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Abstract 

 
Cycorp has developed a knowledge acquisition 
system, based on Cyc, that can engage a user in a 
natural-language mixed-initiative dialogue.  In 
order to achieve a intelligent dialogue with the 
user, it employs explicit topic- and user-modeling, 
a system of prioritized interactions, and a 
transparent agenda to which either the user or the 
system can add interactions at any time.  
Interactions initiated by the Cyc system are 
directed at closing system-perceived knowledge 
gaps, at optimizing the inferential utility of existing 
and added knowledge, and at generally facilitating 
the user’s knowledge-entry task.  This is done both 
deductively, in response to explicit knowledge-
elicitation rules, and inductively, from the existing 
content of the Cyc Knowledge Base. 

  

1 Introduction 
Cycorp, and the previous Cyc project at MCC, have, for the 
last 19 years, been developing a massive repository of 
common-sense, real world knowledge called Cyc, currently 
the largest knowledge base in the world, with over 1.6 
million largely hand-entered facts and rules that interrelate 
more than 118,000 concepts.  The contents of the Cyc KB 
are represented in CycL, a highly expressive, logically 
perspicuous language based on second order logic.  
Assertions in the KB are stored in microtheories [Lenat, 
1998]—explicit representations of context that enable Cyc 
to represent multiple perspectives, and serve to focus on a 
concise, relevant body of rules during inference. 
 Recently, in order to allow a much larger class of people 
to add knowledge to Cyc, a start has been made on 
developing natural-language based tools that rely for their 
operation on information in the Cyc KB, and that shield the 
knowledge enterer from CycL. 

 A design principle of the system has been to follow a 
mixed-initiative dialogue model, with the user engaging the 
system in a conversation in which Cyc acquires new 
knowledge, taking the initiative as appropriate to ask 
clarifying questions or to guide the user toward entering 
knowledge that would add to the system’s inferential 
abilities. This system relies on the basic support in Cyc for 
natural language generation and understanding, as described 
in the remainder of this section. 

1.1 The Cyc Lexicon  
The lexicon [Burns and Davis, 1999] contains syntactic, 
semantic, and pragmatic information for approximately 
17,000 English root words. The lexicon also contains 
approximately 36,000 multi-word phrases and 45,000 
proper names. Inflectional and derivational morphology are 
handled by a separate code component. Each root word is 
represented as a term in the knowledge base, with assertions 
providing information about the word’s part of speech, 
subcategorization patterns, and semantics. Semantic 
information in the lexicon involves a mapping between 
word senses and corresponding KB concepts or formulae. 

1.2 Generation  
The natural language generation system produces a word-, 
phrase-, or sentence-level paraphrase of KB concepts, rules, 
and queries. The NLG system re lies on information 
contained in the lexicon, and is driven by generation 
templates stored in the KB. These templates are not solely 
string-based; they contain linguistic data which allows, for 
example, for correct grammatical agreement to be 
generated. Semantic information in the templates is used to 
vary the generation depending on, for example, the semantic 
types of the arguments. The NLG system is capable of 
providing paraphrases at varying levels of precision.  At one 
end of the spectrum is the tersest, most natural paraphrase of 
the CycL input, but which can be ambiguous.  At the other 
end of the spectrum is paraphrase that is much more precise, 
but is potentially wordy and stilted.  The system is able to 



raise the degree of precision when necessary to prevent 
ambiguities that might confuse the user. 

1.3 Parsing  
Our natural language understanding system parses input 
strings not simply into syntactic trees, but into fully formed 
semantic formulas. Design criteria for the parsing system 
included that it (1) be fast; (2) produce parses of adequate 
semantic detail; (3) ask the user for clarification only in 
cases  where the system could not itself resolve ambiguities; 
and (4) support parsing into underspecified formulas, and 
then rely on other components to determine the best 
semantic translation. The Text Processor controls the 
application of the various parsing subcomponents, using a 
heuristic best-first search mechanism that has information 
about the individual parsers, their applicability to coarse 
syntactic categories, cost, expected number of children, and 
so on. This information is used to perform a syntax-driven 
search over the parse space, applying relevant parsers to the 
sub-constituents until all are resolved, or until the parsing 
options have been exhausted. The parsers at the disposal of 
the Text Processor are the Template parser, the Noun 
Compound parser, and the Phrase Structure parser. 
 The Template parser is essentially a top-down string- and 
word-matching mechanism driven by a set of templates 
compiled into an efficient internal format. These templates 
employ a simple format so that users can add templates as 
they are entering new knowledge into the system. The 
template parser is relatively fast, but is of limited flexibility. 
It tabulates semantic constraints during a parse, but does not 
attempt to verify them; that task is passed along to the next 
processing layer. 
 The Noun Compound parser uses a set of semantic 
templates combined with a generic bottom-up chart-parsing 
approach to construct representations for noun compounds 
such as “anthrax vaccine stockpile”. Unlike other parsing 
components, it makes heavy use of the knowledge base, and 
can therefore resolve many ambiguities that are impossible 
to handle on a purely syntactic level (e.g. “Mozart 
symphonies” vs. “Mozart expert”). 
 The Phrase Structure parser takes a similar bottom-up 
approach to constructing parses. After completing a syn-
tactic parse, it uses semantic constraints gleaned from the 
KB to perform pruning and to build the semantic repre-
sentation using lexical information like which syntactic 
constituents map to which semantic roles. 

1.4 Post-Processing  
In order for parsing to be successful in the current 
application, some decisions about semantic meaning need to 
be deferred during parsing. In particular, radically vague or 
underspecified words such as ‘is’ or ‘contains’, which can 
map onto many distinct relations in the KB, introduce 
ambiguities that are not handled well by producing all 
possible interpretations in parallel. To deal with such cases, 
strings are parsed into an intermediate layer (called iCycL) 
that conflates relevant ambiguities into a single parse, by 
using very general predicates such as is-Underspecified. 

The Reformulator, drawing upon background knowledge 
and iCycL transformation rules, reformulates these 
intermediate representations into final, more specific CycL 
representations, often with the user’s help. 
 In addition to handling underspecification, the iCycL 
layer is also well suited for other types of semantic pro-
cessing, such as interpretation of quantification and nega-
tion. The interpretation of quantifiers, for example, occurs 
by first compositionally representing the constituent noun 
phrases of a sentence as syntactic structures that contain 
CycL terms annotated with syntactic information, such 
agreement.  Quantifier-processing rules are then used to 
break apart these syntactic structures to produce full-fledged 
CycL logical forms. Although CycL representations are 
modeled on first-order logic, the language itself allows the 
definition of higher-order predicates. We exploit this 
capability to represent a wide range of NL quantifiers 
formally as generalized quantifiers, i.e., as higher-order 
relations between sets of objects. 

1.5 Lexical Additions  
Because users are allowed to add new terms to the ontology, 
we have created a special-purpose tool to elicit the 
information necessary to be able to parse to and generate 
from new terms in the ontology. The Dictionary Assistant 
allows the user to specify appropriate syntactic and semantic 
information through a dialogue in which they do things like 
verify the part of speech (count noun, adjective, etc.) that 
the system has assigned, declare it to be any of a large 
number of types of names, and tell the system whether or 
not this is the preferred way to refer to the new term. For 
new relations, the user can add both parsing and generation 
templates. The interactions of the Dictionary Assistant 
attempt to minimize the amount of linguistic knowledge 
required of the user. 

2 Infrastructure: The User Interaction 
Agenda 

The infrastructure for the system described in this paper is 
called the “User Interaction Agenda”, or UIA. It is designed 
in a modular fashion, so that parts of it can be replaced with 
new versions leaving the rest intact. For instance, we are 
currently in the process of replacing the HTML-based 
interface with one written in Java. 
 The user initiates a UIA session by entering a username 
and choosing a topic. Based on what the system already 
knows about the user, a list of languages1 is displayed for 
the user to choose from.  In the future, elicitation of user 
preferences based on the KB’s persistent user model will be 
done more extensively; this is just a taste of the wide range 
of user options that will be available for guiding the 
conversation, and hence making the knowledge entry 
session better tailored to the user’s needs and individual 
style, and thus more efficient and pleasant. 
 Explicitly setting the topic allows the system to 
customize certain interactions, and to filter the knowledge 

                                                                 
1 Of which, at present, only one, English, has significant support. 



visible by focusing on a restrictive set of microtheories. For 
example, selecting the topic “Military Course of Action 
Analysis”2 customizes the system to organize created 
knowledge along militarily relevant lines. 
 An Agenda is then created for the session that keeps an 
explicit set of parameterized interactions, each with a well-
defined type, priority, status, and context. 
 Both Cyc and the user can add interactions to this Agenda 
at any time, and the user can select a pending interaction for 
immediate attention. Once an interaction is complete, it is 
logged in a journal and the pending interaction on the 
Agenda with the highest priority becomes active. 
 In the next sections, we will describe in more detail how 
dialogue initiative alternates between the user and the 
system. To illustrate, we will draw examples from an 
illustrative UIA session in which a user is telling Cyc about 
Jerry Allison, the drummer in Buddy Holly’s rock and roll 
group, the Crickets. 

3 User-Initiated Interactions  
As mentioned above, one of the ways the user can take the 
initiative in the dialogue at any time is by launching a new 
interaction. The interface allows the user to do this either by 
selecting an interaction type from a menu, or by typing a 
natural language utterance into a text box that is always 
available (known as the “Say This” box). 
 When an utterance is entered into the Say This box, the 
system parses it as one of: a question (e.g. “What do you 
know about the Crickets?”), a command (“Compare the 
Crickets and the Beatles.”), or an assertion (“Jerry 
Allison is a member of the Crickets.”). 
 
3.1 Analogy Development 
 
One way a user can enter knowledge is by selecting a 
similar concept from the Cyc knowledge base and using it 
as the basis for an analogy.  For example, one could type, in 
the “Say This” box, 3  
 

Jerry Allison is similar to Ringo Starr. 
 
prompting Cyc to do two things.  First, Cyc will ask the user 
to assent to or reject the system’s suggestions for adding 
definitional information to Jerry Allison, based on what it 
knows about Ringo Starr.  “Definitional information,” in 
this context, refers to the assertions that place a new term in 
the overall ontology.  For individual entities,4 such as 
particular organizations (The Beatles, the World Bank), 
events (World War II), and living things (Rin Tin Tin, 
Ringo Starr), this defin itional information will be assertions 

                                                                 
2 An evaluation topic for a program sponsored by DARPA. 
3 Alternatively, the user may invoke the analogy development tool 
directly from a menu of tools. 
4 For collections, as opposed to individuals, definitional 
information includes both which collections the defined collection 
is an instance of, and which collections it is a specialization of. For 
example, the collection Musician is an instance of 
PersonTypeByOccupation, and a specialization of Person . 

that identify what collection or class an object belongs to.  
Since Ringo Starr is known to be an instance of each of the 
classes of British citizens, adult male persons, and 
drummers, Cyc will ask, 
 
 Is Jerry Allison a songwriter? 
 Is Jerry Allison a man? 
 Is Jerry Allison a drummer? 
 
If the user responds, “yes” to any of the above, Cyc is able 
to continue to the next step, using a simple version of the 
type of analogical reasoning outlined in [Forbus, 2002] to 
offer non-definitional assertions for the user to reject as 
inapplicable, accept as is, or to use as a template for 
constructing similar assertions. 

 
Figure 1: Cyc asks for information about the new term Jerry 

Allison based on analogy with Ringo Starr. 

3.2 Clarification Dialogue  
When the user has entered a phrase or sentence that could be 
interpreted in more than one way, the system will 
temporarily take the initiative and ask one or more questions 
to clarify what the user meant. For instance, knowing that 
Jerry Allison is from Hillsboro, Texas, the user might enter: 

 
Jerry Allison is from Hillsboro. 

 
Cyc will then ask the user to clarify which of the 
interpretation choices in Figure 2 was the intended meaning.   
 Once the clarification has been made, the system attempts 
to store the new information. 

 
Figure 2: Having parsed the underspecified “is from” sentence, 

Cyc presents two alternative interpretations so the user can 
specify which one is intended. 

 



3.3 Well-formedness Checking and Repair 
To understand how well-formedness repair works, it is 
useful to think of CycL sentences as relational structures.  
Each CycL sentence is grounded by a predicate that relates 
the other terms in the sentence to one another.  Consider, for 
example, the CycL translation of “Jerry Allison is a member 
of The Crickets”: 
 

(hasMembers TheCrickets JerryAllison) 
 
This CycL sentence is grounded by the predicate 
hasMembers , which relates the terms JerryAllison and 
TheCrickets.  As with all CycL predicates, the definitional 
information for hasMembers  includes a set of argument 
constraints – requirements that any term must meet in order 
to be meaningfully related by the predicate in an assertion.  
For example, the first argument to hasMembers  must be an 
instance of Organization.   
 Given this relational structure, it is possible for a user, 
entering knowledge through natural language parsing or 
through sentence cloning, to construct a CycL formula that 
fails to be semantically well-formed, in that one or more of 
the terms fails to meet the argument constraints of the 
relevant predicate. If the user enters such an ill-formed 
CycL formula, Cyc will again take the initiative to point out 
the problem, suggest an additional assertion that will fix the 
problem and allow the new fact to be entered. 

3.3.1  Semantic Repair: Filling in Knowledge Gaps  
One type of ill-formedness arises from a lack of knowledge: 
If a term could, but does not yet  meet the relevant argument 
constraints, Cyc will propose to add the requisite 
definitional information.  This corrective behavior extends 
to situations in which the user introduces a completely new 
term to the system.  For example, suppose the user wishes to 
use the analogy developer to clone and modify the assertion, 
 

Ringo Starr wrote “Octopus’s Garden” 
 
by substituting Jerry Allison for Ringo Starr  and Peggy 
Sue for Octopus’s Garden.  The CycL ‘beneath’ the 
English, 
 

(authorOfSong OctopussGarden-TheSong 
RingoStarr) , 

 
is grounded in the predicate, authorOfSong , which requires 
a song as its second argument.  If Cyc does not yet have a 
term representing the song “Peggy Sue,” it will respond to 
the new, cloned input by suggesting that, as part of the 
novel term’s definitional information, “Peggy Sue” must be 
a song (see Figure 3). 

 
Figure 3: Since Cyc has never heard of “Peggy Sue,” it takes 
the initiative, using information derived from the context, in 

guiding the user to create this new concept. 

The user also has the option to further refine the new term, 
either immediately or as a later interaction. 

3.3.2  Semantic Repair: Instance/Type Mistakes 
In another form of semantic constraint repair, Cyc applies 
its knowledge to certain, recognizable patterns of ill-formed 
input to simulate something akin to the principle of charity 
[Davidson, 1986].  This principle is frequently used by 
humans to ascribe the most sensible interpretation to a 
dialogue partner’s utterances, under the “charitable” 
assumption that the utterance was intended to be sensible.  It 
is interesting to note that this sort of repair is required by the 
fact that the UIA interface supports sentence cloning, 
essentially a process for manipulating CycL terms nearly 
directly, by manipulating the English in a templatized 
paraphrase of a CycL formula.   
 For example, while cloning a sentence during analogy 
development, 
 

Ringo Starr can play the drums. 
 

a user might be tempted to replace the grammatically correct 
subject, “Ringo Starr”, with an equally grammatically 
correct subject: “Drummers”.  However, the CycL for the 
original sentence, 
 
(skillCapableOf RingoStarr  
  (PlayingInstrumentFn Drum) performedBy), 
 
requires that whatever currently fills the place of 
RingoStarr be an instance of the collection Agent; only 
agentive entities like people and organizations can 
“perform” intentional activities like drumming.  This rules 
out the CycL term for “drummers” – Drummer – as a valid 
substitution for RingoStarr , as Drummer is a collection, or 
class, (the collection of all drummers, including Ringo 
Starr), and not a drummer or an agent, itself.  Thus, by 
substituting in well-formed English for well-formed 



English, the user can create a situation where the end result 
is semantically ill-formed CycL5 
 The automatic semantic repair module, however, can 
correct this situation by introducing quantification, behind-
the-scenes, so to speak.  Confronted with the ill -formed, 
  
 (skillCapableOf Drummer 
   (PlayingInstrumentFn Drum) performedBy) 
 
Cyc checks to see if perhaps this might be more charitably 
interpreted as an attempt at stating a generalization about 
drummers, and not as  a claim about the capabilities of the 
abstract collection Drummer.  To do this, it checks to see 
whether Drummer is a subset of the collection of Agents, 
which proves to be the case.  Having verified this, it 
introduces universal quantification, and interprets the user 
input as a general (and in this case, correct) rule, that all 
drummers can play the drums: 
 
(implies 
  (isa ?X Drummer) 
  (skillCapableOf ?X 
    (PlayingInstrumentFn Drum) performedBy)) 
 

3.3 Precision Suggestion 
It is often the case that a human knowledge enterer does not 
formulate knowledge in the “strongest”, or most 
inferentially productive, way possible.  Before a user’s 
statement is entered into the Cyc knowledge base using the 
dialog system, Cyc looks for ways to strengthen the 
formulation, making it more useful for inference. 
 For instance, if the user enters the sentence “Jerry Allison 
is a drummer,” Cyc may ask the question in Figure 4. 

 
Figure 4: Cyc offers a stronger version of a statement the user 

has made, i.e. one that allows it to make more or stronger 
inferences. 

 
This stronger version allows Cyc to conclude new 
knowledge about Jerry Allison from general knowledge 
                                                                 
5 This illustrates one of many difficulties in covering a system, like 
Cyc, based on predicate calculus, with a natural language like 
English, with a vastly different syntax. Small modifications to a 
CycL sentence can cause vast changes in the corresponding 
English, and vice versa. 

about occupations. For example, it can now conclude that he 
is paid for drumming. 

4 System Initiative: The Salient Descriptor 
The most compelling example of Cyc taking the initiative in 
dialogue is the Salient Description process.  As the user 
enters knowledge about a concept, a background process 
uses the term representing that concept as a seed to come up 
with questions to ask about it, based on what Cyc knows 
about the seed term and on the state of the knowledge base 
in general. The user can at any time inspect the list of 
pending questions Cyc has available for concepts mentioned 
in the dialog and select one to answer, and can instruct the 
system to begin generating questions for any term that Cyc 
knows about.  
 When the user chooses to answer a question, the interface 
not only displays the question and various means by which 
the user might answer it, but also allows the user to view 
Cyc’s explanation for why it judged the question 
appropriate,6 and, when possible, a small set of examples 
that the user can either select an answer from or pattern an 
answer after.  

4.1 Predefined Question Types 
Ontologists at Cycorp have authored numerous knowledge 
entry (KE) facilitation rules that describe the kinds of 
knowledge it is useful for Cyc to have regarding terms with 
certain properties.  For instance, the Cyc knowledge base 
contains the following “KE facilitation” rule: 
 
For every X, if X  is a musician, then it is strongly 
expected that X plays some type of musical instrument 
in some musical group. 
 
So, once Cyc knows that Jerry Allison is a drummer, and 
therefore a musician, it knows to ask the question in Figure 
5. 

 
Figure 5: Cyc uses a predefined question for musicians to ask 

the user for a new piece of information about a particular 
musician the user has defined. 

The user can then conveniently add the information that 
Jerry Allison plays the drums in the Crickets. 

4.2 Rules that Almost Apply to a Term 
As well as using handcrafted rules to drive the interview 
process, the system uses its knowledge to autonomously 
derive and propose new interview questions.  In one such 

                                                                 
6 The user may disagree; the system also provides an option for 
explaining why the question may be inappropriate, so that the basis 
for its having been asked can be reviewed by ontologists. 



process, the Salient Descriptor inspects Cyc’s inventory of 
rules to find ones that would apply to the seed term if it 
knew just one or two more facts, and then asks the user to 
confirm (or deny) those facts. 
 This approach allows Cyc to guide knowledge entry in a 
way that is designed to make it more inferentially powerful, 
often eliciting knowledge that the user might not otherwise 
think to enter. 
 For instance, once the user tells Cyc that Jerry Allison is 
married to Peggy Sue, Cyc realizes that Jerry Allison may 
have some nieces or nephews by marriage, and asks the 
question in Figure 6.7 

 
Figure 6: Cyc finds a rule that almost applies to Jerry Allison, 
and asks the user if the unknown part of the rule’s antecedent 

is true. 

4.3 Induced Interview Questions  
When the user is entering a new instance of a class of terms 
about which Cyc already has some knowledge, the system 
can inspect the existing instances for patterns that suggest 
knowledge the user may be able to provide about the new 
term. 
 For instance, many of the people Cyc knows about have 
their nationalities represented. If the user enters a new term 
representing a person, and neglects to enter the person’s 
nationality, Cyc can notice this and prompt the user to enter 
it, giving previously entered nationalities of people as 
examples. 

                                                                 
7 The fact that this question may be somewhat off-topic is an issue 
with the system, and is discussed further in section 5.1. 

 
Figure 7: Cyc asks for Jerry Allison’s nationality, based on 

analogy to similar terms for which it already knows nationality 
information. 

 Although the knowledge formation dialogue uses Cyc’s 
knowledge extensively throughout its operation, this 
effective use of straightforward induction to drive 
knowledge acquisition offers support for the Cyc 
hypothesis: that by hand crafting a large knowledge base, an 
effective inductive bias for automatic knowledge acquisition 
can be provided.  

5 Future Directions  
The system described here has been developed using the 
Cyc KB and inference system and was able in initial 
experiments to support a two-fold increase in knowledge 
entry rates.  From observation of Subject Matter Expert 
(SME) behaviour during challenge problems, of the sort 
described in the papers surveyed by [Kim and Gil, 2002], 
and from internal studies, Cycorp has been able to identify 
some key opportunities for the future development of the 
system, to enhance the sense of intelligent dialogue, while 
increasing both flexibility and robustness.  These span areas 
of both system and user initiative, and include: 

5.1 Conversational Goals and Focus  
In advancing the system’s capabilities towards the level of a 
human teacher-student interaction, the most important 
improvement must be at the highest level.  The system must 
be able to perform meta-reasoning about the dialogue at 
multiple levels. 
 At a short-term level, a human conversation has 
identifiable focal topics and concepts. Succeeding 
contributions will both build upon this context, and change 
it.  In order to permit both efficient knowledge entry, and 
effective pedagogical output, the system will track the 
current focus, promoting and demoting concepts as 
appropriate, recognizing changes in the discourse context 
and computing their implications. 
 The specific focus will change over the course of a 
conversation.  For example, a conversation about Jerry 
Allison might focus on his band, his musical specialty, his 
wife, and a particular song.  Indeed, every user response will 
change the discourse context in some respect. 
 Conversations, however, typically have a general topic.  
Thus a conversation about Jerry Allison might transition 
from his wife to involve his nieces and nephews, but should 
not pursue that thread further without a specific indication 
from the user that they are topical. 



 Further, in addition to having a general topic, 
conversations, especially in a pedagogical context, typically 
have goals.  A subject-matter expert using the system will 
either have a specific body of knowledge to enter, or will 
have a target question-answering capability to add to the 
system. 
 In a reversal of the pedagogical roles, the user takes on 
the role of student, and wants to learn particular facts, or 
comprehend some concept.  The system’s ability to 
communicate about the objective of the conversation will 
enable it to act agentively in pursuing the shared goal. 
 In terms of specific implementation, the system will take  
the existing salient descriptor technology described above, 
and use the discourse model to drive the generation of 
interview questions towards the goals, filter them by current 
focus, and structure them by future focus.  This will enable 
the system to mimic the characteristics of intelligent 
conversation that make it an efficient medium of 
information exchange. 

5.2 Ambiguity Resolution 
Beyond a mundane understanding of vocabulary and syntax, 
the outstanding problems relate to the ambiguity introduced 
by anaphora and polysemy. 
 The system must be able to take anaphoric references and 
correctly resolve the referent in the context of the discourse 
model.  For example in the paragraph: 
 
 Jerry Allison wrote Peggy Sue. 
 He used his wife’s name for the title. 
 
the second sentence includes two pronominal references to 
Jerry Allison (“he” and “his), whereas “the title” is both a 
definite description and a bridging reference, because the 
song’s title has not been explicitly referred to before. 
 In the paragraph: 
 
 Jerry Allison married Peggy Sue. 
 It was a big day. 
 
the pronoun “it” is an event anaphor, referring to the 
wedding implied by the marriage.  This bears on the general 
problem that natural language utterances rarely reify the 
events, whereas formal representations typically map this 
into Davidsonian form. 
 Similarly, it is not in general possible to maintain a one-
to-one mapping between natural language words and the 
concepts in a formal representation.  In the examples above, 
“wrote” refers to song-writing, but it could equally refer to 
book-authorship, or even the act of writing a letter; “Peggy 
Sue” could now be either the song or his wife.  At a higher 
level, words can act as different parts of speech, as in the 
World War II headline “British push bottles up Germans”. 
 In its current incarnation, the system identifies the 
possible parses for a sentence, and asks the user to choose 
between them in a process known as interactive clarification 
dialogue.  In future versions, the system will be designed to 
endure such ambiguity, using information both within a 

sentence, and in other sentences past and future to narrow 
the field. Thus this ambiguity tolerance will provide the user 
with two key benefits: 
 

1. The dialogue is more fluent, because it never 
becomes blocked either by lengthy computations or 
by modal interactions; and 

2. The deferred resolution allows the system to 
resolve more references by itself, and the user can 
better concentrate on the domain of discourse. 

 

5.3 Automatic Generation of Test Questions  
Test questions are routinely used to check the correctness of 
the existing KB knowledge itself. These test questions are 
organized into topic-specific tests suites. 
 The rule-based induction methods used to ask the user for 
information (section 4.2, above) can be extended easily to 
produce a suite of inference tests that both serve to validate 
the SME-entered knowledge, and protect against system 
degradation.  Keeping with our example from Section 4.2, 
the user is asked whether Peggy Sue Allison is an aunt, as 
part of Cyc’s attempt to gain information about Jerry 
Allison.  That question is prompted by the existence of the 
following rule: 
 
If FEMALE-PERSON is PERSON’s aunt, 
and FEMALE -PERSON is the wife of MALE-PERSON, 
then MALE-PERSON is PERSON’s uncle. 
 
By answering ‘yes’ to the question that this rule has 
prompted, or by going a step further and supplying the 
identity of Peggy Sue’s niece or nephew, the SME has given 
the system the ability to prove that Jerry Allison is an uncle.  
The system thus can be prompted to add the question, “Is 
Jerry Allison an uncle?” or, in CycL, 
 
  (thereExists ?PERSON 
     (uncles ?PERSON JerryAllison))  
 
to a suite of tests, customized for the knowledge that the 
SME has entered.  The benefits to extending rule-based 
induction technology in this way are threefold: 

 
1) The SME has the ability to verify that the knowledge 

that he or she has entered is useful to—in fact used 
by—the system.  Rather than merely seeing that his or 
her knowledge has been added to the system, there is 
concrete evidence that the knowledge has “taken,” 
and that the dialogue has thus borne fruit. 

 
2) All questions added to the test suite in this manner 

should answer correctly; failure is indicative of an 
error in the system, either in the state of knowledge, 
or in the inference engine itself.  A dialogue-created 
test suite thus represents an important first step 
towards self-diagnosis by the system, itself an 



important goal in achieving system-initiated 
intelligent behavior. 

 
3) Some of the test questions will undoubtedly be 

inappropriate for the topic of the dialogue, as intended 
by the user.  The inappropriateness of such questions 
thus speaks to the inappropriateness of the rules for 
that domain; the SME can thus help improve the 
system’s understanding of topical relevance by 
tagging such questions (and, therefore, indirectly, 
such rules) as belonging outside the domain of the 
relevant discussion.   

 

6 Conclusion 
The system is currently capable of engaging the user in a 
mixed-initiative dialogue in which the user teaches the 
system new information.  This system has enabled Subject 
Matter Experts to enter information (in English) at a faster 
rate than trained ontologists can when working directly in 
CycL.  Future work will focus on making the system better 
able to track the topic and be more discerning in deciding 
when to take the initiative.  This will have the effect of 
allowing a SME to enter information within a narrow 
domain without undue digression.  To close the knowledge 
entry loop, the system will induce its own tes t questions, 
allowing both the user and the system to know that the 
knowledge has been conveyed effectively. 
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