
An Interactive Dialogue System for Knowledge Acquisition in Cyc

Michael Witbrock,
David Baxter, Jon Curtis, Dave Schneider,

Robert Kahlert, Pierluigi Miraglia, Peter Wagner,
Kathy Panton, Gavin Matthews, Amanda Vizedom

Cycorp, Inc., 3721 Executive Center Drive, Austin, Texas 78731

{witbrock, baxter, jonc, daves, rck, miraglia, peter, panton, gmatthew, vizedom}@cyc.com

Content Areas: common sense reasoning, knowledge representation, dialogue systems

Abstract

Cycorp has developed a knowledge acquisition
system, based on Cyc, that can engage a user in a
natural-language mixed-initiative dialogue. In
order to achieve a intelligent dialogue with the
user, it employs explicit topic- and user-modeling,
a system of prioritized interactions, and a
transparent agenda to which either the user or the
system can add interactions at any time.
Interactions initiated by the Cyc system are
directed at closing system-perceived knowledge
gaps, at optimizing the inferential utility of existing
and added knowledge, and at generally facilitating
the user’s knowledge-entry task. This is done both
deductively, in response to explicit knowledge-
elicitation rules, and inductively, from the existing
content of the Cyc Knowledge Base.

1 Introduction
Cycorp, and the previous Cyc project at MCC, have, for the
last 19 years, been developing a massive repository of
common-sense, real world knowledge called Cyc, currently
the largest knowledge base in the world, with over 1.6
million largely hand-entered facts and rules that interrelate
more than 118,000 concepts. The contents of the Cyc KB
are represented in CycL, a highly expressive, logically
perspicuous language based on second order logic.
Assertions in the KB are stored in microtheories [Lenat,
1998]—explicit representations of context that enable Cyc
to represent multiple perspectives, and serve to focus on a
concise, relevant body of rules during inference.
 Recently, in order to allow a much larger class of people
to add knowledge to Cyc, a start has been made on
developing natural-language based tools that rely for their
operation on information in the Cyc KB, and that shield the
knowledge enterer from CycL.

 A design principle of the system has been to follow a
mixed-initiative dialogue model, with the user engaging the
system in a conversation in which Cyc acquires new
knowledge, taking the initiative as appropriate to ask
clarifying questions or to guide the user toward entering
knowledge that would add to the system’s inferential
abilities. This system relies on the basic support in Cyc for
natural language generation and understanding, as described
in the remainder of this section.

1.1 The Cyc Lexicon
The lexicon [Burns and Davis, 1999] contains syntactic,
semantic, and pragmatic information for approximately
17,000 English root words. The lexicon also contains
approximately 36,000 multi-word phrases and 45,000
proper names. Inflectional and derivational morphology are
handled by a separate code component. Each root word is
represented as a term in the knowledge base, with assertions
providing information about the word’s part of speech,
subcategorization patterns, and semantics. Semantic
information in the lexicon involves a mapping between
word senses and corresponding KB concepts or formulae.

1.2 Generation
The natural language generation system produces a word-,
phrase-, or sentence-level paraphrase of KB concepts, rules,
and queries. The NLG system re lies on information
contained in the lexicon, and is driven by generation
templates stored in the KB. These templates are not solely
string-based; they contain linguistic data which allows, for
example, for correct grammatical agreement to be
generated. Semantic information in the templates is used to
vary the generation depending on, for example, the semantic
types of the arguments. The NLG system is capable of
providing paraphrases at varying levels of precision. At one
end of the spectrum is the tersest, most natural paraphrase of
the CycL input, but which can be ambiguous. At the other
end of the spectrum is paraphrase that is much more precise,
but is potentially wordy and stilted. The system is able to

raise the degree of precision when necessary to prevent
ambiguities that might confuse the user.

1.3 Parsing
Our natural language understanding system parses input
strings not simply into syntactic trees, but into fully formed
semantic formulas. Design criteria for the parsing system
included that it (1) be fast; (2) produce parses of adequate
semantic detail; (3) ask the user for clarification only in
cases where the system could not itself resolve ambiguities;
and (4) support parsing into underspecified formulas, and
then rely on other components to determine the best
semantic translation. The Text Processor controls the
application of the various parsing subcomponents, using a
heuristic best-first search mechanism that has information
about the individual parsers, their applicability to coarse
syntactic categories, cost, expected number of children, and
so on. This information is used to perform a syntax-driven
search over the parse space, applying relevant parsers to the
sub-constituents until all are resolved, or until the parsing
options have been exhausted. The parsers at the disposal of
the Text Processor are the Template parser, the Noun
Compound parser, and the Phrase Structure parser.
 The Template parser is essentially a top-down string- and
word-matching mechanism driven by a set of templates
compiled into an efficient internal format. These templates
employ a simple format so that users can add templates as
they are entering new knowledge into the system. The
template parser is relatively fast, but is of limited flexibility.
It tabulates semantic constraints during a parse, but does not
attempt to verify them; that task is passed along to the next
processing layer.
 The Noun Compound parser uses a set of semantic
templates combined with a generic bottom-up chart-parsing
approach to construct representations for noun compounds
such as “anthrax vaccine stockpile”. Unlike other parsing
components, it makes heavy use of the knowledge base, and
can therefore resolve many ambiguities that are impossible
to handle on a purely syntactic level (e.g. “Mozart
symphonies” vs. “Mozart expert”).
 The Phrase Structure parser takes a similar bottom-up
approach to constructing parses. After completing a syn-
tactic parse, it uses semantic constraints gleaned from the
KB to perform pruning and to build the semantic repre-
sentation using lexical information like which syntactic
constituents map to which semantic roles.

1.4 Post-Processing
In order for parsing to be successful in the current
application, some decisions about semantic meaning need to
be deferred during parsing. In particular, radically vague or
underspecified words such as ‘is’ or ‘contains’, which can
map onto many distinct relations in the KB, introduce
ambiguities that are not handled well by producing all
possible interpretations in parallel. To deal with such cases,
strings are parsed into an intermediate layer (called iCycL)
that conflates relevant ambiguities into a single parse, by
using very general predicates such as is-Underspecified.

The Reformulator, drawing upon background knowledge
and iCycL transformation rules, reformulates these
intermediate representations into final, more specific CycL
representations, often with the user’s help.
 In addition to handling underspecification, the iCycL
layer is also well suited for other types of semantic pro-
cessing, such as interpretation of quantification and nega-
tion. The interpretation of quantifiers, for example, occurs
by first compositionally representing the constituent noun
phrases of a sentence as syntactic structures that contain
CycL terms annotated with syntactic information, such
agreement. Quantifier-processing rules are then used to
break apart these syntactic structures to produce full-fledged
CycL logical forms. Although CycL representations are
modeled on first-order logic, the language itself allows the
definition of higher-order predicates. We exploit this
capability to represent a wide range of NL quantifiers
formally as generalized quantifiers, i.e., as higher-order
relations between sets of objects.

1.5 Lexical Additions
Because users are allowed to add new terms to the ontology,
we have created a special-purpose tool to elicit the
information necessary to be able to parse to and generate
from new terms in the ontology. The Dictionary Assistant
allows the user to specify appropriate syntactic and semantic
information through a dialogue in which they do things like
verify the part of speech (count noun, adjective, etc.) that
the system has assigned, declare it to be any of a large
number of types of names, and tell the system whether or
not this is the preferred way to refer to the new term. For
new relations, the user can add both parsing and generation
templates. The interactions of the Dictionary Assistant
attempt to minimize the amount of linguistic knowledge
required of the user.

2 Infrastructure: The User Interaction
Agenda

The infrastructure for the system described in this paper is
called the “User Interaction Agenda”, or UIA. It is designed
in a modular fashion, so that parts of it can be replaced with
new versions leaving the rest intact. For instance, we are
currently in the process of replacing the HTML-based
interface with one written in Java.
 The user initiates a UIA session by entering a username
and choosing a topic. Based on what the system already
knows about the user, a list of languages1 is displayed for
the user to choose from. In the future, elicitation of user
preferences based on the KB’s persistent user model will be
done more extensively; this is just a taste of the wide range
of user options that will be available for guiding the
conversation, and hence making the knowledge entry
session better tailored to the user’s needs and individual
style, and thus more efficient and pleasant.
 Explicitly setting the topic allows the system to
customize certain interactions, and to filter the knowledge

1 Of which, at present, only one, English, has significant support.

visible by focusing on a restrictive set of microtheories. For
example, selecting the topic “Military Course of Action
Analysis”2 customizes the system to organize created
knowledge along militarily relevant lines.
 An Agenda is then created for the session that keeps an
explicit set of parameterized interactions, each with a well-
defined type, priority, status, and context.
 Both Cyc and the user can add interactions to this Agenda
at any time, and the user can select a pending interaction for
immediate attention. Once an interaction is complete, it is
logged in a journal and the pending interaction on the
Agenda with the highest priority becomes active.
 In the next sections, we will describe in more detail how
dialogue initiative alternates between the user and the
system. To illustrate, we will draw examples from an
illustrative UIA session in which a user is telling Cyc about
Jerry Allison, the drummer in Buddy Holly’s rock and roll
group, the Crickets.

3 User-Initiated Interactions
As mentioned above, one of the ways the user can take the
initiative in the dialogue at any time is by launching a new
interaction. The interface allows the user to do this either by
selecting an interaction type from a menu, or by typing a
natural language utterance into a text box that is always
available (known as the “Say This” box).
 When an utterance is entered into the Say This box, the
system parses it as one of: a question (e.g. “What do you
know about the Crickets?”), a command (“Compare the
Crickets and the Beatles.”), or an assertion (“Jerry
Allison is a member of the Crickets.”).

3.1 Analogy Development

One way a user can enter knowledge is by selecting a
similar concept from the Cyc knowledge base and using it
as the basis for an analogy. For example, one could type, in
the “Say This” box, 3

Jerry Allison is similar to Ringo Starr.

prompting Cyc to do two things. First, Cyc will ask the user
to assent to or reject the system’s suggestions for adding
definitional information to Jerry Allison, based on what it
knows about Ringo Starr. “Definitional information,” in
this context, refers to the assertions that place a new term in
the overall ontology. For individual entities,4 such as
particular organizations (The Beatles, the World Bank),
events (World War II), and living things (Rin Tin Tin,
Ringo Starr), this defin itional information will be assertions

2 An evaluation topic for a program sponsored by DARPA.
3 Alternatively, the user may invoke the analogy development tool
directly from a menu of tools.
4 For collections, as opposed to individuals, definitional
information includes both which collections the defined collection
is an instance of, and which collections it is a specialization of. For
example, the collection Musician is an instance of
PersonTypeByOccupation, and a specialization of Person .

that identify what collection or class an object belongs to.
Since Ringo Starr is known to be an instance of each of the
classes of British citizens, adult male persons, and
drummers, Cyc will ask,

 Is Jerry Allison a songwriter?
 Is Jerry Allison a man?
 Is Jerry Allison a drummer?

If the user responds, “yes” to any of the above, Cyc is able
to continue to the next step, using a simple version of the
type of analogical reasoning outlined in [Forbus, 2002] to
offer non-definitional assertions for the user to reject as
inapplicable, accept as is, or to use as a template for
constructing similar assertions.

Figure 1: Cyc asks for information about the new term Jerry

Allison based on analogy with Ringo Starr.

3.2 Clarification Dialogue
When the user has entered a phrase or sentence that could be
interpreted in more than one way, the system will
temporarily take the initiative and ask one or more questions
to clarify what the user meant. For instance, knowing that
Jerry Allison is from Hillsboro, Texas, the user might enter:

Jerry Allison is from Hillsboro.

Cyc will then ask the user to clarify which of the
interpretation choices in Figure 2 was the intended meaning.
 Once the clarification has been made, the system attempts
to store the new information.

Figure 2: Having parsed the underspecified “is from” sentence,

Cyc presents two alternative interpretations so the user can
specify which one is intended.

3.3 Well-formedness Checking and Repair
To understand how well-formedness repair works, it is
useful to think of CycL sentences as relational structures.
Each CycL sentence is grounded by a predicate that relates
the other terms in the sentence to one another. Consider, for
example, the CycL translation of “Jerry Allison is a member
of The Crickets”:

(hasMembers TheCrickets JerryAllison)

This CycL sentence is grounded by the predicate
hasMembers , which relates the terms JerryAllison and
TheCrickets. As with all CycL predicates, the definitional
information for hasMembers includes a set of argument
constraints – requirements that any term must meet in order
to be meaningfully related by the predicate in an assertion.
For example, the first argument to hasMembers must be an
instance of Organization.
 Given this relational structure, it is possible for a user,
entering knowledge through natural language parsing or
through sentence cloning, to construct a CycL formula that
fails to be semantically well-formed, in that one or more of
the terms fails to meet the argument constraints of the
relevant predicate. If the user enters such an ill-formed
CycL formula, Cyc will again take the initiative to point out
the problem, suggest an additional assertion that will fix the
problem and allow the new fact to be entered.

3.3.1 Semantic Repair: Filling in Knowledge Gaps
One type of ill-formedness arises from a lack of knowledge:
If a term could, but does not yet meet the relevant argument
constraints, Cyc will propose to add the requisite
definitional information. This corrective behavior extends
to situations in which the user introduces a completely new
term to the system. For example, suppose the user wishes to
use the analogy developer to clone and modify the assertion,

Ringo Starr wrote “Octopus’s Garden”

by substituting Jerry Allison for Ringo Starr and Peggy
Sue for Octopus’s Garden. The CycL ‘beneath’ the
English,

(authorOfSong OctopussGarden-TheSong
RingoStarr) ,

is grounded in the predicate, authorOfSong , which requires
a song as its second argument. If Cyc does not yet have a
term representing the song “Peggy Sue,” it will respond to
the new, cloned input by suggesting that, as part of the
novel term’s definitional information, “Peggy Sue” must be
a song (see Figure 3).

Figure 3: Since Cyc has never heard of “Peggy Sue,” it takes
the initiative, using information derived from the context, in

guiding the user to create this new concept.

The user also has the option to further refine the new term,
either immediately or as a later interaction.

3.3.2 Semantic Repair: Instance/Type Mistakes
In another form of semantic constraint repair, Cyc applies
its knowledge to certain, recognizable patterns of ill-formed
input to simulate something akin to the principle of charity
[Davidson, 1986]. This principle is frequently used by
humans to ascribe the most sensible interpretation to a
dialogue partner’s utterances, under the “charitable”
assumption that the utterance was intended to be sensible. It
is interesting to note that this sort of repair is required by the
fact that the UIA interface supports sentence cloning,
essentially a process for manipulating CycL terms nearly
directly, by manipulating the English in a templatized
paraphrase of a CycL formula.
 For example, while cloning a sentence during analogy
development,

Ringo Starr can play the drums.

a user might be tempted to replace the grammatically correct
subject, “Ringo Starr”, with an equally grammatically
correct subject: “Drummers”. However, the CycL for the
original sentence,

(skillCapableOf RingoStarr
 (PlayingInstrumentFn Drum) performedBy),

requires that whatever currently fills the place of
RingoStarr be an instance of the collection Agent; only
agentive entities like people and organizations can
“perform” intentional activities like drumming. This rules
out the CycL term for “drummers” – Drummer – as a valid
substitution for RingoStarr , as Drummer is a collection, or
class, (the collection of all drummers, including Ringo
Starr), and not a drummer or an agent, itself. Thus, by
substituting in well-formed English for well-formed

English, the user can create a situation where the end result
is semantically ill-formed CycL5
 The automatic semantic repair module, however, can
correct this situation by introducing quantification, behind-
the-scenes, so to speak. Confronted with the ill -formed,

 (skillCapableOf Drummer
 (PlayingInstrumentFn Drum) performedBy)

Cyc checks to see if perhaps this might be more charitably
interpreted as an attempt at stating a generalization about
drummers, and not as a claim about the capabilities of the
abstract collection Drummer. To do this, it checks to see
whether Drummer is a subset of the collection of Agents,
which proves to be the case. Having verified this, it
introduces universal quantification, and interprets the user
input as a general (and in this case, correct) rule, that all
drummers can play the drums:

(implies
 (isa ?X Drummer)
 (skillCapableOf ?X
 (PlayingInstrumentFn Drum) performedBy))

3.3 Precision Suggestion
It is often the case that a human knowledge enterer does not
formulate knowledge in the “strongest”, or most
inferentially productive, way possible. Before a user’s
statement is entered into the Cyc knowledge base using the
dialog system, Cyc looks for ways to strengthen the
formulation, making it more useful for inference.
 For instance, if the user enters the sentence “Jerry Allison
is a drummer,” Cyc may ask the question in Figure 4.

Figure 4: Cyc offers a stronger version of a statement the user

has made, i.e. one that allows it to make more or stronger
inferences.

This stronger version allows Cyc to conclude new
knowledge about Jerry Allison from general knowledge

5 This illustrates one of many difficulties in covering a system, like
Cyc, based on predicate calculus, with a natural language like
English, with a vastly different syntax. Small modifications to a
CycL sentence can cause vast changes in the corresponding
English, and vice versa.

about occupations. For example, it can now conclude that he
is paid for drumming.

4 System Initiative: The Salient Descriptor
The most compelling example of Cyc taking the initiative in
dialogue is the Salient Description process. As the user
enters knowledge about a concept, a background process
uses the term representing that concept as a seed to come up
with questions to ask about it, based on what Cyc knows
about the seed term and on the state of the knowledge base
in general. The user can at any time inspect the list of
pending questions Cyc has available for concepts mentioned
in the dialog and select one to answer, and can instruct the
system to begin generating questions for any term that Cyc
knows about.
 When the user chooses to answer a question, the interface
not only displays the question and various means by which
the user might answer it, but also allows the user to view
Cyc’s explanation for why it judged the question
appropriate,6 and, when possible, a small set of examples
that the user can either select an answer from or pattern an
answer after.

4.1 Predefined Question Types
Ontologists at Cycorp have authored numerous knowledge
entry (KE) facilitation rules that describe the kinds of
knowledge it is useful for Cyc to have regarding terms with
certain properties. For instance, the Cyc knowledge base
contains the following “KE facilitation” rule:

For every X, if X is a musician, then it is strongly
expected that X plays some type of musical instrument
in some musical group.

So, once Cyc knows that Jerry Allison is a drummer, and
therefore a musician, it knows to ask the question in Figure
5.

Figure 5: Cyc uses a predefined question for musicians to ask

the user for a new piece of information about a particular
musician the user has defined.

The user can then conveniently add the information that
Jerry Allison plays the drums in the Crickets.

4.2 Rules that Almost Apply to a Term
As well as using handcrafted rules to drive the interview
process, the system uses its knowledge to autonomously
derive and propose new interview questions. In one such

6 The user may disagree; the system also provides an option for
explaining why the question may be inappropriate, so that the basis
for its having been asked can be reviewed by ontologists.

process, the Salient Descriptor inspects Cyc’s inventory of
rules to find ones that would apply to the seed term if it
knew just one or two more facts, and then asks the user to
confirm (or deny) those facts.
 This approach allows Cyc to guide knowledge entry in a
way that is designed to make it more inferentially powerful,
often eliciting knowledge that the user might not otherwise
think to enter.
 For instance, once the user tells Cyc that Jerry Allison is
married to Peggy Sue, Cyc realizes that Jerry Allison may
have some nieces or nephews by marriage, and asks the
question in Figure 6.7

Figure 6: Cyc finds a rule that almost applies to Jerry Allison,
and asks the user if the unknown part of the rule’s antecedent

is true.

4.3 Induced Interview Questions
When the user is entering a new instance of a class of terms
about which Cyc already has some knowledge, the system
can inspect the existing instances for patterns that suggest
knowledge the user may be able to provide about the new
term.
 For instance, many of the people Cyc knows about have
their nationalities represented. If the user enters a new term
representing a person, and neglects to enter the person’s
nationality, Cyc can notice this and prompt the user to enter
it, giving previously entered nationalities of people as
examples.

7 The fact that this question may be somewhat off-topic is an issue
with the system, and is discussed further in section 5.1.

Figure 7: Cyc asks for Jerry Allison’s nationality, based on

analogy to similar terms for which it already knows nationality
information.

 Although the knowledge formation dialogue uses Cyc’s
knowledge extensively throughout its operation, this
effective use of straightforward induction to drive
knowledge acquisition offers support for the Cyc
hypothesis: that by hand crafting a large knowledge base, an
effective inductive bias for automatic knowledge acquisition
can be provided.

5 Future Directions
The system described here has been developed using the
Cyc KB and inference system and was able in initial
experiments to support a two-fold increase in knowledge
entry rates. From observation of Subject Matter Expert
(SME) behaviour during challenge problems, of the sort
described in the papers surveyed by [Kim and Gil, 2002],
and from internal studies, Cycorp has been able to identify
some key opportunities for the future development of the
system, to enhance the sense of intelligent dialogue, while
increasing both flexibility and robustness. These span areas
of both system and user initiative, and include:

5.1 Conversational Goals and Focus
In advancing the system’s capabilities towards the level of a
human teacher-student interaction, the most important
improvement must be at the highest level. The system must
be able to perform meta-reasoning about the dialogue at
multiple levels.
 At a short-term level, a human conversation has
identifiable focal topics and concepts. Succeeding
contributions will both build upon this context, and change
it. In order to permit both efficient knowledge entry, and
effective pedagogical output, the system will track the
current focus, promoting and demoting concepts as
appropriate, recognizing changes in the discourse context
and computing their implications.
 The specific focus will change over the course of a
conversation. For example, a conversation about Jerry
Allison might focus on his band, his musical specialty, his
wife, and a particular song. Indeed, every user response will
change the discourse context in some respect.
 Conversations, however, typically have a general topic.
Thus a conversation about Jerry Allison might transition
from his wife to involve his nieces and nephews, but should
not pursue that thread further without a specific indication
from the user that they are topical.

 Further, in addition to having a general topic,
conversations, especially in a pedagogical context, typically
have goals. A subject-matter expert using the system will
either have a specific body of knowledge to enter, or will
have a target question-answering capability to add to the
system.
 In a reversal of the pedagogical roles, the user takes on
the role of student, and wants to learn particular facts, or
comprehend some concept. The system’s ability to
communicate about the objective of the conversation will
enable it to act agentively in pursuing the shared goal.
 In terms of specific implementation, the system will take
the existing salient descriptor technology described above,
and use the discourse model to drive the generation of
interview questions towards the goals, filter them by current
focus, and structure them by future focus. This will enable
the system to mimic the characteristics of intelligent
conversation that make it an efficient medium of
information exchange.

5.2 Ambiguity Resolution
Beyond a mundane understanding of vocabulary and syntax,
the outstanding problems relate to the ambiguity introduced
by anaphora and polysemy.
 The system must be able to take anaphoric references and
correctly resolve the referent in the context of the discourse
model. For example in the paragraph:

 Jerry Allison wrote Peggy Sue.
 He used his wife’s name for the title.

the second sentence includes two pronominal references to
Jerry Allison (“he” and “his), whereas “the title” is both a
definite description and a bridging reference, because the
song’s title has not been explicitly referred to before.
 In the paragraph:

 Jerry Allison married Peggy Sue.
 It was a big day.

the pronoun “it” is an event anaphor, referring to the
wedding implied by the marriage. This bears on the general
problem that natural language utterances rarely reify the
events, whereas formal representations typically map this
into Davidsonian form.
 Similarly, it is not in general possible to maintain a one-
to-one mapping between natural language words and the
concepts in a formal representation. In the examples above,
“wrote” refers to song-writing, but it could equally refer to
book-authorship, or even the act of writing a letter; “Peggy
Sue” could now be either the song or his wife. At a higher
level, words can act as different parts of speech, as in the
World War II headline “British push bottles up Germans”.
 In its current incarnation, the system identifies the
possible parses for a sentence, and asks the user to choose
between them in a process known as interactive clarification
dialogue. In future versions, the system will be designed to
endure such ambiguity, using information both within a

sentence, and in other sentences past and future to narrow
the field. Thus this ambiguity tolerance will provide the user
with two key benefits:

1. The dialogue is more fluent, because it never
becomes blocked either by lengthy computations or
by modal interactions; and

2. The deferred resolution allows the system to
resolve more references by itself, and the user can
better concentrate on the domain of discourse.

5.3 Automatic Generation of Test Questions
Test questions are routinely used to check the correctness of
the existing KB knowledge itself. These test questions are
organized into topic-specific tests suites.
 The rule-based induction methods used to ask the user for
information (section 4.2, above) can be extended easily to
produce a suite of inference tests that both serve to validate
the SME-entered knowledge, and protect against system
degradation. Keeping with our example from Section 4.2,
the user is asked whether Peggy Sue Allison is an aunt, as
part of Cyc’s attempt to gain information about Jerry
Allison. That question is prompted by the existence of the
following rule:

If FEMALE-PERSON is PERSON’s aunt,
and FEMALE -PERSON is the wife of MALE-PERSON,
then MALE-PERSON is PERSON’s uncle.

By answering ‘yes’ to the question that this rule has
prompted, or by going a step further and supplying the
identity of Peggy Sue’s niece or nephew, the SME has given
the system the ability to prove that Jerry Allison is an uncle.
The system thus can be prompted to add the question, “Is
Jerry Allison an uncle?” or, in CycL,

 (thereExists ?PERSON
 (uncles ?PERSON JerryAllison))

to a suite of tests, customized for the knowledge that the
SME has entered. The benefits to extending rule-based
induction technology in this way are threefold:

1) The SME has the ability to verify that the knowledge

that he or she has entered is useful to—in fact used
by—the system. Rather than merely seeing that his or
her knowledge has been added to the system, there is
concrete evidence that the knowledge has “taken,”
and that the dialogue has thus borne fruit.

2) All questions added to the test suite in this manner

should answer correctly; failure is indicative of an
error in the system, either in the state of knowledge,
or in the inference engine itself. A dialogue-created
test suite thus represents an important first step
towards self-diagnosis by the system, itself an

important goal in achieving system-initiated
intelligent behavior.

3) Some of the test questions will undoubtedly be

inappropriate for the topic of the dialogue, as intended
by the user. The inappropriateness of such questions
thus speaks to the inappropriateness of the rules for
that domain; the SME can thus help improve the
system’s understanding of topical relevance by
tagging such questions (and, therefore, indirectly,
such rules) as belonging outside the domain of the
relevant discussion.

6 Conclusion
The system is currently capable of engaging the user in a
mixed-initiative dialogue in which the user teaches the
system new information. This system has enabled Subject
Matter Experts to enter information (in English) at a faster
rate than trained ontologists can when working directly in
CycL. Future work will focus on making the system better
able to track the topic and be more discerning in deciding
when to take the initiative. This will have the effect of
allowing a SME to enter information within a narrow
domain without undue digression. To close the knowledge
entry loop, the system will induce its own tes t questions,
allowing both the user and the system to know that the
knowledge has been conveyed effectively.

References
[Burns and Davis, 1999] K.J. Burns and A.R. Davis.
Building and main taining a semantically adequate lexicon
using Cyc. In Viegas, E. ed. Breadth and depth of semantic
lexicons. Dordrecht: Kiuwer, 1999.

[Davidson, 1986] Donald Davidson Inquiries into Truth and
Interpretation, 1986.

[Forbus, 2002] Ken Forbus, T. Mostek, and R. Ferguson.
An analogy ontology for integrating analogical processing
and first-principles reasoning.
Proceedings of IAAI-02, July 2002.

[Kim and Gil, 2002] Jihie Kim and Yolanda Gil. Deriving
Acquisition Principles from Tutoring Principles. In
Proceedings of the Intelligent Tutoring Systems conference
(ITS-2002), Biarritz (FR), June 5-7, 2002.

[Lenat, 1998] Douglas B. Lenat. The Dimensions of
Context Space. Cycorp technical report.

