
147

Architectures in an XML World

Joshua Lubell
National Institute of Standards and Technology
email lubell@nist.gov

ABSTRACT
XML (Extensible Markup Language) developers have at their disposal a
variety of tools for achieving schema reuse. An often-overlooked reuse
method is the specification of architectures for creating and processing
data. Experience with APEX, an architecture processing tool
implemented using XSLT (Extensible Style Language Transformations),
demonstrates that architectures can fulfill a role not well served by
alternative approaches to reuse.

KEYWORDS
architecture; architectures; architectural forms; XSLT; APEX; XML;
architecture software; schema reuse; reuse

Joshua Lubell

148 Extreme Markup Languages 2001

INTRODUCTION
Developers of markup languages have long recognized the
importance of reuse. Since the early days of SGML (Standard
Generalized Markup Language) [SGML], authors of DTDs
(Document Type Definitions) have used parameter entities
to help make markup declarations more reusable. Newer ap-
proaches to reuse run the gamut from the relatively simple
concept of namespaces [Names] to more sophisticated meth-
ods such as the facilities available in the W3C’s (World Wide
Web Consortium’s) XML Schema [XSchema] specification.
As a result, XML developers today have at their disposal a
variety of tools for achieving reuse.

An often-overlooked reuse method is the specification of
architectures [AFDR] [Kimber] [Megginson] for creating
and processing data. Architectures, alternatively referred to as
“architectural forms” or “inheritable information architec-
tures,” have been around since the mid-1990s. Although the
architecture mechanism’s invention predates the standardi-
zation of XML, architectures are still being used today —
most notably in the ISO Topic Maps standard [TM] and in
the W3C’s XML Linking specification [XLink].

In this paper, I briefly describe the architecture mecha-
nism. Next, I discuss APEX (Architectural Processor Em-
ploying XSLT), a tool implemented using XSLT (Extensible
Style Language Transformations) [XSLT] for processing ar-
chitectures. I conclude by discussing how architectures com-
pare with some alternative reuse techniques.

ABOUT ARCHITECTURES
Within the context of markup languages, an architecture is a
collection of rules for creating and processing a class of doc-
uments. Architectures allow applications to:

• Extend XML vocabularies without breaking existing ap-
plications.

• Create architecture-specific document views, retaining
only relevant markup and character data while hiding all
other content.

• Promote data sharing between user communities with
inconsistent terminologies by enabling the substitution
of identifier names and by allowing simple document
transformations.

Architectural Forms and Architecture Support
Attributes

Unlike a grammar, which defines every aspect of represen-
tation and processing for a class of documents, an architecture
need not specify a complete document type. Instead, an ar-
chitecture defines rules known as architectural forms that ap-
plication designers can apply in defining their XML vocab-
ularies.

An XML document using an architecture contains spe-
cial attributes, called architecture support attributes, describ-

ing how its elements, attributes, and data correspond to their
counterparts in the architecture (which are governed by the
architecture’s architectural forms). Because architecture sup-
port attribute values are usually invariant for all documents
throughout an XML vocabulary, these attributes can be given
default values. Hence, it is easy to hide a document’s use of
architectures from architecture-unaware software tools as well
as from humans viewing or editing the data.

Architectural Processing

Software tools for processing architectures are called archi-
tecture engines. An architecture engine may be specific to a
particular architecture, or it may be generic (able to process
any architecture).

An architecture engine draws upon the following sources
of information to process an XML document:

• Instructions specifying the architecture being processed
and which attributes in the document are the architec-
ture support attributes.

• The document’s architecture support attribute values.
• Syntax rules for the architecture itself. For a generic ar-

chitecture engine, these rules might be in the form of a
DTD, XML schema, or some other formalism for spec-
ifying syntax rules. For an architecture-specific engine,
these rules could be hard-coded into the engine itself.
Some syntax rules can even be implied using support
attributes alone, making it possible in some cases for a
generic architecture engine to process an architecture
without reading the architecture’s DTD or schema.

Example of Basic Architecture Processing

Consider a simple architecture called inv for inventory pro-
cessing. Suppose that software exists for processing data struc-
tured according to inv’s syntax. Assume that the following
markup declarations define inv’s syntax. Although I use DTD
syntax to define inv, I could have instead used some other
syntax such as a non-DTD XML schema language.

<!ELEMENT item (name, price, quantity)

>

<!ATTLIST item

id ID

#REQUIRED >

<!ELEMENT name (#PCDATA)

>

<!ELEMENT price (#PCDATA)

>

<!ELEMENT quantity (#PCDATA)

>

Now suppose I want to create some XML data consisting
of reproductions of works of art that I have, with each work
of art having a unique identifier, title, artist, price, and quan-

Architectures in an XML World

Extreme Markup Languages 2001 149

tity of reproductions on hand. Assume I have three copies of
a painting, “Leapin’ Lizards,” painted by “El Gecko,” with
each copy selling for $15. This data can be represented as:

<art id="a1">

<title>Leapin' Lizards</title>

<artist>El Gecko</artist>

<price>15</price>

<quantity>3</quantity>

</art>

The following table shows the correspondence between
the elements in my data and inv’s architectural elements:

element corresponding architectural element

art item

title name

artist [no corresponding element]

price price

quantity quantity

In order to process my data using the software that al-
ready exists for inventory processing, I add a form attribute to
my data. The form attribute is an architecture support attri-
bute whose purpose is to provide the architecture engine with
the information in the table above. My form attribute has the
same name, inv, as the architecture name. With the form
attribute added, the data for “Leapin’ Lizards” looks like this:

<art id="a1" inv="item">

<title inv="name">Leapin' Lizards</title>

<artist>El Gecko</artist>

<price inv="price">15</price>

<quantity inv="quantity">3</quantity>

</art>

Although architecture support attributes add complexity
to the data, hiding the complexity is easy. Because the form
attribute values for the <art>, <title>, <price>, and <quantity>

elements are the same for all works of art, these attribute
values can be specified as defaults. Thus, the form attributes
can be hidden from any architecture-unaware software tool.
For example, suppose I had the following DTD with system
identifier “art.dtd”:

<!ELEMENT art (title, artist, price, quantity)

>

<!ATTLIST art

inv NMTOKEN #FIXED

"item"

id ID

#REQUIRED >

<!ELEMENT title (#PCDATA)

>

<!ATTLIST title

inv NMTOKEN #FIXED

"name" >

<!ELEMENT artist (#PCDATA)

>

<!ELEMENT price (#PCDATA)

>

<!ATTLIST price

inv NMTOKEN #FIXED

"price" >

<!ELEMENT quantity (#PCDATA)

>

<!ATTLIST quantity

inv NMTOKEN #FIXED

"quantity" >

Then I could specify the “Leapin’ Lizards” data as:

<!DOCTYPE art SYSTEM "art.dtd">

<art id="a1">

<title>Leapin' Lizards</title>

<artist>El Gecko</artist>

<price>15</price>

<quantity>3</quantity>

</art>

Now suppose I tell an architecture engine to process my
data using the inv architecture. The architecture engine
should produce as output the following architectural docu-
ment containing only the markup and data defined by inv:

<item id="a1">

<name>Leapin' Lizards</name>

<price>15</price>

<quantity>3</quantity>

</item>

The architecture engine replaces each element from my
data with its corresponding architectural element. The <art-

ist> element is not processed because nothing in the archi-
tecture corresponds to it. If the architecture engine were a
validating architecture engine, then it could also determine
whether my data is valid with respect to inv’s DTD or schema.

The preceding example showed only the most rudimen-
tary capabilities of architectures. Other possibilities include,
but are not limited to:

• Renaming attributes;
• Selectively ignoring markup and/or content during ar-

chitecture processing;
• Specifying and processing a document using multiple

architectures.

Joshua Lubell

150 Extreme Markup Languages 2001

ARCHITECTURES AND APEX
APEX is a non-validating generic architecture engine written
in XSLT. The APEX XSLT stylesheet is available as part of
the XSLToolbox [XSLToolbox], a collection of XSLT style-
sheets available from NIST. APEX implements a simple but
useful subset of the AFDR (Architectural Form Definition
Requirements) specified in Annex A.3 of ISO/IEC
10744:1997. APEX behaves similarly to David Megginson’s
XAF package for Java1 [XAF] and differs from the AFDR in
the same ways as XAF. Unlike other architecture engines,
which use XML processing instruction syntax to specify ar-
chitecture usage and control information, APEX obtains this
information through XSLT stylesheet parameters.2 Thus in-
put to APEX consists of an XML document plus stylesheet
parameters for identifying the document’s architecture sup-
port attributes and for controlling architectural processing.
APEX produces as output an architectural document con-
forming to the architecture specified by the stylesheet param-
eters and the input document’s architecture support attrib-
utes.

The following picture shows how APEX can be deployed
to enable my artwork data from the example in section Ex-
ample of Basic Architecture Processing to be processed using
software supporting the inv inventory architecture. APEX’s
input is:

• The artwork data augmented with architecture support
attributes. The architecture support attributes may either
be explicitly specified in the data, or they may be speci-
fied as defaults in a DTD or schema.

• Stylesheet parameters directing APEX to process the data
using inv.

APEX’s output is data that can be fed to an inventory pro-
cessing application. The inventory processing application
need not be capable of processing artwork data. All it needs
to know about are inv’s syntax rules. As the picture shows, inv
is the “glue” that holds everything together. The inventory
architecture describes the inventory processing application’s
information requirements. The inventory architecture also
influences the artwork data in that the data has to be derivable
from inv using the data’s architecture support attributes.

1. Java is identified in order to adequately specify David Megginson’s XAF
software. In no case does such identification imply recommendation or en-
dorsement by the National Institute of Standards and Technology, nor does
it imply that Java is necessarily the best programming language available for
the purpose.
2. If a processing instruction were used to supply this information, then
APEX would need to parse the processing instruction’s string value. Since
XSLT processors do not parse this string value, APEX would have to be
augmented with (non-XSLT) programming language code. Passing architec-
ture usage and control information through stylesheet parameters is therefore
a more sensible approach.

Using APEX

Since XSLT provides no standard syntax for specifying style-
sheet parameters, APEX’s architecture usage syntax is XSLT
processor-dependent. To understand how this affects the use
of APEX, assume that APEX uses a fictitious XSLT processor
called xslt whose command line syntax is as follows:
xslt xml-document stylesheet [|parameter=value ...]

To process my artwork data using the inv architecture, I
use two parameters: name for the name of the architecture
being processed (inv), and auto to specify how elements in
the data are associated with elements in the architecture. I
specify “nArcAuto” as the value for auto. This tells APEX not
to automatically associate elements, i.e. not to process an ele-
ment unless the element has a form attribute. The resulting
XSLT processor invocation is:
xslt art.xml apex.xsl name=inv auto=nArcAuto

A more complete discussion of APEX’s usage and behav-
ior is available as part of the documentation in the XSLTool-
box distribution.

Customizing APEX

I mentioned back in section Architectural Processing that it
is possible to perform some architectural processing using
architecture support attributes alone and without any a priori
syntactic knowledge of the architecture itself. In these cases,
a generic architecture engine can process a document with
respect to an architecture in the absence of any formal spec-
ification of the architecture’s syntax rules. APEX, which does
not use such syntax rules, is such an architecture engine.
Although this limits APEX’s capabilities somewhat, APEX’s
ease of customization helps to mitigate this limitation. In fact,
APEX’s lack of dependence on any particular representation
method for syntax rules (such as DTDs) can be viewed as an
advantage because architectures processed by APEX are free
to specify their syntax rules using any schema language they
want.

Because APEX is written in XSLT instead of in a pro-
gramming language, APEX’s functionality is easy to extend
using XSLT’s <xsl:import> or <xsl:include> elements. Thus
adding transformation capabilities to APEX that are sup-
ported by XSLT but not by the Architectural Form Definition
Requirements is simple. For example, suppose I want to cre-
ate an inv architectural view of my artwork data that retains
the content of the <artist> element such that “Leapin’ Liz-
ards” appears as follows:

<item id="a1">

<name>Leapin' Lizards, artist: El Gecko</name>

<price>15</price>

<quantity>3</quantity>

</item>

Augmenting APEX with a template rule that adds the

Architectures in an XML World

Extreme Markup Languages 2001 151

Figure 1

<artist> element’s content to the <title> element’s content can
do this. The following XSLT stylesheet accomplishes the cus-
tomization:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/

Transform">

<xsl:include href="apex.xsl"/>

<xsl:template match="art/title">

<xsl:element name="name">

<xsl:value-of select="."/>

<xsl:text>, artist: </xsl:text>

<xsl:value-of select="../artist"/>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

ARCHITECTURES VERSUS OTHER REUSE
METHODS
Architectures are among the oldest of several DTD/schema
reuse methods available to XML developers. This raises the
question of whether newer methods for achieving reusability
make architectures obsolete? To answer this question, con-
sider two contemporary XML technologies: W3C XML
Schema and XSLT.

W3C XML Schema has several features designed to pro-
mote reusability. The <any> element enables schemas to al-
low embedded XML belonging to a foreign namespace. Type
derivation by extension or restriction enables reuse through
inheritance. Substitution groups permit elements to be sub-
stituted for other elements, allowing elements to be used in-
terchangeably. As W3C XML Schema practitioners gain
more experience [Costello], they might discover that these
features can duplicate the benefits of architectures. However,
even if using architectures were to add no value to W3C XML

Schemas, architectures would still be worthwhile for appli-
cations not using W3C XML Schema. Because architecture
processing is attribute-driven rather than schema-driven, ar-
chitectures are compatible with any XML application, re-
gardless of the schema language used.

XSLT, a language for transforming one XML document
into another XML document, lets developers specify conver-
sions between different XML vocabularies. XSLT is also
handy for solving the common systems integration problem
where XML documents almost but not quite conform to a
given vocabulary. Although XSLT has considerable power,
stylesheets that perform non-trivial transformation can be
quite complex, and writing XSLT is often time-consuming.
Thus, having to write an XSLT transform every time two sys-
tems need to talk to one another is a less than satisfying way
to achieve interoperability.

Although architectures, like XSLT, can be used for trans-
formation, the architecture mechanism also allows for vali-
dation and architecture-specific processing (although APEX
does not support these capabilities). Further, XSLT trans-
forms are specified differently than architectural mappings.
In XSLT, mappings are specified algorithmically. With ar-
chitectures, however, a developer need only formally state the
conformance requirement. Also, an XSLT stylesheet (unlike
an architecture’s support attributes) is completely separate
from the schema and data, making it potentially difficult to
keep an XSLT stylesheet in sync with the vocabulary it is
supposed to transform.

As the implementation of APEX in XSLT demonstrates,
architectures and XSLT are complementary. Although the
transformations architectures allow are more limited than
those possible with XSLT, there is no guarantee in the general
case that an XSLT transformation result is valid with respect
to an intended vocabulary. Also, the verbosity and complexity
of XSLT syntax makes it impractical to write an XSLT trans-
form that could have been specified more succinctly using
architecture support attributes. When used together though,

Joshua Lubell

152 Extreme Markup Languages 2001

architectures and XSLT allow developers to have the best of
both worlds.

I wish to thank Simon Frechette, Don Libes, Sandy Res-
sler, and the Extreme Markup Languages peer reviewers for
their helpful feedback and suggestions for improving an ear-
lier draft of this paper. I am also grateful to NIST’s Systems
Integration for Manufacturing Applications program (http://
www.nist.gov/sima) and Advanced Technology Program
(http://atp.nist.gov) for funding this work.

BIBLIOGRAPHY

[SGML] ISO 8879:1986. Information processing—Text and office
systems—Standard Generalized Markup Language (SGML).

[Names] World Wide Web Consortium. Namespaces in XML. W3C
Recommendation 14 January 1999. See http://www.w3.org/TR/
REC-xml-names.

[XSchema] World Wide Web Consortium. XML Schema Part 1:
Structures. W3C Recommendation 2 May 2001. See http://
www.w3.org/TR/xmlschema-1.

[AFDR] ISO/IEC 10744:1997. Information processing—Time-based
Structuring Language (HyTime)—2d edition. Annex A.3 Archi-
tectural Form Definition Requirements (AFDR). See http://
www.ornl.gov/sgml/wg8/docs/n1920/.

[Kimber] W. Eliot Kimber. A Tutorial Introduction to SGML Ar-
chitectures. ISOGEN International Corp. See http://
www.isogen.com/papers/archintro.html.

[Megginson] David Megginson. Structuring XML Documents.
Prentice Hall. 1998. Chapters 9–11.

[TM] ISO/IEC 13250:2000. Topic Maps: Information Technology—
Description and Markup Languages. See http://
www.y12.doe.gov/sgml/sc34/document/0129.pdf.

[XLink] World Wide Web Consortium. XML Linking Language
(XLink) Version 1.0. W3C Proposed Recommendation 20 De-
cember 2000. See http://www.w3.org/TR/xlink/.

[XSLT] World Wide Web Consortium. XSL Transformations
(XSLT) Version 1.0. W3C Recommendation 16 November 1999.
See http://www.w3.org/TR/xslt.

[XSLToolbox] Joshua Lubell. XSLToolbox package. See http://
www.nist.gov/xsltoolbox.

[XAF] David Megginson. XAF package for Java. See http://meggin-
son.com/XAF/.

[Costello] Roger Costello, ed. XML Schemas: Best Practices (A Col-
lectively Developed Set of Schema Design Guidelines). See http:/
/www.xfront.com.

BIOGRAPHY
Josh Lubell is a computer scientist in NIST’s Manufacturing
Systems Integration Division, where he design and imple-
ment software systems for product data exchange applica-
tions. His technical interests include markup languages, da-
tabase technology, and Internet computing. His previous
experience includes artificial intelligence systems design and
prototyping, software development for the building materials
industry, and knowledge engineering. He has an M.S. in
computer science from the University of Maryland at College
Park, where he performed graduate research in diagnostic
problem solving, and a B.S. in mathematics from Bingham-
ton University.

