we using an object name called “this”?

Because this ActionScript code were are using is right inside the object, we don’t
need to use the object’s full name (“_root.player”) The object knows its own

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

115

name. We would only need to use its full name if we were trying to control its
position from another object. We could use its full name if we wanted to, but in
this case we don’t need to.

Using “this” as the object name when your ActionScript is inside the object itself
is very efficient. It has the following advantages:

• It saves you some typing – you don’t have to write out the full object
name.

• You can copy exactly the same code into another object and it will work
exactly the same way, no matter what the object’s name is. This means
that you could create a whole library of useful code and copy it onto
whichever object you would like to exhibit a particular behaviour. Because
you’ve used “this” instead of the object name, the code will work for any
object in exactly the same way.

The rest of the ActionScript code works in exactly the same way as the first “If”
statement except that each following statement checks for another key being
pressed. If no keys are being pressed, none of the “If” statements are activated
and the object doesn’t move.

Changing Direction

Very often you will want your objects to change the direction they are facing in
when you press one of the arrow keys. For example, you might want your player
character to face right when you press the right arrow key, and left when you
press the left arrow key.

For this to work, you first need to add some labelled frames to you player’s Movie
Clip Symbol. You could call them “Right”, “Left”, “Up” and “Down”. On each
labelled frame, change the direction in which your object is pointing.

Next, you need to add some extra ActionScript to our example. Your
ActionScript needs to tell Flash to jump to the correct labelled frame when an
arrow key is pressed.

The following exercise shows you how you can easily add “right” and “left”
directions to your player object.

1. Open your player movie clip symbol. Add two layers: “Labels” and
“Actions”. Create two new labels, “left” and “right” spaced 10
frames apart. Add stop() actions to the Actions layers just below these
labels.

Your timeline should look something like this:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

116

2. On the layer containing your player graphic, add a keyframe just below the
“right” label.

3. Select your player graphic. Click on the Modify menu, choose,

Transform and then Flip Horizontal.

You should notice your player graphic change the direction in which it is
facing.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

117

Go back to the main stage, and open up the player’s Object Actions. Change the
code so that it looks like this (the modified sections are highlighted):

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

118

onClipEvent (enterFrame) {

 if (key.isDown(39)) {
 this._x = this._x + 5;
 this.gotoAndStop("right");
 }

 if (key.isDown(37)) {
 this._x = this._x - 5;
 this.gotoAndStop("left");
 }

 if (key.isDown(40)) {
 this._y = this._y + 5;
 }

 if (key.isDown(38)) {
 this._y = this._y - 5;
 }

}

Whenever the left and right arrow keys are pressed, the code tells the movie clip
to go to and stop at the frames labelled either “left” or “right”.

You’ve used the technique of jumping to labelled frames many times in the past,
but it may not have occurred to you to use it in this context to achieve what is a
very compelling effect. Knowing when to combine simple actions in this way is
90% of the challenge to creating games… and it doesn’t get much more difficult
than this. Think carefully about what you want to achieve and, more often than
not, the solution will be a simple one.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

119

Introduction to Game Design
2) Screen Boundaries

You might have noticed that the object you created in the previous lesson
disappears off the edge of the screen if you move it too far. It doesn’t know
where the boundaries of the screen are. Computers, and the things that we
create with computers, only know as much as we tell them, so the next step is to
tell our object where the edges of the screen are.

In computer games, there are usually two ways that objects react when they
reach the edge of the screen. The first is, not surprisingly, they stop. The
second, which is very common in space games especially, is that they wrap to
the opposite side of the screen. We’ll look at both of these one at a time.

1: Stopping At the Edges of the Screen

1. Make sure that your object is at the very centre of its own stage. Open up
the player object’s Movie Clip Symbol. Make sure that the graphics are
centered right over the plus symbol (+) that marks the centre.

None of the ActionScript below will work the way you’d expect it to if the
object is not completely centered. (If you used “left” and “right” labeled
frames from the previous lesson, you must make sure that the graphics
from both frames are in the same place. Use the Properties Panel to help
you with this.)

2. Add the following highlighted ActionScript code inside the onClipEvent
(enterFrame) action you created in the previous assignment:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

120

onClipEvent(enterFrame) {

 if (key.isDown(39)) {
 this._x = this._x + 5;
 this.gotoAndStop("right");
 }

 if (key.isDown(37)) {
 this._x = this._x - 5;
 this.gotoAndStop("left");
 }

 if (key.isDown(40)) {
 this._y = this._y + 5;
 }

 if (key.isDown(38)) {
 this._y = this._y - 5;
 }

 //Check for Screen Boundaries

 if (this._y <= 0){
 this._y = 0;
 }

 if (this._y >= 400){
 this._y = 400;
 }

 if (this._x <= 0){
 this._x = 0;
 }

 if (this._x >= 550){
 this._x = 550;
 }
}

Remember… don’t forget that final curly bracket! Test the movie and see what
happens.

Let’s look at the first “If” Statement:

if (this._y <= 0){

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

121

 this._y = 0;
 }

The way this works if quite simple. If the _y position of the object is less than or
equal to “0”, it means that it must be at or beyond the top of the stage.
Remember, the top of the stage is “0” and the bottom is “400”. If the object’s _y
position is at or less than “0”, its position should be forced back to the top of the
stage. The line “_y = 0;” is what forces it back.

If we translated the first “If” statement of our ActionScript code into English, it
might look something like this:

If (I am at or beyond the top of the stage){
 Set me back to the top;
}

This prevents the object from ever going past the top of the screen.

The three remaining “If” statements check to see if the object is beyond the right,
left and bottom edges of the stage, and force it back in the same way.

You might be wondering about this line:

//Check for Screen Boundaries

This is comment. Comments are notes to yourself that you can write inside your
code. Comments are preceded by two forward slashes: //. Anything you write
after the forward slashes will not be processed as ActionScript. Comments are a
useful way of organizing large, complex pieces of code, because they allow you
to give each section a title.

You can also use comments to temporarily disable bits of code without deleting
it. This is useful for debugging; if you want to see how your movie will run
without a particular section of code but still keep it around in case you need to
use it later.

To write longer comments that extend for more than one line, or to disable large
sections of code, you can use this format:

/*
Anything between
these 2 symbols will
not be processed by
ActionScript
*/

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

122

2: Screen Wrapping

Screen Wrapping means making the object jump to the opposite edge of the
screen when it reaches the screen boundaries. This is a way of making a kind of
“infinite” screen, and is used in many types of games. Follow the directions
below so that your object wraps around the edges of the stage:

1. Delete the four new “If” statements that you entered above in your Movie
Clip Object Actions. (You can’t have both at the same time. If you want to
temporarily disable the code, however, without deleting it, add /* at the
beginning of the section of code and */ at the end of it.)

2. Add the following ActionScript code:

 if (this._y < 0){
 this._y = 400;
 }

 if (this._y > 400){
 this._y = 0;
 }

 if (this._x < 0){
 this._x = 550;
 }

 if (this._x > 550){
 this._x = 0;
 }

This works in a very similar way to the first example but this time, when the
object reaches the edge of the screen, it is forced to the opposite side. Tricky,
huh? Can you see how it is working?

Advanced Screen Boundaries: Detecting Player Boundaries

You might have noticed a small problem with the above two examples. The
object only stops or wraps when its centre goes past the edge of the screen.
What if we want the object to stop when only its top edge hits the top of the
screen, or wrap only when it has completely disappeared?

To do this, the object needs to know how big it is: it needs to know its height and
width. Fortunately, ActionScript gives us very convenient properties to figure this
out: “_height” and “_width” of course!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

123

Now, let’s think about how we can use “_height” and “_width” to figure this
out:

The top position of our object equals the center _y position minus half of its
height. The bottom position of our object equals the center _y position plus half
of its height. Similarly, the right and left edges of the object are its _x position,
plus or minus half its width.

Remember, when you move from left to right, the _x position increases. When
you move from top to bottom, the _y position increases.

I know, this sounds a bit confusing. It is, until you actually see it in action, and
think about how it is actually working.

To use this information to stop the edges of your player character from
disappearing past the edges of the stage, you can use this code (replace the “If”
statements you used earlier):

 //Check for Screen Boundaries

 if ((this._y - (this._height/2)) <= 0){
 this._y = 0 + (this._height/2);
 }

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

124

 if ((this._y + (this._height/2)) >= 400){
 this._y = 400 - (this._height/2);
 }

 if ((this._x + (this._width/2)) >= 550){
 this._x = 550 - (this._width/2);
 }

 if ((this._x - (this._width/2)) <= 0){
 this._x = 0 + (this._width/2);
 }

Your final ActionScript code should now look like this:

onClipEvent(enterFrame) {

 //Keyboard Control

 if (key.isDown(39)) {
 this._x = this._x + 5;
 this.gotoAndStop("right");
 }

 if (key.isDown(37)) {
 this._x = this._x - 5;
 this.gotoAndStop("left");
 }

 if (key.isDown(40)) {
 this._y = this._y + 5;
 }

 if (key.isDown(38)) {
 this._y = this._y - 5;
 }

 //Check for Screen Boundaries

 if ((this._y - (this._height/2)) <= 0){
 this._y = 0 + (this._height/2);
 }

 if ((this._y + (this._height/2)) >= 400){
 this._y = 400 - (this._height/2);
 }

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

125

 if ((this._x + (this._width/2)) >= 550){
 this._x = 550 - (this._width/2);
 }

 if ((this._x - (this._width/2)) <= 0){
 this._x = 0 + (this._width/2);
 }
}

This is one example of how surprisingly useful properties can be.

That should be enough to get you started, and enough to help you solve the
following problem:

Modify your ActionScript so that the object wraps to the opposite side of the
screen only after it has completely disappeared. This will make your screen
wrapping look really believable.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

126

Introduction to Game Design
3) “Bumping Into Things”: Collision Detection

What makes most computer games fun to play is that they are, in their essence,
a simplified simulation of the real world. And, like the real word, they contain
objects that you can interact with in some way. These objects might be walls that
block your movement, friends that help you, or enemies that could harm you.

To create these sorts of interactive objects, you first need a way of finding out
whether one object is touching another object. In computer game programming,
this is called collision detection. Flash has a very simple method of detecting
collisions between objects.

The hitTest Action:

hitTest is an action that checks to see if any two objects have bumped into one
another. Let’s say that you have a Movie Clip object called “car” that the player
can control. You also have a Movie Clip object called “wall”. In your game, if
the player’s car hits the wall, it should crash.

In plain English, we would want to write some computer code that looks
something like this:

 if (the car hits the wall){
 The car must crash;

}

We can translate this into ActionScript like this:

 if(_root.car.hitTest(_root.wall)){
 _root.car.gotoAndPlay(“Crash”);

}

The hitTest action is attached to the end of the “_root.car” object. It has an
argument, “(_root.wall)” which contains the name of the object that you want
to check for a collision.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

127

Usually, you would use the hitTest action inside the conditional statement of
an If Statement. If the hitTest is true, the actions inside the If Statement
activate. If it is false (if the objects are not touching) the actions inside the If
Statement don’t activate.

The examples on the following pages will show you how to use hitTest to:

• Change a Dynamic Text Field
• Trigger an animation
• Block movement
• Update a score
• Reduce a “health meter”

Once you able to use these very simple techniques, you will be able to, with a
little imagination, to produce a richly varied number of different kinds of games.
All your hard work is about to pay off.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

128

Exercise 1: Changing a Dynamic Text Field

The following example will show you how to use hitTest to change the text of a
Dynamic Text field.

1. Open the example file that you were working on in the previous lessons.
You should have a “player” object that you can move around the screen.
Create a new object called “monkey”

2. Create a dynamic text field and assign it the variable name “display”.

3. Open the Actions for the “player” object that you have been controlling

with the keyboard. Enter the following ActionScript code inside the
onClipEvent(enterFrame), after your last If Statement, but before the
last curly bracket. Only enter the code that is in bold text - the rest is just
there to show you exactly where in your code to place it.

onClipEvent(enterFrame){

…your previous “If” statements will be here…

 //Collision Detection
if(this.hitTest(_root.monkey)){

_root.display = "You Hit the Monkey!";
}

 }

Enter only
this new code

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

129

4. Test the movie. You should notice the words “You Hit the Monkey!”

appear when the player bumps into the monkey object.

Because the hitTest action is inside the player’s Movie Clip Actions, you
don’t need to include the name of the object that is doing the hit-testing. The
object knows its own name, and that’s why we’ve used “this”. You could,
however, also use “_root.player.hitTest” (if your object is called
“player”) and that would work just as well.

You might have noticed that the message in the Dynamic Text field appears
the first time the player bumps into the monkey, and then remains on the
stage the whole time: even when the player is not touching the monkey. You
can prevent this from happening by adding an “Else” statement to your
ActionScript code:

if (this.hitTest(_root.monkey)) {
 _root.display = "You Hit the Monkey!";
 } else {
 _root.display = "You Have Not Hit the Monkey.";
 }

This is useful because whenever you have not hit the monkey, you get a
message telling you so.

Exercise Extensions:

1. Animate the “monkey” Movie Clip so that it moves around the stage
in an interesting way. This is an easy way to create a moving
target.

2. Modify your ActionScript code so that the monkey becomes
invisible when it is hit. Use the _visible property to accomplish
this.

3. Modify your code so that the monkey moves to a different place on
the stage when it is hit. Use the _x and _y properties to
accomplish this

Bounding Boxes

Flash detects a collision between two objects when the bounding boxes of
those objects overlap. Bounding boxes are invisible boxes that surround an
object. When you select an object on the stage with the mouse, you can see the
bounding box as a blue box that surrounds the object.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

130

A collision is detected whenever any portion of the bounding box intersects with
any portion of another object’s bounding box. The following are some examples:

You should notice a problem with this right away. Collisions can be detected
even though the actual graphics of the objects themselves are not intersecting.

This is actually not a flaw with Flash, but a technical problem that all game
designers face. The reason it exists is that modern computers are just not fast
enough to be able to calculate intersections of exact shapes fast enough to
update the screen so that the game is smoothly playable. Using a bounding box
is the most efficient way to check for collisions because the computer only has to
calculate the shape of a rectangle. This is mathematically very easy to do, and
therefore doesn’t put much strain on the computer’s processor. If the computer
was forced to check every pixel of every object to see whether or not it was
intersecting with every pixel of every other object, the game would be unplayably
slow.

Of course, this can be a problem if, as in the above examples, a collision is being
detected when none seems, visibly, to be occurring. There are 3 ways around
this problem:

• Create squarish or rectangular shaped objects in your games. This is the
simplest solution, and is the one that most game designers rely on. Even
if the collision detection doesn’t appear to be exact, it’s unlikely that the
player will notice if the objects in the game are moving quickly. If you look

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

131

carefully at most 2D games, you’ll notice that player and enemy
characters are usually rounded or squarish in shape. The fact that you
may not have noticed this before is a tribute to the game designer’s skill at
working around this technical limitation.

• Detect for collisions using sub-objects. For example, let’s say your

player object has a sub-object inside it called “head”. Instead of checking
for a collision between the monkey and the player, you could check for a
collision between the monkey and the player’s head. To do this, you
might use a line of ActionScript code that looks like this:

 if (_root.player.head.hitTest(_root.monkey)) {
 … actions …
 }

In this example, a collision would only be detected when the player’s head
(which is a movie-clip sub-object inside the player object) collides with the
monkey. You could set up similar collision detection code for the player’s
hands and feet to create very accurate detection.

However, be careful not to use too many sub-objects. The more sub-
objects you use, the more the computer’s processor has to work, and
more you risk slowing down the smooth play of your game.

• Check for the intersection of an object’s shape and a specific point on

another object. This is an advanced technique that is built into hitTest
and requires the use of special built-in variable called shapeFlag. We will
cover the use of shapeFlag in a later lesson.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

132

Exercise 2: Triggering An Animation

When 2 objects collide in a game, you will often want to trigger some kind of
animation, such as an explosion. This is a very easy effect to create. All you
need to do is create a labeled frame inside one of your Movie Clips and tell
Flash to go to that frame when a collision occurs.

The following exercise walks you though this process:

1. Open up the “monkey” Movie Clip and, on the Actions Layer, add

stop() actions at frame 1 and frame 10.

2. On frame 1 of your Labels Layer, create a label called “Wait“. On
frame 10 of your Labels Layer create a labeled frame called
“Screech”. Insert a blank frame (F5) on frame 20 so that you can
easily read the label.

Your layers should now look like this:

3. On the layer containing the monkey graphic, insert a blank frame
(F5) on frame 10, so that the image is extended into that frame.

4. Create a new layer called “bubble” and insert a keyframe (F6) on

frame 10. Draw a speech bubble with the word “Eeek!” inside it:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

133

5. Back on the main stage, open the player’s Movie Clip Actions and
add the following code to the If Statement that checks for the
collision with the monkey:

 _root.monkey.gotoAndStop("Screech");

Your ActionScript code should now look like this:

 if (this.hitTest(_root.monkey)) {
 _root.display = "You Hit the Monkey!";
 _root.monkey.gotoAndStop("Screech");
 } else {
 _root.display = "You Have Not Hit the Monkey.";
 }

6. Test your movie.

You can easily use this technique to create explosions or other effects in your
games.

Exercise Extension:

Modify the exercise so that the monkey’s speech bubble disappears when the
player is not touching it.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

134

Exercise 3: Blocking Movement

A very useful thing to be able to do in games is to block a player, or another
object, from moving into a certain area. The following code shows you a simple
trick you can use to do this:

 if(this.hitTest(_root.monkey)){
 this._x = oldXPosition;
 this._y = oldYPosition;
 }

 oldXPosition = this._x;
 oldYPosition = this._y;

(Remember, all this must be inside the onClipEvent(enterFrame) action)

How It Works:

Two new variables are used, “oldXPosition” and “oldYPosition”. They
keep track of the previous _x and _y positions of the player. When the player
hits the square, the player’s _x and _y properties are told to go back to what they
were a split moment before. And this stops the object from moving further.

Remember that everything inside an onClipEvent(enterFrame) action loops
continuously. If you have set your frame rate to 30 frames per second, all the
actions inside onClipEvent(enterFrame) will be activated 30 times each second
- forever. And, what’s really important, in this case, is that the actions are
scanned from top to bottom. This means that actions at the top are activated
before actions at the bottom. And, if you change the value of a variable at the
bottom, the same variable at the top will still be using the old value - until the next
scan.

So, what this means is that, on the first scan of the code, “oldXPosition” and
“oldYPosition” store the current value of _x and _y. But on the second scan,
the next frame, if the object has moved, they would be storing the previous
values. That means that we can use those previous values to force the object
back to where it was just before the current frame.

Don’t worry if you don’t understand this!!! It is complicated. The most important
thing is that you know you can use this trick if you need to, and that it works.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

135

Exercise 4: Updating a Score

Most games keep track of whether a player has won or lost by updating a score,
based on how well the player is performing. The following exercise will show you
how you can update a score and end the game when a certain score has been
reached.

The first thing you need to do is to set up a labeled frame on the main timeline
that tells the player that they have won the game:

1. Set up your main timeline so that it looks like the image below:

Create 2 new layers, “Labels” and “Actions”. On the Labels layer, add the
label name “Game” on frame 1 and “GameOver” on frame 10. On the
Actions layer, add stop actions on frames 1 and 10.

2. Create a new layer, and on it insert a keyframe on frame 10. Write the

words “Game Over!” on the stage with the text tool:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

136

3. Finally, on frame one, change the variable name of your Dynamic Text
field to “score”.

4. The next step is to add the ActionScript. Change the code on your
player object that checks for collision detection so that it looks like this:

 if (this.hitTest(_root.monkey)) {
 _root.score = _root.score + 1;
 }
 if (_root.score >= 100) {
 _root.gotoAndStop("GameOver");
 }

Test your movie and see what happens. You should notice that while the player
is touching the monkey, the score increases. As soon as the score reaches 100,
“Game Over!” is displayed on the screen.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

137

There is nothing really new here. You’ve seen these techniques before, but it
might not have occurred to you to use them in this way to control the flow of a
game.

There is one detail that should be pointed out, however:

_root.gotoAndStop("GameOver");

In the above line, we are telling the _root timeline, not the object, to go to a
labeled frame called “GameOver”. Remember that all this code is inside our
player object. If we want to control something that happens on the main timeline
or inside another object, we have to use _root. and then the name of that object.
The main timeline is called “_root”, however, so if want to trigger actions on it we
simply use _root. and then the action name.

Remember, you can also use the increment operator (a double plus sign) to
increase the value of your “score” variable by one:

if (this.hitTest(_root.monkey)) {
 _root.score++;
 }

This is a slightly more efficient way of writing your code.

Fine-Tuning Your Score Keeping

In the previous example you would have noticed that the score continuously
updates while the two objects are colliding. Very often, you will only want the
score to update once, on the first collision, and not every moment that the objects
are touching.

To accomplish this you need some way of figuring out when the objects have
collided for the first time, and then prevent the score from updating until the
objects collide again later. The easiest way to do this is by using a new variable
to keep track of the state of the collision. In the example below, we will use a
variable called “iAmNotColliding” to do this, although you could use any other
variable name that you choose.

Beware, however: you should only attempt the exercise below if you have a firm
grip of how If Statements work. You may whish to come back to this exercise
later after you have had a little more experience programming with ActionScript.
It’s not difficult as such, but the logic involved is slightly on the mind-numbing
side. Proceed with caution….

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

138

The first step is to initialize the new variable that we will use to keep track of the
state of the collision. To do this, we will use a new action called
onClipEvent(load).

Enter the following before the onClipEvent(enterFrame) action:

onClipEvent(load){
 iAmNotColliding = true;
 }

Your ActionScript code should now look something like this:

onClipEvent(load){
 iAmNotColliding = true;
 }

onClipEvent(enterFrame) {
 …check for key presses
 …check for screen boundaries
 …collision detection
}

Any actions that you enter inside an onClipEvent(load) action only run once: the
very first time Flash loads the object onto the stage. You should always use
onClipEvent(load) to initialize variables that your objects will need to use. The
onClipEvent(load) action should always be added above the
onClipEvent(enterFrame) action.

We’ve initialized the “iAmNotColliding” variable to “true” so that our object
knows that, when it is first loaded onto the stage, it is not colliding with anything.

Next, change your collision detection code so that it looks like this:

if ((this.hitTest(_root.monkey)) && (iAmNotColliding == true)) {
 _root.score = _root.score + 1;
 iAmNotColliding = false;
}
if ((!this.hitTest(_root.monkey)) && (iAmNotColliding == false)) {
 iAmNotColliding = true;
}
if (_root.score >= 10) {
 _root.gotoAndStop("GameOver");
}

Here’s where the mind-numbing logic comes in. Let’s walk through it in plain
English:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

139

If the player is colliding with the monkey, and has not collided before, then
we should increase the score by one, and tell the player that it is currently
colliding.

If the player is not colliding with the monkey, but has collided before, then
we should tell the player that it is no longer colliding, so that it is free to
collide again in the future.

If the score is greater than or equal to ten, go to the labeled frame on the
main timeline called “GameOver”

Yes, I know this is pretty tricky! This is a fairly complex use of logical operators
and If Statements. Don’t feel discouraged if you don’t understand it right away or
not are able to write similarly complex code yourself any time soon. Look it over
a few times, think about it while lying in bed a night, come back to it a few days
later and it will gradually start to make sense. Do, however, feel free to use it
whenever you need to use this kind of effect. A crucial aspect to learning how to
program is to see how other people have solved problems and then to use those
solutions to solve your own problems. This is how everyone learns to program.

Although all of the basic mechanics behind the above code have been covered in
previous lessons, there is one line that is worth clarifying, as it involves quite an
unexpected use of the Not operator, an exclamation mark: !. It’s this line here:

if ((!this.hitTest(_root.monkey)) && (iAmNotColliding == false))

The Not operator is used to tell Flash when it should be on the lookout for things
that are not happening. Often, this can be as important as knowing when things
are happening.

We can translate the section of code…

if ((!this.hitTest(_root.monkey))

…as…

if this object is not colliding with the monkey.

This is useful to keep in mind if you ever need to check something similar in the
future.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

140

Exercise 5: Implementing a Health Meter

Many games employ the use of a “Health Meter” to determine when the game is
over. When the player bumps into bad things, like enemies, the health meter
gradually shrinks in size. When the health meter disappears, the game ends.

Implementing a health meter is very easy. It makes clever use of the Movie Clip
object’s _xscale property. The following example demonstrates how to create
one.

1. In the same file that you were working on previously, create a new
Movie Clip Symbol called “Heath Meter”. In the Symbol Editing
window, draw a long bar on the stage:

Make sure you draw the heath meter so that the Movie Clip’s center
point is on the very left hand side.

2. Drag an instance of the health meter onto the stage and give it the
object name “healthMeter”

3. Modify your player object’s collision detection code so that it looks like
this:

if (this.hitTest(_root.monkey)) {
 _root.healthMeter._xscale--;
}
if (_root.healthMeter._xscale <= 0) {
 _root.gotoAndStop("GameOver");
}

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

141

Test the movie. You will notice that while the player is touching the monkey, the
health meter gradually shrinks. When it reaches zero, the “Game Over!” screen
is visible.

In the following line we used the decrement operator (double minus sign):

if (this.hitTest(_root.monkey)) {
 _root.healthMeter._xscale--;
}

You could, however, write the line like this:

if (this.hitTest(_root.monkey)) {
 _root.healthMeter._xscale = root.healthMeter._xscale - 1;
}

It’s more typing, but it will work exactly the same way.

Also important to keep in mind is that you can use the values of object properties
inside If Statement, to check any condition of the game, as in this line:

if (_root.healthMeter._xscale <= 0) {
 _root.gotoAndStop("GameOver");
}

We are using the _xscale property of the “healthMeter” Movie Clip object
itself, not a variable, to determine when the game should end. You can use any
object properties in this way – and this is could be an extremely useful tool when
you are creating a game. Keep it in mind.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

142

Introduction to Game Design
4) Advanced Collision Detection

There may be many instances were collision detection using a Movie Clip
object’s bounding box will just not be accurate enough for the kinds of games you
will want to create. To increase collision detection accuracy, you can set up
detection using sub-objects or points.

Using Sub-Objects

You can easily make your collision detection more accurate by creating smaller
objects inside the main objects to check for collision. For example:

Inside the _root.player object are other movie clip symbols. Instead of using
the main _root.player object to check for collisions, you can use the sub-
objects, like this:

if (_root.player.leftHand.hitTest(_root.monkey)) {
 … collision actions …
 }

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

143

In this example a collision will only be detected if the player’s left hand is
intersecting with the monkey’s bounding box.

Although this is more accurate, a collision will still be detected if even if the
player’s left hand intersects with an empty area of the monkey’s bounding box,
such as in this example:

You can increase the accuracy of this technique by creating sub-objects in the
other object as well:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

144

if (_root.player.leftHand.hitTest(_root.monkey.hand)) {
 … collision actions …
 }

In this example a hand object was created inside the monkey object, and a
collision set to be detected only if it intersects with the player’s leftHand.

(By the way, the easiest way to create a sub-object inside an object that already
exists is to select an area with the arrow tool and press F8 to convert it into a
Movie Clip Symbol. This is useful because it means that you don’t have to
decide on what your sub-objects will be until after you’ve created your main
object.)

If you create enough sub-objects at strategic spots inside your main objects, you
can have very accurate collision detection. You will, of course, also need very
many If Statements to check for all these collisions. In addition to vastly
increasing the amount of typing and debugging that you will need to do, your
game many also start to slow down due to the extra processing required to do all
this collision detection.

Careful use of this technique, however, will help you solve most of the accuracy
problems that you are likely to run into.

Detecting Shapes

There is another version of hitTest that looks like this:

objectA.hitTest(objectB.pointX, objectB.pointY, true);

This allows you to check to see if a single point inside “objectB” is touching the
actual shape of “objectA.” If it is, a collision is detected.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

145

Let’s have a look at how this would work with our example:

if (_root.monkey.hitTest(_root.player._x, _root.player._y, true)) {
 … collision actions …
 }

In this example we are checking to see whether the center _x and _y position of
the player is intersecting with the actual shape of the monkey. If it is, a collision
is detected.

“true” is simply used to tell ActionScript that we are checking for a collision
between this point and the other object’s shape. If we change “true” to
“false”, the objects’ bounding boxes will be checked for a collision instead.

You don’t just need to use the center point of the object, however. You can use
any point, even one that is defined mathematically. For example, you could use
code that looks like this:

pointX = _root.player._x;
pointY = _root.player._y;

if (_root.monkey.hitTest(pointX, pointY, true)) {
 … collision actions …

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

146

 }

In this example, the center _x and _y position of the player were defined as
variables, and these variables were used in the collision detection code. The
advantage of this is that we can change the points we want to use simply by
changing how the variables are defined.

Let’s say we wanted to define a point that was on the left side of the player:

We define our variables so that the X and Y position of this point is defined:

pointX = _root.player._x - (_root.player._width / 2);
pointY = _root.player._y;

We can then use the same collision detection code:

if (_root.monkey.hitTest(pointX, pointY, true)) {
 … collision actions …
 }

Now, a collision will be detected when the newly defined point intersects with the
shape of the monkey:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

147

You can define as many points like this as you need to for your objects, and set
up individual collision detection code for each of them. By carefully choosing the
points on your object that are most likely to intersect with the shapes of other
objects, you can create very accurate collision detection.

You can define points within sub-objects just as easily. And, doing so is often
more convenient, such as in this example:

pointX = _root.player.leftHand._x;
pointY = _root.player.rightHand._y;

if (_root.monkey.hitTest(pointX, pointY, true)) {
 … collision actions …
 }

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

148

In this case, the center point of the leftHand sub-object is being tested against
the shape of the monkey. This is convenient because it saves us from having to
mathematically calculate the position of the point.

To increase accuracy, you can position the center point of the leftHand sub-
object to the edge of the hand using the Transform tool.

This method will give you very accurate collision detection without having to do
any math… and that has to be good!

But Why Isn’t There A Simpler Way???

That’s a good question. Why can’t Flash just detect the entire shape of an object
straight from the beginning? Why does it need to use inaccurate bounding boxes
or complicated individual points?

The reason for this has to do with what’s going on “behind the scenes” in our
computers. When we create a game in Flash, Flash is actually translating our
ActionScript code into binary machine language that our computer can
understand. As it turns out, describing to a computer exactly where a shape
begins and ends is an extremely complex and processor-intensive thing to do. If
your computer had to do these calculations, it would make your games so slow
that they would be unplayable. To accurately define the shape of an object,
Flash would have to calculate the position of hundreds of tiny points around the
edge of the object, check those against the points of other objects (which are
probably moving) 30 times per second! Modern computers are just not fast
enough to do this.

Don’t feel too discouraged, however: all computer games, not just ones created
in Flash, currently only use bounding boxes and individual points for collision
detection. And, actually, they’re really all you need.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

149

If you look at your own objects carefully, you’ll notice that there are usually only
very few points that that will ever come into contact with another object. Find
these points on your objects, and you’ll have a very accurate collision detection
system using as few points as possible.

VERY Advanced Collision Detection…Proceed With Caution…!!!

The above examples should be more than enough to get you started using
hitTest for very accurate collision detection. However, as your games become
more complex, you’ll find that you need to fine-tune your collision detection even
further. Until that time, however, feel free to skip this next section as it may just
confuse you. Also, you’ll understand it more once you’ve had some practice
working on your own projects.

If you’re using a lot of individual points or sub-objects to check for collisions,
you’ll soon start to notice that your game becomes slower and slower to play.
That’s because your computer has to spend more and more processing power
checking to see if all these objects and points are colliding with one another. The
more objects you have, the slower your game will become.

To fix this, you need to make sure that you don’t check for a collision until you
absolutely have to. There are lots of ways to do this, but here’s a particularly
useful one:

First of all, set up your collision detection so that that it only checks for a simple
collision between bounding boxes, like this:

 if(objectA.hitTest(objectB)){
 …a collision has occurred…

}

This will tell you that the two objects are within a general proximity of one
another.

Next, check for a collision between your points or sub-objects inside the first
hitTest:

 if(objectA.hitTest(objectB)){
 if(objectA.top.hitTest(objectB.body))
 || if(objectA.bottom.hitTest(objectB.body))
 || if(objectA.left.hitTest(objectB.body))
 || if(objectA.right.hitTest(objectB.body)))

{
 …a collision has occurred…

}
}

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

150

This saves the computer from having to process 4 additional If Statements until
the two objects’ bounding boxes are touching. If you use this technique, you’ll
notice a significant improvement in the speed and responsiveness of your game.
And in video games, responsiveness and speed (often called performance) are
the most important factors.

If you have a little knowledge of basic computer programming, and you feel
comfortable with the above information, you can make your ActionScript code
more efficient by looping through the objects you want to test using a for loop:

if(objectA.hitTest(objectB)){

for(i= 1; i>=4; i++;){
 if(objectA.hitTest([“objectB.subObject” + i]){
 …a collision has occurred…

}
}

}

For this to work, “objectA” would need to have 4 sub-objects called “subObject1”,
“subObject2”, “subObject3” and “subObject4”.

The for loop loops through the second If Statement 4 times, and each time
checks a different sub-object.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

151

Introduction to Game Design
5) Creating a Maze

The following exercise shows you how you can create the basis of a simple maze
game using the Advanced Collision Detection techniques explained in the
previous lesson. Please make sure that you understand those techniques before
you proceed.

In order to create a game in which the player needs to move through a complex
maze, you need to know how to use the shape collision detection technique. The
following example demonstrates how:

1. Create an object on the stage called “player”, or use the same “player”
object that you’ve been using in the previous lessons. Make sure that you
can move the object around the stage with the arrow keys.

2. Create a new Movie Clip Symbol called “map”. In the map symbol, design

your maze or environment.

You might find it easier to actually design your map on the main stage,
and then convert it into a symbol. This way you can see exactly where the
stage boundaries and your other objects are. You can select multiple
objects by holding down the Shift key. Press F8 to convert the selected
objects into a symbol.

3. Drag an instance of the map symbol onto the stage and give it the object

name “map”.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

152

4. Enter the following in the onClipEvent(enterFrame) action of your

“player” object:

 //Collision Detection
 if (_root.map.hitTest(this._x, this._y, true)) {
 this._x = oldXPosition;
 this._y = oldYPosition;
 }
 oldYPosition = this._y;
 oldXPosition = this._x;

Test your movie and see what happens. Whenever the player’s center _x or _y
point touches the shape of the map, the player is blocked.

The entire ActionScript code attached to you player, including keyboard control
and screen boundaries, should now look like this (the new code is highlighted.):

onClipEvent (enterFrame) {
 //Keyboard Control
 if (key.isDown(39)) {
 this._x = this._x + 5;
 }
 if (key.isDown(37)) {
 this._x = this._x - 5;
 }
 if (key.isDown(40)) {
 this._y = this._y + 5;
 }
 if (key.isDown(38)) {
 this._y = this._y - 5;
 }
 //Check for Screen Boundaries
 if ((this._y - (this._height / 2)) <= 0) {

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

153

 this._y = 0 + (this._height / 2);
 }
 if ((this._y + (this._height / 2)) >= 400) {
 this._y = 400 - (this._height / 2);
 }
 if ((this._x + (this._width / 2)) >= 550) {
 this._x = 550 - (this._width / 2);
 }
 if ((this._x - (this._width / 2)) <= 0) {
 this._x = 0 + (this._width / 2);
 }
 //Collision Detection
 if (_root.map.hitTest(this._x, this._y, true)) {
 this._x = oldXPosition;
 this._y = oldYPosition;
 }
 oldYPosition = this._y;
 oldXPosition = this._x;
}

Again, don’t forget that final brace!

This is essentially a combination of shape based collision detection and the
technique used in earlier lessons to block movement.

Unfortunately, we’re only halfway there. You probably don’t want to create a
maze game where the player’s center point intersects with the maze, but when
its edge does.

To do this, you first need define the top, right and left edges for the player. The
easiest way to do this is to add this bit of ActionScript code (which should
replace your previous code:)

 //Collision Detection

 //Define Player Boundaries:
 top = this._y - (this._height / 2);
 bottom = this._y + (this._height / 2);
 right = this._x + (this._width / 2);
 left = this._x - (this._width / 2);

 //Check for Collision with Map:
 if ((_root.map.hitTest(left, this._y, true))
 || (_root.map.hitTest(right, this._y, true))
 || (_root.map.hitTest(this._x, top, true))

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

154

 || (_root.map.hitTest(this._x, bottom, true)))
 {
 //Block Movement:
 this._x = oldXPosition;
 this._y = oldYPosition;
}

oldYPosition = this._y;
oldXPosition = this._x;

The coded is complicated, so make sure that you’ve added the right number of
brackets in the right place, otherwise it won’t work and Flash will give you error
messages in the output window.

Test the movie now, and you’ll notice that the player is stopped when the top,
bottom, left and right edges come into contact with the maze.

The first part of the code looks like this:

 //Define Player Boundaries:
 top = this._y - (this._height / 2);
 bottom = this._y + (this._height / 2);
 right = this._x + (this._width / 2);
 left = this._x - (this._width / 2);

What this does is to actually create 4 imaginary points on your object, something
like this:

These points are stored as variables (top, bottom, left and right) so that
they will be easy to use later.

The next part of the code uses those points to check to see whether they are
intersecting with the shape of the map object:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

155

 //Check for Collision with Map:
 if ((_root.map.hitTest(left, this._y, true))
 || (_root.map.hitTest(right, this._y, true))
 || (_root.map.hitTest(this._x, top, true))
 || (_root.map.hitTest(this._x, bottom, true)))
 {

This is one big if statement that checks to see if any of the points are intersecting
with the map. The “||” symbol means “Or”. The collision detection will be
activated if any of these four conditional statements are true.

If any of these points are touching the shape of the “map” object, the player is
prevented from moving, using the same blocking technique we used in the
previous lesson.

You’ll notice, however, that you can ‘squeeze’ through these points if you try.

There are a few possible solutions to this problem, and the one you choose will
depend on the specific design of your game.

The first possible solution is to define the points on the corners of your object,
instead of the middle of the edges. This is very easy to do, using the variables
that we’ve already defined. Change your code so that it looks like this (the
modified code is highlighted):

 //Define Player Boundaries:
 top = this._y - (this._height / 2);
 bottom = this._y + (this._height / 2);
 right = this._x + (this._width / 2);

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

156

 left = this._x - (this._width / 2);

 //Check for Collision with Map:
 if ((_root.map.hitTest(left, top, true))
 || (_root.map.hitTest(right, top, true))
 || (_root.map.hitTest(left, bottom, true))
 || (_root.map.hitTest(right, bottom, true)))
 {

This checks for a collision between the map and corners of the player’s bounding
box, like this:

This will work fine as long as the walls of your maze are wider than your player,
as they are in the example. If the walls of the maze are thinner, then you’ll have
to define additional points.

You may also run into another problem, which is the opposite of the one we
faced previously:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

157

The player might be blocked by one of the points we’ve defined, even though it
looks, visually, like nothing should prevent it from moving.

The easiest way to solve this problem is to design a squarish shaped player
character. That way the corners of the player’s bounding box will always be near
the corners of the actual image itself. Another solution is to design a maze that
doesn’t contain protruding edges.

If neither of those solutions will work for your particular game, then you will need
to add more points on any part of your object that might come into contact with
the edge of your maze:

It could be very difficult to define these points mathematically, so you might want
to use small, invisible, sub-objects instead. You then need to add more
conditional statements to your If Statement to check for a collision with these new
points.

Doing accurate collision detection like this takes time, patience and
concentration. However, it is the key to making a very professional game. If you
put the time into it, your players will thank you for it!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

158

ASM3O - Media Arts
Dodge Game Assignment

You should now have all the skills you need to create a fun computer game. In
this assignment, you will create a Dodge Game. A dodge game is a game in
which you have to avoid certain obstacles to reach a goal or destination.
Obstacles could be enemy spaceships, cars, trees or monsters. You could also
include helpful objects (called “pickups”) such as medicine kits, shields, or
treasure chests.

Your game should include the following:

• A start screen with the game title and a button that starts the game.
• Your game screen, which should include the following:

 A player object which is controlled using the keyboard
 “Enemies” that the player must avoid
 A start position for the player
 A goal that the player should reach
 A background scene where your game takes place

• You need to include some way of finding out whether the player has won

or lost the game. You could do this by creating a score (with a dynamic
text field), creating a goal that the player should reach, or by creating a
time limit.

• You need an end screen that tells the player whether they have won or
lost, and then give them the option to play again.

Project Duration: 8 periods.

Game Ideas:

The following are some ideas that you could use to create your game. There are
many more that I’m sure you could come up with yourself:

Space Game
The player’s spaceship must avoid a field of meteors and enemy spaceships to
reach its base or home planet. The player would win the game if he/she reaches
the base without being hit. You could make this game more interesting by
creating an additional goal that the player would have to fulfill, such as rescuing
friends who have been stranded in space, or collecting fuel cells. The player
could gain a point for each item collected, and, if he/she returns to the base with
them, wins the game.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

159

Street Crossing Game
A very popular early computer game called “Frogger” involved helping a frog
cross a street of busy traffic to reach his pond on the other side. You could
easily create a similar game with the skills you have.

Skiing Game
Create a game where the player skis down a hill, avoiding trees, in order to reach
the finish line at the bottom. To make this game work, the player would only
need to move right and left, not up and down. You could create the illusion of
downward movement by just animating the trees so that they move up the
screen. You could add an extra layer of interest to the game by requiring players
to ski over markers, and you could give them a point for each marker that they
cross.

Maze Dungeon
Create a game where the player needs to move through a dungeon maze. In
each room of the dungeon, there might be a treasure guarded by a monster. If
the player avoids or kills the monster and is able to pick up the treasure, he/she
would win. Decide on how many rooms, treasures and monsters you will have.
Also, think of where the dungeon will start and where it will end. You could make
this game more complex by allowing players to kill monsters only if they have
certain weapons or items. If you want to make a very complex maze, however,
you need to understand Advanced Collision Detection using the shapeFlag
variable, because the simple form of the hitTest action does not work well for
complex shapes.

Evaluation:

A) Game Play:

• Did you create a detailed/interesting player object? (2 Marks)
• Did you create a detailed/interesting background? (2 Marks)
• Did you create detailed/interesting “enemies”? (2 Marks)
• Was the theme and idea of the game clear and well developed? (2

Marks)
• Was the game fun to play (not too easy, not too hard)? (2 Marks)?

B) Technical Features:

• Did you have a proper title screen with a “Start” button? (2 Marks)
• Did have a proper finish screen that gave the player the option of

playing again? (2 Marks)
• Did you use the hitTest action properly? (2 Marks)
• Was your game able to tell the player whether he/she won or lost?

(2 Marks)?

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

160

• Did you use some sort of scoring system with a Dynamic Text
Field?

Bonus: Games are always more fun to play if there is a personal element. Can
you think of a creative use for text input (1 Mark)?
TOTAL: /20

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

161

Additional Resources
The following are some on-line listings of additional resources that you might
want to use in your games.

Images
“Dingbats” are fonts that use pictures instead of letters. There are thousands of
different dingbat fonts available on the internet, and many of these contain
images that are perfect as characters or objects in computer games. You can
download dingbat fonts here:

http://www.dingbatpages.com/
http://www.fontfreak.com/

To use Dingbats in Flash:

• copy the font into the “Font” folder in the C: drive of your computer.
• Select the font in Flash, and, using the text tool, find the image that you

want to use by pressing the correct key.
• Select the image with the arrow tool.
• Open the modify menu and choose break apart
• You now have a basic vector graphic that you can use for your game.

And what about 3D graphics? Don’t forget, you can create all your images in
Bryce, import them as bitmap graphics into Flash, and create a very impressive
looking 3D-style game.

Sound
You are not required to use sound in this project, but if you want to, you can find
music loops and sound effects from these sites:

http://www.partnersinrhyme.com/
http://www.flashkit.com/soundfx/index.shtml
http://www.basementarcade.com/arcade/sounds/sounds.html
http://www.vgmusic.com/

Game Creation Tutorials:
If you feel quite confident in the techniques you have learnt so far, you can learn
how to create scrolling backgrounds, independently moving enemies and bullets
in this very easy-to-follow tutorial. The tutorial is in 3 parts - start with the first
one:

1) http://www.flashkit.com/tutorials/Games/Building-David_Do-598/index.shtml
2) http://www.flashkit.com/tutorials/Games/Building-David_Do-610/index.shtml
3) http://www.flashkit.com/tutorials/Games/Building-David_Do-611/index.shtml

For a very advanced tutorial on how to create a 3D space game in Flash, visit
this link:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

162

http://www.flashkit.com/tutorials/Games/Programm-Ian_Rose-
632/index.shtml

Have fun!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

163

Part 4:
Advanced Game Design

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

164

Advanced Game Design
1) Advanced Keyboard Control – Natural Motion

You might have noticed that the objects you control with your keyboard start
moving suddenly, stop moving suddenly, and move around the screen in a jittery
way. In real life, things don’t move like that. That’s because, in real life, objects
have mass and inertia. It takes time for them to pick up speed, and takes time
for them to slow down. In the following exercises you will learn how to create
objects that behave like they have mass. This is basis for creating very
compelling and fun games.

It’s All in the Variables!

Very conveniently, all we need to do to simulate natural motion is to create a few
variables inside our objects that store certain imaginary physical properties.
Here are the basic physical properties that we’ll need to use:

• Horizontal Speed (xSpeed)
• Vertical Speed (ySpeed)
• Friction
• Acceleration
• Speed Limit (to make sure that the object doesn’t move faster than the

laws of nature allow.)
• … and maybe Gravity

All we need to do is initialize these variables, apply some very simple
calculations, and we’ll start creating objects that move as though they have
mass.

OnClipEvent(load) - A New Action

OnClipEvent(load) is an Movie Clip Action that is used to initialize variables
inside objects. It is almost always used along with onClipEvent(enterFrame).
The two actions are usually used together.

The difference between them is simple. Any actions inside onClipEvent(load)
only activate once. Actions inside onClipEvent(enterFrame) loop forever.

Usually you use onClipEvent(load) first to initialize your variables, then you use
onClipEvent(enterFrame) to move and control the object. Here is what your
Object Actions should look like when you use the two together:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

165

(By the way, a double forward slash: // tells the computer to ignore any
information that comes after it on the same line. It is used for writing notes to
yourself about what your ActionScript does. It is also for temporarily disabling
actions so that you can see what happens without them - rather than deleting
them.)

So, let’s create some variables. Create an object, and enter the following in its
object actions:

onClipEvent(load) {

 xSpeed = 0;
 ySpeed = 0;

 acceleration = 0.7
friction = 0.97;

 speedLimit = 10;

}

If you want to change the way your object moves, all you need to do is change
the values for acceleration, friction and speedLimit. (for a realistic effect, a
value between 0.88 and 0.99 works well for friction.)
Now that we have our variables, all we need to do is make our object move.

Make it Move!

We’re going to use the arrow keys to make our object move. Instead of the
arrow keys changing the _x and _y position of the object, they are now going to
change its xSpeed and ySpeed, and add our acceleration value every time they

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

166

are pressed. The 2 lines at the very end of the list of actions update the object’s
position based on its speed. Also, we are going to make sure that the object only
increases its speed if it is within the speed limit (this prevents the object from
flying away at a fantastic speed):

onClipEvent (enterFrame) {

 //Right Arrow
 if (key.isDown(39) && xSpeed < speedLimit) {
 xSpeed = xSpeed + acceleration;
 }

 //Left Arrow
 if (key.isDown(37) && xSpeed > -speedLimit) {
 xSpeed = xSpeed - acceleration;
 }

 //Down Arrow
 if (key.isDown(40) && ySpeed < speedLimit) {
 ySpeed = ySpeed + acceleration;
 }

 //Up Arrow
 if (key.isDown(38) && ySpeed > -speedLimit) {
 ySpeed = ySpeed - acceleration;
 }

// Reduce the object’s speed if no keys are pressed:
 xSpeed = xSpeed*friction;
 ySpeed = ySpeed*friction;

//Move the Object:
this._x = this._x + xSpeed;
this._y = this._y + ySpeed;

}

Test your movie and see what happens!

Creating a “Speed Trap”

If you watch your object carefully as it slows down, you’ll notice that it sometimes
doesn’t come to a complete stop. This is because the xSpeed and ySpeed
continue to reduce their values even after they reach zero. What you need to do
is force your object to stop completely at zero. You can do this by adding the
following code just before the end of your onClipEvent(enterFrame) action:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

167

if (xSpeed < 0.1 && xSpeed > -0.1) {
 xSpeed = 0;
 }

if (ySpeed < 0.1 && ySpeed > -0.1) {
 ySpeed = 0;
 }

Now your object will stop completely.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

168

Exercise 1: Add Some Gravity

To add gravity to your object, all you need to do is create a new variable, called,
surprisingly enough “gravity” and then tell gravity to take control of the object if it
is not moving up.

First, you need to add your gravity variable in the onCliptEvent(load) action.
Just add the line in bold text:

onClipEvent (load) {
 // variable declarations
 xSpeed = 0;
 ySpeed = 0;
 acceleration = 0.7
 gravity = 0.9;
 friction = 0.97;
 speedLimit = 10;
}

Next, you need to add an “Else” statement to the end of your first 4 “If”
statements in the onClipEvent(enterFrame) action. This tells Flash that if the
Up Arrow is not being pressed, it should add our gravity variable to the object’s
ySpeed. Just add the lines in bold text:

onClipEvent (enterFrame) {

 //Right Arrow

if (key.isDown(39) && xSpeed < speedLimit) {
 xSpeed = xSpeed + acceleration;
 }

 //Left Arrow
 if (key.isDown(37) && xSpeed > -speedLimit) {
 xSpeed = xSpeed - acceleration;
 }

 //Down Arrow

if (key.isDown(40) && ySpeed < speedLimit) {
 ySpeed = ySpeed + acceleration;
 }

 //Up Arrow

if (key.isDown(38) && ySpeed > -speedLimit) {
 ySpeed = ySpeed - acceleration;
 }

else{
 ySpeed = ySpeed + gravity;

Add this

Add this

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

169

 }

… the rest of the ActionScript code should stay the same.

Try changing the value of the gravity variable and see what kind of effect you get.

You could use this keyboard control to create a game in which a player might
have to navigate a helicopter or spaceship over rocky terrain. The game “Lunar
Lander” is a good example. Or, you could use it to create a Flash version of the
classic game “Joust”, where a player controls a giant flying bird. Every time the
player presses the Up Arrow, the player’s bird flaps its wings and moves up.

I’m sure you can think of many more clever uses!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

170

Advanced Game Design
2) Objects that Move by Themselves

You might not have realized this, but all the techniques that you’ve been learning
over the past few lessons can be applied to any objects in your games - not just
the player. What this means is that you can create objects that move by
themselves (without you having to animate them) and that react to the game
environment in an unpredictable way. The following exercises will show you
how:

Exercise 1: Simple One-Direction Movement

1. Draw a simple circle on the stage and turn it into a Movie Clip Symbol.

2. Open the circle’s Movie Clip actions, and add the following ActionScript:

onClipEvent(enterFrame){
 this._x = this._x + 1;
}

3. Test your movie. What happens? Do you know why it happens?

4. Next, add the bold text below:

onClipEvent(enterFrame){
 this._x = this._x + 1;
 if (this._x > 550){
 this._x = 0;
 }
}

5. Test your movie. What happens when the object reaches the right edge
of the screen? Do you know why that happens? You should by now!

What you have just created could be used to create asteroids that fly towards the
player or obstacles on a road. If you changed the “_x” to a “_y” you could create
raindrops, bombs or trees for a skiing game.

Random Numbers

Very often in games you don’t want the player to know where the enemies or
obstacles will appear next. You want their movement or appearance to be

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

171

random. To create random movement, you first need to create random
numbers. Luckily, this is quite easy to do, because Flash provides us with a
Math.random() action. This is what the random action looks like:

 Math.random();

What Math.random() does is create a random number between 0 and 1. Have a
look at the following example:

 myRandomNumber = Math.random();

In this example, “myRandomNumber” would become any number between 0 and
1. It could be “0”, it could be “1”, but it could also easily be “0.4543245” or
“0.76453256” or “0.6356435”. We never know - it’s random!

Well, you might ask, what good is a number between 0 and 1? Usually, not
much. So, you need to multiply Math.random() by another number to create a
number that will be larger than 1. Have a look at these examples:

• Math.random()*100; - creates a number between 0 and 100
• Math.random()*25; - creates a number between 0 and 25
• Math.random()*376; - creates a number between 0 and 376

All these numbers, however, would produce decimal values. That means the
numbers that you end up with might look like this:

 34.908323
 243.098
 23.88890988

Sometimes that’s Ok, but sometimes you only want whole numbers. To create
random whole numbers, you need to put Math.random() inside another action
called Math.round, like this:

 Math.round(Math.random()*100);

This would create produce a whole number between 0 and 100, like this:

 84

Math.round() rounds off the random number so that there are no decimals.

Ok, now what if you wanted a random number that was within say, 10 and 20?
You would do it like this:

 Math.round(Math.random()*10)+10;

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

172

First, this would create a random number between 0 and 10. But then we add an
extra 10 to it. So the final number that we end up with would be between 10
and 20. This might seem a little confusing, but you’ll get used to it with practice.
Exercise 2: Creating Random Motion

To create objects that move randomly, all you need to do is assign random
numbers to their X and Y positions or their X and Y Speeds. In the circle movie
clip that you created earlier, change the object actions so that they look like this:

 onClipEvent(enterFrame){

 this._x = this._x + Math.random()*10-5;
 this._y = this._y + Math.random()*10-5;

}

Test the movie. You’ve created a completely randomly moving object.

“Math.random()*10 - 5” creates a random number between 5 and -5, and alters
the object’s _x and _y position accordingly. Now, lets just set an initial random
speed for the object. Enter the following in the circle’s Movie Clip Actions so that
it replaces your previous code:

 onClipEvent(load){

 //Initialize the Speed Variables
 xSpeed = (Math.random()*10-5);
 ySpeed = (Math.random()*10-5);

}

onClipEvent(enterFrame){

 //Move the Object:
 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;

}

Test your movie 3 or 4 times. You should notice that the object moves in a new
random direction every time.

Next, make 20 copies of the circle on the stage. Do this by copying and pasting
the instance of the circle you currently have on the stage, not by dragging a new
copy from the library. By copying and pasting the current instance of the circle,
all of its ActionScript code will be copied along with it.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

173

Test the movie… what happens? You should notice that each circle has its own
behaviour - no two are alike.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

174

Exercise 3: Make Them Bounce

Now, let’s see if we can make our random objects bounce off the edges of the
screen.

First, delete all the circles except one.

Add the following bold text code inside the circle’s onClipEvent(enterFrame)
action:

onClipEvent(load){

 //Initialize the Speed Variables
 xSpeed = (Math.random()*10-5);
 ySpeed = (Math.random()*10-5);
}

onClipEvent(enterFrame){

 //Check Screen Boundaries
 if(this._x > 550){
 xSpeed = (-xSpeed);
 }
 if(this._x < 0){
 xSpeed = (-xSpeed);
 }
 if(this._y > 400){
 ySpeed = (-ySpeed);
 }
 if(this._y < 0){
 ySpeed = (-ySpeed);
 }

 //Initialize the Speed Variables
 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;

}

Now, make 15 copies of your object (you can do this quickly by holding down
ALT and clicking and dragging the original object.)

Test your movie… what happens?

How It Works:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

175

The logic behind this is very simple. When the object reaches the edges of the
stage, it is told to reverse its x or y speed, such as:

 xSpeed = (-xSpeed);

This creates the illusion of the object bouncing. The “-“ symbol simply sets the
speed to the opposite of what it currently is, very easily reversing the object’s
direction. And, because every object has its own randomly generated speed,
every object bounces back in a unique way. Watch the circles for a few minutes:
they almost look alive!

There are literally thousands of ways that you can use random numbers in your
games, and this is just a beginning. Once you start experimenting, you’ll be
amazed at what you can do.

Adding Gravity

You can easily add gravity by creating a new gravity variable and combining it
with the calculation that figures out the ySpeed of your object. Add the following
highlighted lines to your code:

onClipEvent (load) {
 //Initialize Variables
 xSpeed = (Math.random() * 10 - 5);
 ySpeed = (Math.random() * 10 - 5);
 gravity = 0.94;
}

onClipEvent (enterFrame) {
 //Check for Screen Boundaries:
 if (this._x > 550) {
 xSpeed = (-xSpeed);
 }
 if (this._x < 0) {
 xSpeed = (-xSpeed);
 }
 if (this._y > 400) {
 ySpeed = (-ySpeed);
 }
 if (this._y < 0) {
 ySpeed = (-ySpeed);
 }

 //Add gravity to the ySpeed:
 ySpeed = ySpeed + gravity;

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

176

 //Move the Object:
 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;
}

You’ll notice a small problem when you test the movie, however. The object
doesn’t come to a complete rest when it hits the bottom of the stage, and
continues to be dragged down. We can prevent this from happening by making
the following modification to the If Statement that checks whether the object is at
the bottom of the screen:

 if (this._y > 400) {
 ySpeed = (-ySpeed);
 this._y = 400;
 }

The additional line (this._y = 400;) forces the object back onto the stage to
Y position number 400. This is the point at which it is no longer being affected by
the If Statement. It is therefore no longer “trapped.”

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

177

Advanced Game Design
3) Firing Bullets

One of the most important things to be able to do in a computer game is to fire
bullets. This is quite complicated and there are a lot of new techniques here, so
you must follow the instructions VERY CAREFULLY:

A: Create Your Objects

Create 2 objects on the stage: One called “gun” and another called “bullet”.

Don’t forget to name these in the properties panel!

You can position the bullet anywhere on the stage for now, but later you will be
moving it off-stage.

The center point of the gun object will be where your bullets will be firing from, so
make sure that it is at the front of your gun.

You can use the Transform tool to reposition the center point if you need to.

B: Program the Gun

Open the gun’s Movie Clip Actions and add the following code:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

178

onClipEvent(load){
 shotTimer = 0;
 shotCount = 0;
 shotInterval = 5;
 }

onClipEvent (enterFrame) {

 //Fire the Bullet:
 if ((Key.isDown(Key.SPACE)) && (shotTimer <= 0)) {
 shotCount = shotCount + 1;
 duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);
 shotTimer = shotInterval;
 }

 // Decrease the value of shotTimer if the Space Key
 // is not being pressed:
 shotTimer = shotTimer - 1;
}

Before our gun will work, we need to program the bullet as well.

How It Works: The Gun

The onClipEvent(load) action initializes the variables that we will be using:

onClipEvent(load){
 shotTimer = 0;
 shotCount = 0;
 shotInterval = 5;
 }

shotTimer counts the time that has elapsed between shots. shotCount
counts the number of bullets being fired. shotInterval sets how much time, in
frames, should elapse before the gun is permitted to fire again. If you want the
gun to fire more slowly, set this to a larger number, like 10.

The onClipEvent(enterFrame) action is more complicated.

if ((Key.isDown(Key.SPACE)) && (shotTimer <= 0)) {
 shotCount = shotCount + 1;
 duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

179

 shotTimer = shotInterval;
 }

The If Statement checks to see if the Space key is being pressed down and the
shotTimer variable is less than or equal to zero. If both of these are true, the
gun is permitted to fire and the following statements execute:

shotCount = shotCount + 1;

- Counts the current bullet being fired.

duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);

- Uses the duplicateMovieClip action to makes a copy of the bullet movie
clip on the stage and gives it a unique name, based on the number of shots fired.
The first shot will be called “bullet1”, the second “bullet2” and so on. The
final section of this line “(shotCount % 100) + 1100);“ is trick that is used
to add the new bullet onto a unique level. A level in ActionScript is similar to a
layer in Flash Animation. When you use duplicateMovieClip the new object
must be on a layer that is not occupied by anything else. To ensure this, we can
use the shotCount variable and add a number to it, such as 1100, which is
sufficiently high that it is unlikely that any other object will occupy the same level.

shotTimer = shotInterval;

- This line resets the shotTimer variable to 5 (or whaterver shotInterval
was set to) to prevent the player from firing right away.

C: Progam the Bullet

The final step is to program the bullet object. Add the following code to your
bullet object:

onClipEvent (load) {
 if (_name != "bullet") {
 this._x = _root.gun._x;
 this._y = _root.gun._y;
 xSpeed = 10;
 ySpeed = 0;
 }
}
onClipEvent (enterFrame) {
 if (_name != "bullet") {

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

180

 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;
 }
 //Check for Screen Boundaries
 if ((this._x > 550) || (this._x < 0) || (this._y <
 0) || (this._y > 400)) {
 removeMovieClip(this);
 }

 //Insert Collision Detection Code Here:
}

Test your movie – you should be able to fire the gun. Move the original bullet
movie clip off the edge of the stage for the effect to be more realistic.

How It Works: The Bullet

The onClipEvent(load) action sets the initial position of each bullet and
determines the speed at which it will move:

onClipEvent (load) {
 if (_name != "bullet") {
 this._x = _root.gun._x;
 this._y = _root.gun._y;
 xSpeed = 10;
 ySpeed = 0;
 }
}

The X and Y position of the bullet are placed at the X and Y center of the gun,
which was why it was important to precisely position the gun’s center point to the
spot at which we want the bullets to emerge.

You may be wondering why the following If Statement was used:

if (_name != "bullet")

This is essentially saying “if this object’s name is not “bullet” then perform these
actions”

Remember that when we were programming the gun, we used this line

duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

181

… to create a duplicate copy of the bullet with a new name, such as “bullet1”
and “bullet2”. Our original object, “bullet” is itself never being fired from the
gun – we’re only using it to make copies. That means that we don’t want any of
these actions to act on the original bullet, only the copies.

These actions will only execute if the object’s name is not “bullet” – our
original. They will work only for the copies (“bullet1”, “bullet2” etc.) that we
making from it. This works because when we use duplicateMovieClip, all of
the object’s actions are duplicated as well as the graphics and animation.

The next block of code moves our duplicated bullets across the stage:

onClipEvent (enterFrame) {
 if (_name != "bullet") {
 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;
 }

For now, our ySpeed is set to zero, so there won’t be any horizontal movement.
If you give the ySpeed variable a value in the onClipEvent(load) section,
you should notice the bullets move at an angle. You may not find a use for this
right away, but it’s important to keep in mind because at some point you will
probably want your bullets to move vertically.

The following block removes any bullet that exceeds the stage boundaries:

//Check for Screen Boundaries
if ((this._x > 550) || (this._x < 0) || (this._y <
 0) || (this._y > 400)) {
 removeMovieClip(this);
}

The action “removeMovieClip(this)” removes the duplicated object from the
stage. It is important to remove the bullets when they fly off the edge of the
stage because, even if you can’t see them, they are still there. As you fire more
and more bullets, your game will start to run slower and slower.

More About removeMovieClip

You can use removeMovieClip with any object that you created with
duplicateMovieClip. removeMovieClip() needs at least one argument:
the object that you want to remove.

So, for example, if you wrote:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

182

 removeMovieClip(_root.enemy6)

…it would remove the “_root.enemy6” movie clip.

There is a special argument called “this” which is used if you want a movie clip
to remove itself:

 removeMovieClip(this);

This removes the movie clip from the stage.

You can only use removeMovieClip() if you created the movie clip using
duplicateMovieClip(). It won’t work otherwise.

Collision Detection

All your collision detection code should be added right at the end of the bullet’s
onClipEvent(enterFrame) action, just before the final brace.

Moving the Gun

To move your gun around the stage, you need to add the keyboard control
actions that you were using in the previous lessons. The following code
demonstrates how you might do this:

onClipEvent (load) {
 acceleration = 0.7;
 friction = 0.97;
 speedLimit = 10;
 shotTimer = 0;
 shotCount = 0;
 shotInterval = 5;
}
onClipEvent (enterFrame) {

 //Keyboard Control:
 //Right Arrow
 if (key.isDown(39) && xSpeed < speedLimit) {
 xSpeed = xSpeed + acceleration;
 }
 //Left Arrow
 if (key.isDown(37) && xSpeed > -speedLimit) {
 xSpeed = xSpeed - acceleration;

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

183

 }
 //Down Arrow
 if (key.isDown(40) && ySpeed < speedLimit) {
 ySpeed = ySpeed + acceleration;
 }
 //Up Arrow
 if (key.isDown(38) && ySpeed > -speedLimit) {
 ySpeed = ySpeed - acceleration;
 }

 // Reduce the object's speed if no keys are pressed:
 xSpeed = xSpeed * friction;
 ySpeed = ySpeed * friction;
 //Move the Object:
 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;

 //Speed Trap
 if (xSpeed < 0.1 && xSpeed > -0.1) {
 xSpeed = 0;
 }
 if (ySpeed < 0.1 && ySpeed > -0.1) {
 ySpeed = 0;
 }

 //Fire the Bullet
 if ((Key.isDown(Key.SPACE)) && (shotTimer <= 0)) {
 shotCount = shotCount + 1;
 duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);
 shotTimer = shotInterval;
 }

 // Decrease the value of shotTimer if the Space Key
 // is not being pressed
 shotTimer = shotTimer - 1;
}

This should be enough to use as the basis for a space-shooter game.

Exercise 1: Add an Enemy.

1. Create a movie clip called “enemy” and place it on the stage.
2. Add some ActionScript code to your bullet movie clip to check to see if it is

hitting the enemy.
3. If it is, cause your enemy to explode

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

184

You should already know how to do this. All you need to do is add a hitTest
action inside an If Statement near the end of the bullet’s
onClipEvent(enterFrame) action.

Exercise 2: Firing in Different Directions.

The next thing you need to do is to make your bullet fire in different directions,
depending on which arrow keys the player is pressing. If the player presses the
up arrow key, the bullet should fire up. If the player presses the left arrow key, it
should fire left.

To do this, you first need to remove these lines from the bullet’s
onClipEvent(enterFrame) action:

 this._x = this._x + xSpeed;
 this._y = this._y + ySpeed;

In their place, you need to add 4 more If Statements to check to see which arrow
keys is being pressed. Then, you need to move the bullet in the correct direction.

The following is an example of the code you will need to move the bullet to the
right:

if (key.isDown(39)) {
 this._x = this._x + xSpeed;
 }

This code moves the bullet up:

 if (key.isDown(38)) {
 this._y = this._y - ySpeed;
 }

Can you figure out the ActionScript code for left and down???

Acknowledgements: The ActionScript code for the gun and bullet has been adapted with minor
modifications from “Flash Games Studio” by Friends of Ed, 2001.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

185

Advanced Game Design
4) Creating a Rotating Gun Turret with Trigonometry

These instructions show you how to create a gun turret that rotates and fires
bullets. This exercise uses trigonometry to calculate the correct position of the
bullet. Unfortunately, using trigonometry is the only way this can be done. Don’t
let this scare you however: all you need to do is copy the ActionScript code
correctly and use it in your game

Create a Movie Clip Called "gun". Draw the gun vertically and make sure that
the center point of the gun is positioned at the bottom axis around which you
want it to rotate.

This is the opposite of what you did in the previous lesson. In this exercise, the
bullets will be emerging from the top end of the gun.

Enter the following Movie Clip Actions. (The new code is highlighted in bold):

onClipEvent(load){
 shotTimer = 0;
 shotCount = 0;
 shotInterval = 5;
 }

onClipEvent (enterFrame) {

 //Rotate The Gun
 if (Key.isDown(Key.RIGHT)){
 this._rotation = this._rotation +3;
 }
 if (Key.isDown(Key.LEFT)){
 this._rotation = this._rotation -3;
 }

 //Fire the Bullet
 if ((Key.isDown(Key.SPACE)) && (shotTimer <= 0)) {
 shotCount = shotCount + 1;

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

186

 duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);
 shotTimer = shotInterval;
 }
 // Decrease the value of shotTimer if the Space Key is
not being pressed
 shotTimer = shotTimer - 1;
}

Test the movie now. You will be able to rotate the gun by pressing the right and
left arrow keys. The next step is to program the bullet.

Next, create a movie Clip called "bullet" and enter the following in its Movie
Clip Actions (the new code is highlighted):

onClipEvent(load){

 if (_name != "bullet"){

 gunHeight = 49;
 //Find out the height of your gun, in pixels,
 //in the Properties panel and enter it above

 gunPoint = _root.gun._rotation;
 angle = (gunPoint/360) * 2 * Math.PI;
 xComponent = gunHeight * Math.sin(angle);
 yComponent = gunHeight * Math.cos(angle);
 this._x = xComponent + _root.gun._x;
 this._y = -yComponent + _root.gun._y;
 xSpeed = (xComponent/gunHeight) * 10;
 ySpeed = (yComponent/gunHeight) * 10;
 }
}

onClipEvent (enterFrame){
 if (_name != "bullet"){
 this._x = this._x + xSpeed;
 this._y = this._y + -ySpeed;
 }

 //Check for Screen Boundaries
 if ((this._x > 550) || (this._x < 0) || (this._y <
 0) || (this._y > 400)) {
 removeMovieClip(this);
 }

 //Insert Collision Detection Code Here:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

187

}

Move the original bullet Movie Clip off the stage so that it is not visible in your
game, and test the movie.

The most important thing about this code is to make sure that you find out the
height of the gun object in the Properties panel:

Copy that number into the line that initializes the gunHeight variable:

gunHeight = 49;

This number is used to calculate the exact position and angle of each of the
bullets that are being fired, which is what the following lines of code do:

 angle = (gunPoint/360) * 2 * Math.PI;
 xComponent = gunHeight * Math.sin(angle);
 yComponent = gunHeight * Math.cos(angle);
 this._x = xComponent + _root.gun._x;
 this._y = -yComponent + _root.gun._y;
 xSpeed = (xComponent/gunHeight) * 10;
 ySpeed = (yComponent/gunHeight) * 10;

This code applies basic trigonometry to work out the direction that each bullet
should move in, based on the gun’s angle of rotation. My advice to you is: close
your eyes, copy and paste! If you need to know exactly how it works, consult a
math teacher or textbook. The most important thing is not so much that you
know how it works, but that you can use it to make creative and original games.

Make It Move

If you want to move the gun around the stage, in the same direction in which it is
pointing, you need to apply the same trigonometry calculations that you used
with the bullet. Add the following highlighted code to your gun object:

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

188

onClipEvent(load){
 shotTimer = 0;
 shotCount = 0;
 shotInterval = 5;
 }

onClipEvent (enterFrame) {

 //Rotate The Gun
 if (Key.isDown(Key.RIGHT)){
 this._rotation = this._rotation +3;
 }
 if (Key.isDown(Key.LEFT)){
 this._rotation = this._rotation -3;
 }
 //Up Arrow
 if (key.isDown(Key.UP)) {
 gunPoint = _root.gun._rotation;
 angle = (gunPoint/360) * 2 * Math.PI;
 xComponent = Math.sin(angle);
 yComponent = Math.cos(angle);
 this._x = xComponent + _root.gun._x;
 this._y = -yComponent + _root.gun._y;
 }

 //Fire the Bullet
 if ((Key.isDown(Key.SPACE)) && (shotTimer <= 0)) {
 shotCount = shotCount + 1;
 duplicateMovieClip(_root.bullet, "bullet" +
 shotCount, (shotCount % 100) + 1100);
 shotTimer = shotInterval;
 }

 // Decrease the value of shotTimer if the Space Key
 // is not being pressed
 shotTimer = shotTimer - 1;
}

Can you find a way of fine-tuning your movie so that the gun rotates precisely
around its center but the bullets still fire from the correct place? Hint: you’ll need
to make a small modification to your gun object and one change in the bullet’s
actions. It’s not difficult – try it!

Happy Shooting!!!

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

189

Acknowledgements: The ActionScript code for the gun and bullet has been adapted with minor
modifications from “Flash Games Studio” by Friends of Ed, 2001.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

190

Action Game Assignment

In the final assignment of the year, you will be given the choice as to whether you
want to create a new game, or create a new level, with advanced features, for
your previous game. Read the assignment details carefully:

A: New Action Game

Create a game that uses the three new techniques that you have learnt: random
motion, advanced keyboard control, and bullets

Your game should include the following:

• A start screen with the game title and a button that starts the game.
• Your game screen, which should include the following:

 A player object which is controlled using the keyboard
 “Enemies” that the player must avoid or destroy
 A start position for the player
 Possibly a goal that the player should reach (this is optional)
 A background scene where your game takes place

• You need to a scoring system, so some other way of finding out whether
the player has won or lost.

• You need an end screen that tells the player whether they have won or
lost, and then give them the option to play again.

• You need to give the player (or the enemy) the ability to fire bullets.
• You must include some form of randomization in your game. This could

be random placement of objects
• Your player object should use some advanced keyboard control

methods, such as friction, acceleration or gravity.

Please feel free to use graphics that you found on the internet or created for
another project. In this project, the most important thing is that you use the new
techniques properly, not necessarily create the best graphics that you can. Use
dingbat and clipart graphics wherever possible to save on time.

Game Ideas:

Here are some classic game ideas that you could adapt as the basis for your
game:

• Lunar Lander. The player carefully controls a spaceship over treacherous
terrain to collect fuel cells, rescue crewmembers, or land in a narrow landing pad.
• Space Invaders: Fight off attacking aliens invading from the skies above.
• Joust: Fly a giant bird between floating platforms and eliminate your enemies.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

191

• Mario Brothers: Run and jump your way around an imaginary world, collecting
items and avoiding enemies. This is an advanced project: please let me know if
you decide to try it, and I will show you how to make your player object “jump.”
• Breakout (DX Ball): This is not difficult to make with the skills that you currently
have. Let me know if you want to make this game, and I will show you how to
make your objects bounce.

By the way, it is very easy to create a terrain, map or maze for your player to
move through… can you figure out how???

New Action Game Evaluation:

A) Game Play:

• Was the theme and idea of the game clear and well developed? (2

Marks)
• Was the game fun to play (not too easy, not too hard)? (2 Marks)?

B) Technical Features:

• Did you have a proper title screen with a “Start” button and a proper
finish screen that gave the player the option of playing again? (2
Marks)

• Did you use the hitTest action properly? (2 Marks)
• Did you use advanced keyboard control techniques? (2 Marks)
• Did you use randomization somewhere? (2 Marks)?
• Did you use some sort of scoring system with a Dynamic Text

Field? (2 Marks)
• Did you use bullet firing somewhere? (2 Marks)
• Can the player win and lose? (2 Marks)

TOTAL: /18
Project Duration: 8 periods.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

192

B: A Second Level

Create a “second level” for your game that uses any two of the three new
techniques that you have learnt: random motion, advanced keyboard control,
and bullets. You don’t need to use all of them. You will, however, need to add
sound.

Your new level should include the following:

• Any two of the three new techniques you have learnt: random motion,
advanced keyboard control or bullets.

• You must add at least 4 sources of sound. These could include a
musical soundtrack, background sounds or sound effects (such as a laser
firing)

• Your second level must be significantly different in game-play style from
your first level. The objectives and strategies should be different: it should
almost feel like a new game - a new challenge.

• Your new level must contribute to the previous level. That means that you
probably shouldn’t change the way the player character looks, and your
new graphics should be in the same style.

• You must make sure that the new level works properly with the previous
level.

• You need to create new background, enemy and obstacle graphics for you
new level.

Second Level Evaluation:

A) Game Play:

• Was the theme and idea of the second level a well-developed

extension of the first level? (2 Marks)
• Was the second level different enough from the first level to make it

a new challenge? (2 Marks)?
• Did you create new background graphics for your second level that

enhance the style of the first level? (2 Marks)?
• Did you create new enemy/obstacle graphics for your new level (2

Marks)?
• Was the new level “fun to play” - not too easy, not too difficult? (2

Marks)?

B) Technical Features:

• Did you use at least 4 sources of sound (2 Marks)

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

193

• Did you use any two of the new techniques: advanced keyboard
control, bullet firing or randomization? (4 Marks)

• Did you properly integrate the new level with your scoring system
and any other variables you might have used? (2 Marks)

TOTAL: /18
Project Duration: 8 periods.

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

194

Introduction to Interactive Media and Video Game Design with Macromedia Flash MX v.1.0
© Rex van der Spuy, 2003 – rex@kaleidoscope-multimedia.com

195

