
1
American Institute of Aeronautics and Astronautics

AIRCRAFT SIMULATION TECHNIQUES USED IN LOW-COST, COMMERCIAL SOFTWARE

Michael K. Zyskowski*
Microsoft Corporation

Redmond, WA

ABSTRACT
The simulation of aircraft is probably one of the most
complicated yet exciting fields in the engineering world
today. As personal computers have become more
powerful, the ability to simulate the complex behavior
of aircraft motion in real time is now possible on these
lower-cost platforms. Microsoft Flight Simulator is one
of the most mature, low-cost and feature-packed
simulation programs on the market today; Microsoft
Combat Flight Simulator includes many of the same
simulation capabilities available in Microsoft Flight
Simulator. Through implementation of the classical
aircraft Equations of Motion, Quaternion
Transformation methods, Direct Cosine Euler
Transformations and non-dimensional aerodynamic
coefficient implementation, these programs provide a
robust and accurate aircraft simulation software
package that have been built, added to and improved
upon through years of development. Together with the
detailed propulsion simulation techniques, ground
reaction fidelity and abundance of systems modeling,
these mainstays of the marketplace offer many unique
aircraft simulation features. This paper will provide a
brief product history and describe the techniques used
to simulate aircraft in both Microsoft Flight Simulator
and Microsoft Combat Flight Simulator.

INTRODUCTION
One of the most popular entertainment titles published
for the PC, Microsoft Flight Simulator (MSFS) is
celebrating its 20th anniversary during the same year we
are celebrating the 100th anniversary of the Wright
Brothers’ first powered flight. During these 20 years,
continuous improvements have been made to the way
the program simulates aircraft in flight – from
simplified linear equations of flight to the inclusion of
non-linear flight dynamic components, detailed ground
reaction and damage modeling, extensive systems
integration and robust propulsion simulation
techniques. It is this continuous improvement in the
core simulation engine that makes MSFS not only a
solid simulation platform, but also very flexible and
extensible in nature.

BRIEF HISTORY OF MICROSOFT FLIGHT
SIMULATOR

Where It All Began
In 1975, Bruce Artwick was working on his Master’s
Thesis in Electrical Engineering at the University of
Illinois entitled, “A Versatile Computer-Generated
Dynamic Flight Display.”1 This paper demonstrated
that the computers of that day could not only handle the
mathematical computations required for aircraft
simulation routines, but that they could also generate
graphical images as a way to provide visual feedback to
the user.

Shortly thereafter, Artwick teamed up with his flight
instructor, Stu Moment, to form a company called
SubLOGIC to develop and market a commercial
aircraft simulator based on his thesis work. The
resulting FS1 Flight Simulator was an instant success,
and by the end of 1980 had become one of the best-
selling software titles for the Apple computer.2

Along Comes Microsoft
By 1981, Microsoft approached Artwick with a
proposition – allow Microsoft to exclusively license his
program for the new yet-to-be-introduced computer, the
IBM-PC. Artwick accepted, and Microsoft Flight
Simulator 1.01 was released for the IBM-PC in 1982.

Figure 1. Microsoft Flight Simulator 2004: A

Century of Flight – Wright Flyer

*AIAA Member, Aerospace and Software Design Engineer

AIAA Modeling and Simulation Technologies Conference and Exhibit
11-14 August 2003, Austin, Texas

AIAA 2003-5818

Copyright © 2003 by Michael K. Zyskowski and Microsoft Corporation. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

2
American Institute of Aeronautics and Astronautics

Not only was it one of the most popular software titles
for the new IBM home-computer, but it was often used
as the standard for determining whether or not a
computer of that era was “PC-compatible.” Many
versions of MSFS were released throughout the decade,
each improving all aspects of the product.2

The Saga Continues…
In 1988, Artwick formed his own company called BAO
Ltd, for the Bruce Artwick Organization. Between
1989 an 1993, BAO’s development efforts focused
more on expansion packs and development tools rather
than the core Flight Simulator product. Some of these
included the Aircraft and Scenery Designer, intended to
help create graphical improvements and add-ons, and
FlightShop, which allowed users to create their own
aircraft flight models.

These development tools created a marketplace for
additional content that would work with MSFS, or
“add-ons.” Coupled with the advancement of the
Internet, hundreds of aircraft, buildings, airports and
other add-on components were available for download
by any user, often for free.

After the release of Flight Simulator 95, Artwick sold
all rights of the product to Microsoft. Many of the
people employed at BAO Ltd at that time came with the
program to Redmond, WA, and some are still working
on it today.

Modern History
Through each successive version of the product, MSFS
has been improved in many respects: aircraft, graphics,
terrain, airports, sounds, special effects, and many
others. By the release of FS98, MSFS seemed to be a
popular franchise with a bright future – but there was
something missing…guns.

Microsoft Combat Flight Simulator (MSCFS) was
released the following year. Dubbed CFS1.0, this
version of the popular MSFS series was entirely
focused on the air combat aspects of WWII European
Theater operations. Though the focus had changed
from a civilian to military theme, the core Simulation
Engine of the product has remained the same to this
day.

Both MSFS and MSCFS have continued to be
improved, with a new version of one or the other being
released each year. Through each subsequent release,
new features are added, old ones are improved, and the
standard for quality is raised to meet the expectations of
our customers.

Figure 2 provides a glimpse of the latest MSCFS
release, Microsoft Combat Flight Simulator 3.0: Battle
for Europe. The latest release of MSFS, Microsoft
Flight Simulator 2004: A Century of Flight, celebrates
the centennial of flight and all the advancements made
in the aviation industry over the first 100 years of
powered flight (see Figure 1). Both products should be
available upon release of this paper.

CORE SIMULATION ENGINE
The core simulation engine (a.k.a SimEngine) refers to
the theory, principles, functions, and processes which
directly relate to the way in which we simulate aircraft
behavior. This includes the motion of aircraft, but also
includes the way the aircraft reacts with the ground, the
methodologies used to simulate thrust and propulsion,
and the simulation of a host of systems typically found
in a real aircraft. It’s important to realize that the
SimEngine is an ever-evolving core component of both
MSFS and MSCFS, and many developers from both
product teams have contributed to it through many
years of development. I’ve taken the liberty to share
this knowledge, but make no claim to have designed or
otherwise invented all the information provided here.

First to be discussed is a general description of the
SimEngine, and some of the key challenges and
components thereof. Next will be a detailed breakdown
of the Flight Dynamics, then Propulsion, Ground
Reaction, Systems, Damage and finally the Realism
factors used in the SimEngine.

Center of the Universe
Though it may be a skewed perception, the concept
given in Figure 3 is intended to illustrate the fact that

Figure 2. Microsoft Combat Flight Simulator 3:

Battle for Europe – P-47D

3
American Institute of Aeronautics and Astronautics

the SimEngine interacts with virtually every part of the
product. This makes sense when you consider the
product we are developing is a flight simulator – of
course the simulation of the aircraft is the centerpiece
of the product! However, I imagine that the graphics
developer or game designer might have a different view
of the “universe.”

Interface Support
To handle the interaction with all the different
components of the game, the SimEngine must have a
robust way to interface with these components. The
majority of this interaction is handled through a C++
class structure interface, complete with unit
conversions, error handling and multiple parameter
indices.

Chicken and the Egg (Terrain/Sim Interaction)
One of the biggest problems with any simulation is the
interaction between the simulated object and the world
in which it is being simulated. Because of the
limitations of hardware resources, it is not reasonable to
expect to have the entire world “loaded” at all times.
Therefore, there exists a classic “Catch 22” with respect
to the SimEngine and the Terrain System: The terrain
system must know where the aircraft is to know what
terrain needs to be loaded, but the aircraft must know
where the ground is to determine if the aircraft has
crashed, landed or otherwise should be interacting with
the ground.

The terrain system is designed to perform asynchronous
loading whenever possible to minimize the stutters
(instantaneous drop in frame rate) due to terrain
loading. However, the terrain may need to be
synchronously loaded, or force loaded, at the same time
the SimEngine skips certain functions until a valid
return from the terrain system is achieved. This way,
during the especially difficult period of initialization,
we can minimize the visual artifacts associated with this
Catch-22 phenomenon.

Backwards Compatibility
Developing new features for a product that has 20 years
of previous versions can require significant effort to
ensure compatibility between aircraft of older versions
to the newly designed feature. For instance, suppose
we wish to develop a more robust turbine engine
simulation routine. Not only would we need to
consider the consequences of this change to other
aspects of the product (artificial intelligence, special
effects, gauge/panel interaction, etc.), but we would
also need to consider how a previous-version MSFS or
MSCFS aircraft might behave with regard to this new
feature.

We normally handle this issue by establishing an
upgrade path for aircraft developed for previous
versions of the product that would not fit with the new
routine. This allows users to utilize their older aircraft
with the new version of the product, but at the same
time we quietly upgrade their old aircraft behind the
scenes.

This upgrade capability is sometimes as difficult a
problem to solve as developing the new feature itself.
Referring back to our example above, if our new
turbine engine routine requires additional parameters to
be defined for the engine to work correctly in the
SimEngine, we must figure out how to estimate those
missing parameters for older aircraft. However, we
must also make sure the estimated parameters will
provide similar aircraft performance in the new routine
as it had in the old.

Delta T
One significant difference between Flight Simulator
and Combat Flight Simulator is the time slice being
simulated. As a general rule, the smaller the change in
time between simulation cycles (∆T), the more accurate
the resulting aircraft position and attitude is. However,
we must also concern ourselves with the limited
computing power available. This means we must find
the ∆T “sweet spot” which provides enough fidelity to
prevent numerical instabilities, but doesn’t gobble up
too much processing resources. This is especially

Figure 3. The “Center of the Universe”

4
American Institute of Aeronautics and Astronautics

critical when simulating large numbers of aircraft (or
other objects, for that matter).

Flight Simulator incorporates a subroutine which
computes what ∆T should be based on the current
frame rate the program is achieving. As the
performance of the program degrades, the simulation
dynamically alters the time slice to take less processing
time between cycles.

Combat Flight Simulator utilizes a fixed ∆T of 16Hz
throughout the entire application. We discovered,
however, that during certain high-dynamic maneuvers,
numerical instabilities exist when attempting to
simulate aircraft at this low a frequency. We therefore
incorporate a doubling of certain SimEngine runtime
functions to halve the ∆T – ultimately achieving a fixed
∆T of 32 Hz - and solving the numerical instability
problem.

There are advantages and disadvantages to both
methodologies, and ultimately either one is a valid and
reasonable way to simulate an aircraft in real-time.

FLIGHT DYNAMICS
There are numerous textbooks outlining the
fundamentals of aircraft aerodynamics, stability and
control, and handling qualities3,4,5. However, most of
these references focus on the design of aircraft rather
than the simulation of them. There are a few references
available which describe the ways in which to simulate
aircraft, but most of these focus only on the
aerodynamic principles involved6,7,8. The purpose of
this section is to provide the reader with a basic view of
how MSFS and MSCFS incorporate the classic

aerodynamic principles of simulation – it is NOT
intended to explain the theory behind these principles
nor derive the equations of motion. More detailed
discussion of the various supporting simulation roles
will be discussed in later sections as well.

Six Degrees of Freedom (6-DOF)
The SimEngine is based on the core concept of
simulating in the 6-DOF space (rotational – pitch, roll
and yaw; and translational – longitudinal, lateral and
vertical). This provides the fidelity required to simulate
any possible aircraft orientation and position in a three-
dimensional (3-D) environment.

Classic Body-Fixed
Aerodynamic
Coordinates

MSFS and MSCFS
Body-Fixed
Coordinates

Figure 6. Comparison of Classic and FlightSim

Body-fixed Aircraft Coordinate Systems

Figure 4. Simulation Loop

Figure 5. Detailed Simulation Components

5
American Institute of Aeronautics and Astronautics

In aircraft simulation, there are two main axis systems
used to describe aircraft motion: “Body-fixed” and
“Earth-fixed” coordinates.3 Most calculations are done
in the body-fixed axis to simplify the equations, the
results then transformed to the Earth-fixed coordinate
system for proper updating of aircraft position and
orientation in the visual environment. The Earth-fixed
system is considered an inertial reference frame,
neglecting the rotational velocity of the Earth and
conforming to Newton’s laws of motion.

In addition, the SimEngine makes use of the “flat earth
assumption,” which essentially aligns the acceleration
of gravity along the vertical earth-fixed system. This is
another common assumption used to simplify the
equations of motion, and is generally negligible when
not dealing with orbital mechanics.

In contrast to most aerodynamic applications, the
coordinate system used in MSFS and MSCFS is based
on the Left Hand rule – derived from the same
coordinate system used to describe computer graphics,
(See Figure 6). This coordinate system uses the Z-axis
as the longitudinal axis, positive out the nose of the
aircraft, the X-axis as the lateral axis, positive out the
starboard wing, and the Y-axis as the vertical axis,
positive up. However, for simplicity, the equations,
diagrams and references made to axis in this paper
maintain the classic aerodynamic representation of the
Right-Hand rule: X-axis the longitudinal axis, positive
forward; Y-axis the lateral axis, positive starboard; and
the Z-axis the vertical axis, positive down.

Equations of Motion
As stated earlier, the derivation for the equations of
motion will not be attempted here; rather, the resulting
equations, and those used in the SimEngine, are as
follows3:

The force equations in the airplane body-fixed axis
system XYZ:

(1)

(2)

(3)

Where:

 m = aircraft mass (slugs)
 g = gravitational constant (ft/s2)
 Θ = Airplane pitch angle (rad)
 Φ = Airplane bank angle (rad)
 U, V, W: Components of airplane velocity along

XYZ (ft/s)

 P, Q, R: Airplane angular velocities about XYZ
(rad/s)

 FAx, FAy, FAz: Aerodynamic force components
along XYZ (lbs)

 FTx, FTy, FTz: Thrust force components along XYZ
(lbs)

And the moment equations in the airplane body-fixed
axis system XYZ:

(4)

(5)

(6)

Where:

 IXX, IYY, IZZ: Airplane Moments of Inertia about
XYZ (slug-ft2)

 LA, MA, NA: Aerodynamic moments about XYZ
(ft-lbs)

 LT, MT, NT: Thrust moments about XYZ (ft-lbs)

Note that the cross-inertia terms have been eliminated
for simplicity, assuming a symmetrical mass
distribution with respect to the fore and aft plane of
symmetry, Iyz = Ixy = 0.

After the aerodynamic and thrust forces and moments
have been calculated, these equations are then solved
for the translational and rotational accelerations in each
simulation frame. The linear and angular velocities can
then be found through numerical integration of these
accelerations. A first-order, modified Euler simple
integration method is used:

Where:

 Pn = New Velocity
 Pn-1 = Old Velcotiy

 nP
.

 = New Acceleration

 1
.

−nP = Old Acceleration
 ∆T = Time Delta

The resulting position and orientation can then be found
with the following methodology.

TAXZXXYYXZZZ

TAXZZZXXYY

TAYYZZXZXZXX

NNQRIPQIIPIRI

MMRPIPRIIQI

LLRQIIPQIRIPI

+=+−+−

+=−+−+

+=−+−−

)(

)()(

)(

..

22
.

..

XX TA FFmgWQVRUm ++Θ−=+− sin)(
.

YY TA FFmgWPURVm ++ΘΦ=−+ cossin)(
.

ZZ TA FFmgVPUQWm ++ΘΦ=+− coscos)(
.

TPPPP nn
nn ∆

+
+= −

−)
2

(
.

1

.

1 (7)

6
American Institute of Aeronautics and Astronautics

Quaternion Transformation Method
Because all the calculations done to this point are
referenced to the body-fixed coordinate system, some
form of transformation back to the Earth-fixed axis
system is required. There are two main methodologies
used when simulating aircraft:

 Euler Method
 Quaternion Method

There are advantages and disadvantages to both
approaches, but we choose to use the Quaternion
Transformation Method mainly to avoid singularities at
Θ = ±90º. The details and derivations of these
equations are beyond the scope of this paper, but a
general description of how the two methods differ is
given in Figure 76.

Euler Method Quaternion Method

Figure 7. Euler and Quaternion Transformation
Methods

Aerodynamic Coefficients
For the most part, the stability and control
characteristics of the aircraft flight models used in
MSFS are defined by non-dimensional aerodynamic
coefficients. These coefficients are the classic linear-
representation of aircraft aerodynamic forces and
moments. Used in conjunction with the aircraft
geometry, mass and dynamic pressure, these values can
be solved for the over-all forces and moments for an
aircraft during each time-step interval. The following
equations are used to define the longitudinal
aerodynamic force and moment coefficients3:

(8)

(9)

(10)

Where:
 D = Drag force (lbs)
 L = Lift force (lbs)
 q = dynamic pressure (lbs/ft2)
 S = Wing surface area (ft2)
 c = Wing mean geometric chord (ft)
 CD = Airplane drag coefficient
 CL = Airplane lift coefficient
 CM = Airplane pitching moment coefficient

The lateral-directional aerodynamic force and moment
coefficients are defined by:

(11)

(12)

(13)

Where:

 b = Wing span (ft)
 Cl = Airplane rolling moment coefficient
 CY = Airplane side force coefficient
 CN = Airplane yawing moment coefficient

The non-dimensional aerodynamic coefficients can then
be broken down in to more finite components, which
are defined on a per-flight model basis. These are the
so-called steady-state derivatives3:

(14)

(15)

(16)

(17)

(18)

(19)

Where the subscripts denote:

 0: At zero-lift state
 α: Due to angle of attack
 ih: Due to horizontal tail incidence angle
 δe: Due to elevator deflection
 flaps: Due to flaps
 spoiler: Due to spoiler

cSqCM

SqCLF

SqCDF

MA

LA

DA

Z

X

=

−=−=

−=−=

SbqCN

SqCF

SbqCL

NA

YA

lA

Y

=

=

=

Spoileflapehi

Spoilerflapehi

Spoilerflapehi

MMeMhMMMM

LLeLhLLLL

DDeDhDDDD

CCCiCCCC

CCCiCCCC

CCCiCCCC

∆+∆++++=

∆+∆++++=

∆+∆++++=

δα

δα

δα

δα

δα

δα

0

0

0

rNaNNNN

rYaYYYY

rlallll

erea

erea

erea

CCCCC

CCCCC

CCCCC

δδβ

δδβ

δδβ

β

β

β

+++=

+++=

+++=

0

0

0

7
American Institute of Aeronautics and Astronautics

 β: Due to sideslip angle
 δa: Due to aileron deflection
 δr: Due to rudder deflection

The non-dimensional quasi-steady perturbed
aerodynamic coefficients are also used, but for
simplicity are not included here.

High Alpha/Beta Table Look-ups
Although most of the terms defined for an aircraft flight
model’s stability and control characteristics are of the
linear non-dimensional form, two-dimensional tables
are also used to capture the non-linear behavior of
aircraft at higher angles of attack and sideslip. The CLα
and CMα values used in the SimEngine are obtained
through linear interpolation of a table for a given angle
of attack, and are the only exceptions to this rule. All
the other non-dimensional aerodynamic coefficients are
non-linearized through the use of tables generated
specifically for each coefficient. An interpolation
routine is used to find the non-linear effect of a given
coefficient, which is simply a scalar value multiplied by
the base linear-form of the coefficient, to obtain the
correct behavior in the non-linear range.

In essence, we incorporate both a linear non-
dimensional coefficient methodology for simplicity
with a table look-up methodology to capture the non-
linear effects of aircraft behavior at extreme incidence
angles, of the form:

(20)

Where:
• CX = Aerodynamic Coefficient of Interest
• CXLinear = Linear Form of Coefficient
• CXa-Mod = Angle of Attack Non-linear Modifier
• CXb-Mod = Sideslip Non-linear Modifier

Mach and Ground Effects
The effect of Mach number on the aircraft coefficients,
drag, power and stability and control are handled
through a similar table look-up interpolation routine to
the one used for high alpha/beta corrections:

(21)

Ground effect is handled the same way. However, we
utilize the ratio of height AGL to aircraft wing span to
simulate the additional lift experienced in ground effect.

Propwash
In addition to the previously stated non-dimensional
aerodynamic coefficients, we also define coefficients
which represent the control surface power or stability
with respect to an induced dynamic pressure.

PROPULSION
A significant portion of simulation time is spent dealing
with the propulsion characteristics for a given aircraft.
There are three main types of propulsion simulated to a
high fidelity level:

 Piston Engines
 Turbine Engines
 Turboprop Engines

In addition to the engine modules, a Propeller module is
also required to convert shaft horsepower or torque to
thrust.

There are two other, lower fidelity engine models
currently employed:

 Rocket Engine
 Helicopter Engine

These two will not be discussed in this paper, as they
are either not prominent or relevant to this discussion.

Piston Engine Simulation
One of the most remarkable aspects of the SimEngine is
the high-fidelity piston simulation module employed.
This module is designed to simulate the piston engine
Otto cycle (see Figure 8).

The Otto cycles shown are:

Figure 8. Piston Engine Otto Cycle

ModXModXLinear CCXX KKCC
−−

=
βα

**

MachEffectXLinear CXX KCC *=

8
American Institute of Aeronautics and Astronautics

 Intake (F-E)
 Compression (A-B)
 Combustion (B-C)
 Power (C-D)
 Exhaust (D-E)

Through the use of efficiency tables, flight model
defined variables and propulsion theory, the engine
brake power can be determined.

Figure 9 provides a component breakdown of the
individual simulation routines used to simulate the
piston engine. Each component of the Otto cycle is
simulated on a per-cylinder basis, then multiplied by
the number of cylinders to obtain the total shaft torque
available.

Table look-ups are then performed for the engine
friction and mechanical efficiency for a given RPM,
which is then used to modify the shaft torque output.
Finally, the engine brake power can be found by
multiplying the engine shaft torque by the engine
omega, or engine speed, in the form of radians per
second.

Turbine Engine Simulation
The turbine engine is simulated quite differently from
the piston engine. Instead of trying to simulate the
thermodynamic properties of a turbine, which are quite
complicated and involved, the SimEngine incorporates
extensive use of normalized look-up tables that can be
scaled by the required thrust output of the engine. Not
only does this make the turbine code simpler and easier

to maintain, but it also allows for simplified input to the
flight model data file.

Figure 10 provides a detailed component breakdown of
how the turbine simulation code works. Though we
have taken a simplified approach to simulating turbine
aircraft, we are able to provide the parameters
necessary for output to the cockpit display through
empirical and normalized tables.

Turboprop Engines
The turboprop engine simulation is really a
combination of the turbine engine simulation and the
propeller simulation code (see Figure 11). Though
there are a few unique calculations required (N1 and N2
are calculated using a different set of normalized tables,
and shaft torque and power must be calculated from the
turbine engine code), for the most part this simulation
routine is as simple as the turbine engine simulation.

Propeller Simulation
As stated earlier, the propeller simulation is used in
combination with a piston engine or turboprop engine
powered aircraft. Though seemingly a simple task,
simulating prop behavior is really quite complicated.
Not only must we calculate the resulting thrust output
of the prop, but there are numerous other steps required
to properly simulate prop behavior (constant speed
props, feathered props, prop sync, etc). Figure 12

Figure 10. Turbine Engine Simulation

Figure 9. Piston Engine Simulation

9
American Institute of Aeronautics and Astronautics

provides a more detailed component breakdown of the
steps used in the propeller simulation routine.

GROUND REACTION
One of the most complicated and difficult parts of
aircraft simulation is the interaction of the aircraft with
the ground. There are numerous problems associated
with this issue, but the main ones are:

 Chicken-or-the-egg
 Collision detection

 Rolling surface behavior
 Steering behavior

Some of these problems are addressed below. Figure
13 provides a more detailed look at the ground reaction
simulation routine.

Contact Points
Though somewhat unintuitive, the simulation utilizes a
series of defined contact points to represent the “hard
points” of an aircraft. These hard points are not to be
confused with the visual model representation of the
aircraft – rather, these points are a subset of the visual
model and defined in a completely separate manner.

Each point has 15 parameters associated with it, and
can be used to define a landing gear point, a float point,
a skid point, or a contact point. The type of point
defined can influence how its reaction with the surface
is simulated.

 Gear: Modeled as a spring. Optional parameters

include retraction times, extension times, max steer
angle, static compression, compression ratio, and
damping ratio.

 Contact point: “hard point” used to detect aircraft
extremity coming in contact with the ground, surface
object or vehicle.

Figure 12. Propeller Simulation

Figure 11. Turboprop Engine Simulation

Figure 13. Ground Reaction Simulation

10
American Institute of Aeronautics and Astronautics

Gear As Springs
Each contact point is considered a spring/mass damper
system in which reaction with the ground is absorbed
according to the static compression and damping ratios
given in the contact point’s definition:

(22)

Where:
 K = f(static compression)
 B = f(K, damping ratio)

Typically, the points defined as scrape points are not
given a static compression or damping ratio, hence they
are static hard points that do not deflect when a force is
applied.

Steering
The maximum steer angle defined for a given contact
point determines not only how much steering capability
exists, but a value of 180 indicates that the particular
point is a full-caster wheel. We use the location of the
point to help determine specifics about the point, such
as if the point is a tail wheel or a nose-wheel.

Friction and Braking
The friction coefficient used to determine braking
efficiency is based on a combination of factors:

 Gear type
 Surface type
 Surface condition

We also calculate a slip angle based on the steer angle
and velocity of the given point. This slip angle is then
used to determine the side force friction for each point.

There is a natural rolling resistance friction scalar
employed to simulate the friction “hump” observed
when initiating movement from rest. The braking
coefficient of friction is defined in the flight model, and
is then scaled by the percentage brake position on to
determine the braking resistance at any given brake
position.

Collision Detection
Probably the most difficult part of simulating aircraft is
the methods required to detect an aircraft collision.
Some of the main challenges are:

 Determining difference between a crash and a hard

landing.

 Quickly changing terrain – large slopes or cliffs.
 Detecting collisions with non-ground objects (trees,

buildings, other aircraft, etc).

The significance of this problem is exasperated by the
fact that we must look for collisions on every point, on
every aircraft, in every simulation frame, coupled with
the need for collision detection when close to the
ground – which is also the time the graphics engine is
taxing the computer hardware the most. These facts
behoove us to be very conscious of the calculations we
are performing, as we must always strive to achieve an
efficient solution in this area to maintain acceptable
game performance.

SYSTEMS
One of the most intriguing and challenging aspects to
the SimEngine is the various aircraft systems simulated.
Although many of these systems tie directly into the
propulsion simulation (oil pressure, exhaust gas
temperature, etc.), many other systems are modeled as
completely separate systems. The major systems of
note are:

 Electrical system
 Fuel system
 Oil system
 Cooling system
 Hydraulics system
 Vacuum system
 Pneumatic system
 Autopilot
 Radios
 Gyroscopes
 GPS
 Exits
 Tail-hooks
 Folding wings

With each new release of MSFS or MSCFS, we make
decisions about which new system to implement based
on the capabilities of the new aircraft we are going to
simulate. Through extensive research and a thorough
design process, we attempt to simulate these systems as
accurately as possible.

However, we also must be aware of usability issues that
may arise, and in some cases include the design for
“automatic” modes if a particular system is very
complex or cumbersome to use in a simulated
environment. This inevitably makes it easier to
implement follow-on systems in future versions of the
product, and allows for a more robust and realistic
simulation experience for users of all experience levels.

)(*
)(*

nRatecompressioB
ncompressioKFGear

+
=

11
American Institute of Aeronautics and Astronautics

DAMAGE MODELING
Upon the advent of CFS1.0, it became clear that a more
robust method of simulating aircraft damage was
necessary. The main areas we incorporate damage
effects are:

 Flight model
 Propulsion
 Gear
 Systems
 Armament

The overall methodology we use is to keep track of
damage levels for specific components of the aircraft
(left wing, right wing, tail, engine, fuel system, canopy,
etc). We then apply scaling factors to the various
systems for systems damage, and modify the
aerodynamic coefficients for aircraft structural damage.
We also attempt to make the damage effects gradual
rather than step-wise.

We have improved this system version to version, but
we still find numerical instability problems when trying
to simulate aircraft with major structural damage –
applying too great a scaling factor to the aerodynamic
coefficients can result in un-desirable characteristics
(i.e., wingless aircraft gaining altitude).

REALISM FACTORS
Though the simulation and the respective components
therein are designed with the utmost realism in mind,
we have made significant efforts to simplify certain
parts of the simulation to ease user workload in the
cockpit. These realism factors are also included to
provide an easier transition for novice users and/or
pilots who are new to the world of aviation and flying.

 Flight model
 Control inputs
 Crash tolerance
 Ground handling
 Weapon effectiveness
 Gyroscopic effects
 Stall/spin behavior
 Stress damage effects
 Fuel weight and balance
 Automatic engine controls

Without these factors, the proper operation of some
aircraft can be very difficult for even the most
experienced MSFS/MSCFS enthusiast or pilot.

CONCLUSIONS
Through over 20 years of consecutive development,
Microsoft Flight Simulator and Microsoft Combat
Flight Simulator have continuously improved the
techniques and methodologies used to simulate aircraft
behavior.

By taking every step possible to accurate simulate
aircraft flight dynamic behavior, propulsion, ground
reaction, systems and damage effects, we not only
achieve a flexible and robust coding platform, but we
allow ourselves the opportunity to keep striving to be
As Real As It Gets!

ACKNOWLEDGEMENTS
This work would not have been possible without the
contributions in design and development by Mike
Schroeter, lead developer for aircraft simulation in
MSFS. His many years of involvement have really
made the SimEngine what it is today. I would like to
thank Dave Denhart for verifying the historical
accuracy of the paper, and Bruce Williams for editorial
review. I’d also like to thank Carl Edlund, Brian Syme,
Leon Rosenshien and the rest of the Microsoft Flight
Simulator and Microsoft Combat Flight Simulator
teams for all their hard work and dedication to making
such great products.

REFERENCES
1. Artwick, Bruce A., A Versatile Computer-

Generated Dynamic Flight Display, Aviation
Research Laboratory, Institute of Aviation,
University of Illinois at Urbana-Champaign,
prepared for Engineering Psychology Programs,
Office of Naval Research, May 1975.

2. Anon., “Bruce Artwick is still flying: and thanks to
his software, many of us can too,” Alumni News,
Department of Computer Science, University of
Illinois at Urbana-Champaign, Spring 1996.

3. Roskam, Jan, Airplane Flight Dynamics and
Automatic Flight Controls, Part I,
DARCorporation, Lawrence, KS, 1995.

4. Perkins, C. D., and Hage, R. E., Airplane
Performance, Stability and Control, Wiley, 1949.

5. Nelson, Robert C., Flight Stability and Automatic
Control, McGraw Hill, 1989.

6. Rolfe, J. M. and Staples, K. J., Flight Simulation,
Cabridge University Press, 1986.

7. Stevens, Brian L. and Lewis, Frank L., Aircraft
Control and Simulation, John Wiley & Sons, 1992.

8. Hanke, R., “The Simulation of a Large Jet
Transport Aircraft Volume I: Mathematical
Model,” NASA CR-1756, March 1971.

	Main Menu
	Table of Contents
	Table of Authors
	M. Zyskowski

	Paper

