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ABSTRACT 
The simulation of aircraft is probably one of the most 
complicated yet exciting fields in the engineering world 
today.  As personal computers have become more 
powerful, the ability to simulate the complex behavior 
of aircraft motion in real time is now possible on these 
lower-cost platforms.  Microsoft Flight Simulator is one 
of the most mature, low-cost and feature-packed 
simulation programs on the market today; Microsoft 
Combat Flight Simulator includes many of the same 
simulation capabilities available in Microsoft Flight 
Simulator.  Through implementation of the classical 
aircraft Equations of Motion, Quaternion 
Transformation methods, Direct Cosine Euler 
Transformations and non-dimensional aerodynamic 
coefficient implementation, these programs provide a 
robust and accurate aircraft simulation software 
package that have been built, added to and improved 
upon through years of development.  Together with the 
detailed propulsion simulation techniques, ground 
reaction fidelity and abundance of systems modeling, 
these mainstays of the marketplace offer many unique 
aircraft simulation features.  This paper will provide a 
brief product history and describe the techniques used 
to simulate aircraft in both Microsoft Flight Simulator 
and Microsoft Combat Flight Simulator. 

INTRODUCTION 
One of the most popular entertainment titles published 
for the PC, Microsoft Flight Simulator (MSFS) is 
celebrating its 20th anniversary during the same year we 
are celebrating the 100th anniversary of the Wright 
Brothers’ first powered flight.  During these 20 years, 
continuous improvements have been made to the way 
the program simulates aircraft in flight – from 
simplified linear equations of flight to the inclusion of 
non-linear flight dynamic components, detailed ground 
reaction and damage modeling, extensive systems 
integration and robust propulsion simulation 
techniques.  It is this continuous improvement in the 
core simulation engine that makes MSFS not only a 
solid simulation platform, but also very flexible and 
extensible in nature. 

BRIEF HISTORY OF MICROSOFT FLIGHT 
SIMULATOR 

Where It All Began 
In 1975, Bruce Artwick was working on his Master’s 
Thesis in Electrical Engineering at the University of 
Illinois entitled, “A Versatile Computer-Generated 
Dynamic Flight Display.”1  This paper demonstrated 
that the computers of that day could not only handle the 
mathematical computations required for aircraft 
simulation routines, but that they could also generate 
graphical images as a way to provide visual feedback to 
the user. 
 
Shortly thereafter, Artwick teamed up with his flight 
instructor, Stu Moment, to form a company called 
SubLOGIC to develop and market a commercial 
aircraft simulator based on his thesis work.  The 
resulting FS1 Flight Simulator was an instant success, 
and by the end of 1980 had become one of the best-
selling software titles for the Apple computer.2 

Along Comes Microsoft 
By 1981, Microsoft approached Artwick with a 
proposition – allow Microsoft to exclusively license his 
program for the new yet-to-be-introduced computer, the 
IBM-PC.  Artwick accepted, and Microsoft Flight 
Simulator 1.01 was released for the IBM-PC in 1982.  

 
Figure 1.  Microsoft Flight Simulator 2004:  A 

Century of Flight – Wright Flyer 
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Not only was it one of the most popular software titles 
for the new IBM home-computer, but it was often used 
as the standard for determining whether or not a 
computer of that era was “PC-compatible.”  Many 
versions of MSFS were released throughout the decade, 
each improving all aspects of the product.2 

The Saga Continues… 
In 1988, Artwick formed his own company called BAO 
Ltd, for the Bruce Artwick Organization.  Between 
1989 an 1993, BAO’s development efforts focused 
more on expansion packs and development tools rather 
than the core Flight Simulator product.  Some of these 
included the Aircraft and Scenery Designer, intended to 
help create graphical improvements and add-ons, and 
FlightShop, which allowed users to create their own 
aircraft flight models. 
 
These development tools created a marketplace for 
additional content that would work with MSFS, or 
“add-ons.”  Coupled with the advancement of the 
Internet, hundreds of aircraft, buildings, airports and 
other add-on components were available for download 
by any user, often for free. 
 
After the release of Flight Simulator 95, Artwick sold 
all rights of the product to Microsoft.  Many of the 
people employed at BAO Ltd at that time came with the 
program to Redmond, WA, and some are still working 
on it today. 

Modern History 
Through each successive version of the product, MSFS 
has been improved in many respects:  aircraft, graphics, 
terrain, airports, sounds, special effects, and many 
others.  By the release of FS98, MSFS seemed to be a 
popular franchise with a bright future – but there was 
something missing…guns. 
 
Microsoft Combat Flight Simulator (MSCFS) was 
released the following year.  Dubbed CFS1.0, this 
version of the popular MSFS series was entirely 
focused on the air combat aspects of WWII European 
Theater operations.  Though the focus had changed 
from a civilian to military theme, the core Simulation 
Engine of the product has remained the same to this 
day. 
 
Both MSFS and MSCFS have continued to be 
improved, with a new version of one or the other being 
released each year.  Through each subsequent release, 
new features are added, old ones are improved, and the 
standard for quality is raised to meet the expectations of 
our customers.    
 

Figure 2 provides a glimpse of the latest MSCFS 
release, Microsoft Combat Flight Simulator 3.0:  Battle 
for Europe.  The latest release of MSFS, Microsoft 
Flight Simulator 2004:  A Century of Flight, celebrates 
the centennial of flight and all the advancements made 
in the aviation industry over the first 100 years of 
powered flight (see Figure 1).  Both products should be 
available upon release of this paper. 

CORE SIMULATION ENGINE 
The core simulation engine (a.k.a SimEngine) refers to 
the theory, principles, functions, and processes which 
directly relate to the way in which we simulate aircraft 
behavior.  This includes the motion of aircraft, but also 
includes the way the aircraft reacts with the ground, the 
methodologies used to simulate thrust and propulsion, 
and the simulation of a host of systems typically found 
in a real aircraft.  It’s important to realize that the 
SimEngine is an ever-evolving core component of both 
MSFS and MSCFS, and many developers from both 
product teams have contributed to it through many 
years of development.  I’ve taken the liberty to share 
this knowledge, but make no claim to have designed or 
otherwise invented all the information provided here. 
 
First to be discussed is a general description of the 
SimEngine, and some of the key challenges and 
components thereof.  Next will be a detailed breakdown 
of the Flight Dynamics, then Propulsion, Ground 
Reaction, Systems, Damage and finally the Realism 
factors used in the SimEngine. 

Center of the Universe 
Though it may be a skewed perception, the concept 
given in Figure 3 is intended to illustrate the fact that 

 
Figure 2.  Microsoft Combat Flight Simulator 3:  

Battle for Europe – P-47D 
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the SimEngine interacts with virtually every part of the 
product.  This makes sense when you consider the 
product we are developing is a flight simulator – of 
course the simulation of the aircraft is the centerpiece 
of the product!  However, I imagine that the graphics 
developer or game designer might have a different view 
of the “universe.” 

Interface Support 
To handle the interaction with all the different 
components of the game, the SimEngine must have a 
robust way to interface with these components.  The 
majority of this interaction is handled through a C++ 
class structure interface, complete with unit 
conversions, error handling and multiple parameter 
indices. 

Chicken and the Egg (Terrain/Sim Interaction) 
One of the biggest problems with any simulation is the 
interaction between the simulated object and the world 
in which it is being simulated.  Because of the 
limitations of hardware resources, it is not reasonable to 
expect to have the entire world “loaded” at all times.  
Therefore, there exists a classic “Catch 22” with respect 
to the SimEngine and the Terrain System:  The terrain 
system must know where the aircraft is to know what 
terrain needs to be loaded, but the aircraft must know 
where the ground is to determine if the aircraft has 
crashed, landed or otherwise should be interacting with 
the ground.   
 

The terrain system is designed to perform asynchronous 
loading whenever possible to minimize the stutters 
(instantaneous drop in frame rate) due to terrain 
loading.  However, the terrain may need to be 
synchronously loaded, or force loaded, at the same time 
the SimEngine skips certain functions until a valid 
return from the terrain system is achieved.  This way, 
during the especially difficult period of initialization, 
we can minimize the visual artifacts associated with this 
Catch-22 phenomenon. 

Backwards Compatibility 
Developing new features for a product that has 20 years 
of previous versions can require significant effort to 
ensure compatibility between aircraft of older versions 
to the newly designed feature.  For instance, suppose 
we wish to develop a more robust turbine engine 
simulation routine.  Not only would we need to 
consider the consequences of this change to other 
aspects of the product (artificial intelligence, special 
effects, gauge/panel interaction, etc.), but we would 
also need to consider how a previous-version MSFS or 
MSCFS aircraft might behave with regard to this new 
feature. 
 
We normally handle this issue by establishing an 
upgrade path for aircraft developed for previous 
versions of the product that would not fit with the new 
routine.  This allows users to utilize their older aircraft 
with the new version of the product, but at the same 
time we quietly upgrade their old aircraft behind the 
scenes. 
 
This upgrade capability is sometimes as difficult a 
problem to solve as developing the new feature itself.  
Referring back to our example above, if our new 
turbine engine routine requires additional parameters to 
be defined for the engine to work correctly in the 
SimEngine, we must figure out how to estimate those 
missing parameters for older aircraft.  However, we 
must also make sure the estimated parameters will 
provide similar aircraft performance in the new routine 
as it had in the old. 

Delta T 
One significant difference between Flight Simulator 
and Combat Flight Simulator is the time slice being 
simulated.  As a general rule, the smaller the change in 
time between simulation cycles (∆T), the more accurate 
the resulting aircraft position and attitude is.  However, 
we must also concern ourselves with the limited 
computing power available.  This means we must find 
the ∆T “sweet spot” which provides enough fidelity to 
prevent numerical instabilities, but doesn’t gobble up 
too much processing resources.  This is especially 

 

 
Figure 3.  The “Center of the Universe” 
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critical when simulating large numbers of aircraft (or 
other objects, for that matter). 
 
Flight Simulator incorporates a subroutine which 
computes what ∆T should be based on the current 
frame rate the program is achieving.  As the 
performance of the program degrades, the simulation 
dynamically alters the time slice to take less processing 
time between cycles. 
 
Combat Flight Simulator utilizes a fixed ∆T of 16Hz 
throughout the entire application.  We discovered, 
however, that during certain high-dynamic maneuvers, 
numerical instabilities exist when attempting to 
simulate aircraft at this low a frequency.   We therefore 
incorporate a doubling of certain SimEngine runtime 
functions to halve the ∆T – ultimately achieving a fixed 
∆T of 32 Hz - and solving the numerical instability 
problem. 
 
There are advantages and disadvantages to both 
methodologies, and ultimately either one is a valid and 
reasonable way to simulate an aircraft in real-time. 

FLIGHT DYNAMICS 
There are numerous textbooks outlining the 
fundamentals of aircraft aerodynamics, stability and 
control, and handling qualities3,4,5.  However, most of 
these references focus on the design of aircraft rather 
than the simulation of them.  There are a few references 
available which describe the ways in which to simulate 
aircraft, but most of these focus only on the 
aerodynamic principles involved6,7,8.  The purpose of 
this section is to provide the reader with a basic view of 
how MSFS and MSCFS incorporate the classic 

aerodynamic principles of simulation – it is NOT 
intended to explain the theory behind these principles 
nor derive the equations of motion.  More detailed 
discussion of the various supporting simulation roles 
will be discussed in later sections as well. 
 

Six Degrees of Freedom (6-DOF) 
The SimEngine is based on the core concept of 
simulating in the 6-DOF space (rotational – pitch, roll 
and yaw; and translational – longitudinal, lateral and 
vertical).  This provides the fidelity required to simulate 
any possible aircraft orientation and position in a three-
dimensional (3-D) environment. 
 

Classic Body-Fixed 
Aerodynamic 
Coordinates 

MSFS and MSCFS 
Body-Fixed 
Coordinates 

 
Figure 6.  Comparison of Classic and FlightSim 

Body-fixed Aircraft Coordinate Systems 

 
Figure 4. Simulation Loop 

 
Figure 5. Detailed Simulation Components 
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In aircraft simulation, there are two main axis systems 
used to describe aircraft motion:  “Body-fixed” and 
“Earth-fixed” coordinates.3  Most calculations are done 
in the body-fixed axis to simplify the equations, the 
results then transformed to the Earth-fixed coordinate 
system for proper updating of aircraft position and 
orientation in the visual environment.  The Earth-fixed 
system is considered an inertial reference frame, 
neglecting the rotational velocity of the Earth and 
conforming to Newton’s laws of motion. 
 
In addition, the SimEngine makes use of the “flat earth 
assumption,” which essentially aligns the acceleration 
of gravity along the vertical earth-fixed system.  This is 
another common assumption used to simplify the 
equations of motion, and is generally negligible when 
not dealing with orbital mechanics. 
 
In contrast to most aerodynamic applications, the 
coordinate system used in MSFS and MSCFS is based 
on the Left Hand rule – derived from the same 
coordinate system used to describe computer graphics, 
(See Figure 6).  This coordinate system uses the Z-axis 
as the longitudinal axis, positive out the nose of the 
aircraft, the X-axis as the lateral axis, positive out the 
starboard wing, and the Y-axis as the vertical axis, 
positive up.  However, for simplicity, the equations, 
diagrams and references made to axis in this paper 
maintain the classic aerodynamic representation of the 
Right-Hand rule:  X-axis the longitudinal axis, positive 
forward; Y-axis the lateral axis, positive starboard; and 
the Z-axis the vertical axis, positive down. 

Equations of Motion 
As stated earlier, the derivation for the equations of 
motion will not be attempted here; rather, the resulting 
equations, and those used in the SimEngine, are as 
follows3: 
 
The force equations in the airplane body-fixed axis 
system XYZ: 

 
(1) 

 
(2) 

 
(3) 

 
Where: 

 m = aircraft mass (slugs) 
 g = gravitational constant (ft/s2) 
 Θ = Airplane pitch angle (rad) 
 Φ = Airplane bank angle (rad) 
 U, V, W:  Components of airplane velocity along 

XYZ (ft/s) 

 P, Q, R: Airplane angular velocities about XYZ 
(rad/s) 

 FAx, FAy, FAz: Aerodynamic force components 
along XYZ (lbs) 

 FTx, FTy, FTz: Thrust force components along XYZ 
(lbs) 

 
And the moment equations in the airplane body-fixed 
axis system XYZ: 
 

(4) 
 

(5) 
 
(6) 

 
Where: 

 IXX, IYY, IZZ: Airplane Moments of Inertia about 
XYZ (slug-ft2) 

 LA, MA, NA: Aerodynamic moments about XYZ 
(ft-lbs) 

 LT, MT, NT: Thrust moments about XYZ (ft-lbs) 
 
Note that the cross-inertia terms have been eliminated 
for simplicity, assuming a symmetrical mass 
distribution with respect to the fore and aft plane of 
symmetry, Iyz = Ixy = 0.  
 
After the aerodynamic and thrust forces and moments 
have been calculated, these equations are then solved 
for the translational and rotational accelerations in each 
simulation frame.  The linear and angular velocities can 
then be found through numerical integration of these 
accelerations.  A first-order, modified Euler simple 
integration method is used: 

 
Where: 

 Pn = New Velocity 
 Pn-1 = Old Velcotiy 
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The resulting position and orientation can then be found 
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Quaternion Transformation Method 
Because all the calculations done to this point are 
referenced to the body-fixed coordinate system, some 
form of transformation back to the Earth-fixed axis 
system is required.  There are two main methodologies 
used when simulating aircraft: 
 

 Euler Method 
 Quaternion Method 

 
There are advantages and disadvantages to both 
approaches, but we choose to use the Quaternion 
Transformation Method mainly to avoid singularities at 
Θ = ±90º.  The details and derivations of these 
equations are beyond the scope of this paper, but a 
general description of how the two methods differ is 
given in Figure 76. 
 
 

Euler Method Quaternion Method 

  
 

Figure 7.  Euler and Quaternion Transformation 
Methods 

Aerodynamic Coefficients 
For the most part, the stability and control 
characteristics of the aircraft flight models used in 
MSFS are defined by non-dimensional aerodynamic 
coefficients.  These coefficients are the classic linear-
representation of aircraft aerodynamic forces and 
moments.  Used in conjunction with the aircraft 
geometry, mass and dynamic pressure, these values can 
be solved for the over-all forces and moments for an 
aircraft during each time-step interval.  The following 
equations are used to define the longitudinal 
aerodynamic force and moment coefficients3: 
 
 

(8) 
 

(9) 
 

(10) 
 

Where: 
 D  = Drag force (lbs) 
 L = Lift force (lbs) 
 q = dynamic pressure (lbs/ft2) 
 S = Wing surface area (ft2) 
 c = Wing mean geometric chord (ft) 
 CD = Airplane drag coefficient 
 CL = Airplane lift coefficient 
 CM = Airplane pitching moment coefficient 

 
The lateral-directional aerodynamic force and moment 
coefficients are defined by: 

 
(11) 

 
(12) 

 
(13) 

 
Where: 

 b = Wing span (ft) 
 Cl = Airplane rolling moment coefficient 
 CY = Airplane side force coefficient 
 CN = Airplane yawing moment coefficient 

 
The non-dimensional aerodynamic coefficients can then 
be broken down in to more finite components, which 
are defined on a per-flight model basis.  These are the 
so-called steady-state derivatives3: 

 
(14) 

 
(15) 

 
(16) 

 
(17) 

 
(18) 

 
(19) 
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 β:  Due to sideslip angle 
 δa:  Due to aileron deflection 
 δr:  Due to rudder deflection 

 
The non-dimensional quasi-steady perturbed 
aerodynamic coefficients are also used, but for 
simplicity are not included here.   

High Alpha/Beta Table Look-ups 
Although most of the terms defined for an aircraft flight 
model’s stability and control characteristics are of the 
linear non-dimensional form, two-dimensional tables 
are also used to capture the non-linear behavior of 
aircraft at higher angles of attack and sideslip.  The CLα 
and CMα values used in the SimEngine are obtained 
through linear interpolation of a table for a given angle 
of attack, and are the only exceptions to this rule.  All 
the other non-dimensional aerodynamic coefficients are 
non-linearized through the use of tables generated 
specifically for each coefficient.  An interpolation 
routine is used to find the non-linear effect of a given 
coefficient, which is simply a scalar value multiplied by 
the base linear-form of the coefficient, to obtain the 
correct behavior in the non-linear range. 
 
In essence, we incorporate both a linear non-
dimensional coefficient methodology for simplicity 
with a table look-up methodology to capture the non-
linear effects of aircraft behavior at extreme incidence 
angles, of the form: 

 
(20) 

 

Where: 
• CX = Aerodynamic Coefficient of Interest 
• CXLinear = Linear Form of Coefficient 
• CXa-Mod = Angle of Attack Non-linear Modifier 
• CXb-Mod = Sideslip Non-linear Modifier 

Mach and Ground Effects 
The effect of Mach number on the aircraft coefficients, 
drag, power and stability and control are handled 
through a similar table look-up interpolation routine to 
the one used for high alpha/beta corrections: 
 

(21) 
 

 
Ground effect is handled the same way.  However, we 
utilize the ratio of height AGL to aircraft wing span to 
simulate the additional lift experienced in ground effect. 

Propwash 
In addition to the previously stated non-dimensional 
aerodynamic coefficients, we also define coefficients 
which represent the control surface power or stability 
with respect to an induced dynamic pressure.   

PROPULSION 
A significant portion of simulation time is spent dealing 
with the propulsion characteristics for a given aircraft.  
There are three main types of propulsion simulated to a 
high fidelity level: 
 
 Piston Engines 
 Turbine Engines 
 Turboprop Engines 

 
In addition to the engine modules, a Propeller module is 
also required to convert shaft horsepower or torque to 
thrust. 
 
There are two other, lower fidelity engine models 
currently employed: 
 
 Rocket Engine 
 Helicopter Engine 

 
These two will not be discussed in this paper, as they 
are either not prominent or relevant to this discussion. 

Piston Engine Simulation 
One of the most remarkable aspects of the SimEngine is 
the high-fidelity piston simulation module employed.  
This module is designed to simulate the piston engine 
Otto cycle (see Figure 8). 
 
The Otto cycles shown are: 
 

 
Figure 8.  Piston Engine Otto Cycle 

ModXModXLinear CCXX KKCC
−−

=
βα

**

MachEffectXLinear CXX KCC *=
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 Intake (F-E) 
 Compression (A-B) 
 Combustion (B-C) 
 Power (C-D) 
 Exhaust (D-E) 

 
Through the use of efficiency tables, flight model 
defined variables and propulsion theory, the engine 
brake power can be determined. 
 
Figure 9 provides a component breakdown of the 
individual simulation routines used to simulate the 
piston engine.  Each component of the Otto cycle is 
simulated on a per-cylinder basis, then multiplied by 
the number of cylinders to obtain the total shaft torque 
available.   
 
Table look-ups are then performed for the engine 
friction and mechanical efficiency for a given RPM, 
which is then used to modify the shaft torque output.  
Finally, the engine brake power can be found by 
multiplying the engine shaft torque by the engine 
omega, or engine speed, in the form of radians per 
second. 

Turbine Engine Simulation 
The turbine engine is simulated quite differently from 
the piston engine.  Instead of trying to simulate the 
thermodynamic properties of a turbine, which are quite 
complicated and involved, the SimEngine incorporates 
extensive use of normalized look-up tables that can be 
scaled by the required thrust output of the engine.  Not 
only does this make the turbine code simpler and easier 

to maintain, but it also allows for simplified input to the 
flight model data file. 
 
Figure 10 provides a detailed component breakdown of 
how the turbine simulation code works.  Though we 
have taken a simplified approach to simulating turbine 
aircraft, we are able to provide the parameters 
necessary for output to the cockpit display through 
empirical and normalized tables. 

Turboprop Engines 
The turboprop engine simulation is really a 
combination of the turbine engine simulation and the 
propeller simulation code (see Figure 11).  Though 
there are a few unique calculations required (N1 and N2 
are calculated using a different set of normalized tables, 
and shaft torque and power must be calculated from the 
turbine engine code), for the most part this simulation 
routine is as simple as the turbine engine simulation. 

Propeller Simulation 
As stated earlier, the propeller simulation is used in 
combination with a piston engine or turboprop engine 
powered aircraft.  Though seemingly a simple task, 
simulating prop behavior is really quite complicated.  
Not only must we calculate the resulting thrust output 
of the prop, but there are numerous other steps required 
to properly simulate prop behavior (constant speed 
props, feathered props, prop sync, etc).  Figure 12 

 
 

Figure 10.  Turbine Engine Simulation 

 
Figure 9. Piston Engine Simulation 
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provides a more detailed component breakdown of the 
steps used in the propeller simulation routine. 

GROUND REACTION 
One of the most complicated and difficult parts of 
aircraft simulation is the interaction of the aircraft with 
the ground.  There are numerous problems associated 
with this issue, but the main ones are: 
 

 Chicken-or-the-egg 
 Collision detection 

 Rolling surface behavior 
 Steering behavior 

 
Some of these problems are addressed below.  Figure 
13 provides a more detailed look at the ground reaction 
simulation routine. 

Contact Points 
Though somewhat unintuitive, the simulation utilizes a 
series of defined contact points to represent the “hard 
points” of an aircraft.  These hard points are not to be 
confused with the visual model representation of the 
aircraft – rather, these points are a subset of the visual 
model and defined in a completely separate manner. 
 
Each point has 15 parameters associated with it, and 
can be used to define a landing gear point, a float point, 
a skid point, or a contact point.  The type of point 
defined can influence how its reaction with the surface 
is simulated. 
 
 Gear:  Modeled as a spring.  Optional parameters 

include retraction times, extension times, max steer 
angle, static compression, compression ratio, and 
damping ratio. 

 Contact point:  “hard point” used to detect aircraft 
extremity coming in contact with the ground, surface 
object or vehicle. 

 
 

Figure 12.  Propeller Simulation 

 
 

Figure 11.  Turboprop Engine Simulation 

 
 

Figure 13. Ground Reaction Simulation 
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Gear As Springs 
Each contact point is considered a spring/mass damper 
system in which reaction with the ground is absorbed 
according to the static compression and damping ratios 
given in the contact point’s definition: 

 
(22) 

 
 

 
Where: 
 K = f(static compression) 
 B = f(K, damping ratio) 

 
Typically, the points defined as scrape points are not 
given a static compression or damping ratio, hence they 
are static hard points that do not deflect when a force is 
applied. 

Steering 
The maximum steer angle defined for a given contact 
point determines not only how much steering capability 
exists, but a value of 180 indicates that the particular 
point is a full-caster wheel.  We use the location of the 
point to help determine specifics about the point, such 
as if the point is a tail wheel or a nose-wheel. 

Friction and Braking 
The friction coefficient used to determine braking 
efficiency is based on a combination of factors: 
 
 Gear type 
 Surface type 
 Surface condition 

 
We also calculate a slip angle based on the steer angle 
and velocity of the given point.  This slip angle is then 
used to determine the side force friction for each point. 
 
There is a natural rolling resistance friction scalar 
employed to simulate the friction “hump” observed 
when initiating movement from rest.  The braking 
coefficient of friction is defined in the flight model, and 
is then scaled by the percentage brake position on to 
determine the braking resistance at any given brake 
position.  

Collision Detection 
Probably the most difficult part of simulating aircraft is 
the methods required to detect an aircraft collision.  
Some of the main challenges are: 
 
 Determining difference between a crash and a hard 

landing. 

 Quickly changing terrain – large slopes or cliffs. 
 Detecting collisions with non-ground objects (trees, 

buildings, other aircraft, etc). 
 
The significance of this problem is exasperated by the 
fact that we must look for collisions on every point, on 
every aircraft, in every simulation frame, coupled with 
the need for collision detection when close to the 
ground – which is also the time the graphics engine is 
taxing the computer hardware the most.  These facts 
behoove us to be very conscious of the calculations we 
are performing, as we must always strive to achieve an 
efficient solution in this area to maintain acceptable 
game performance. 

SYSTEMS 
One of the most intriguing and challenging aspects to 
the SimEngine is the various aircraft systems simulated.  
Although many of these systems tie directly into the 
propulsion simulation (oil pressure, exhaust gas 
temperature, etc.), many other systems are modeled as 
completely separate systems.  The major systems of 
note are: 
 

 Electrical system 
 Fuel system 
 Oil system 
 Cooling system 
 Hydraulics system 
 Vacuum system 
 Pneumatic system 
 Autopilot 
 Radios 
 Gyroscopes 
 GPS 
 Exits 
 Tail-hooks 
 Folding wings 

 
With each new release of MSFS or MSCFS, we make 
decisions about which new system to implement based 
on the capabilities of the new aircraft we are going to 
simulate.   Through extensive research and a thorough 
design process, we attempt to simulate these systems as 
accurately as possible.   
 
However, we also must be aware of usability issues that 
may arise, and in some cases include the design for 
“automatic” modes if a particular system is very 
complex or cumbersome to use in a simulated 
environment.  This inevitably makes it easier to 
implement follow-on systems in future versions of the 
product, and allows for a more robust and realistic 
simulation experience for users of all experience levels. 
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DAMAGE MODELING 
Upon the advent of CFS1.0, it became clear that a more 
robust method of simulating aircraft damage was 
necessary.  The main areas we incorporate damage 
effects are: 
 
 Flight model 
 Propulsion 
 Gear 
 Systems 
 Armament 

 
The overall methodology we use is to keep track of 
damage levels for specific components of the aircraft 
(left wing, right wing, tail, engine, fuel system, canopy, 
etc).  We then apply scaling factors to the various 
systems for systems damage, and modify the 
aerodynamic coefficients for aircraft structural damage.  
We also attempt to make the damage effects gradual 
rather than step-wise. 
 
We have improved this system version to version, but 
we still find numerical instability problems when trying 
to simulate aircraft with major structural damage – 
applying too great a scaling factor to the aerodynamic 
coefficients can result in un-desirable characteristics 
(i.e., wingless aircraft gaining altitude). 

REALISM FACTORS 
Though the simulation and the respective components 
therein are designed with the utmost realism in mind, 
we have made significant efforts to simplify certain 
parts of the simulation to ease user workload in the 
cockpit.  These realism factors are also included to 
provide an easier transition for novice users and/or 
pilots who are new to the world of aviation and flying. 
 
 Flight model 
 Control inputs 
 Crash tolerance 
 Ground handling 
 Weapon effectiveness 
 Gyroscopic effects 
 Stall/spin behavior 
 Stress damage effects 
 Fuel weight and balance 
 Automatic engine controls 

 
Without these factors, the proper operation of some 
aircraft can be very difficult for even the most 
experienced MSFS/MSCFS enthusiast or pilot. 

CONCLUSIONS 
Through over 20 years of consecutive development, 
Microsoft Flight Simulator and Microsoft Combat 
Flight Simulator have continuously improved the 
techniques and methodologies used to simulate aircraft 
behavior.   
 
By taking every step possible to accurate simulate 
aircraft flight dynamic behavior, propulsion, ground 
reaction, systems and damage effects, we not only 
achieve a flexible and robust coding platform, but we 
allow ourselves the opportunity to keep striving to be 
As Real As It Gets! 
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