
1

Sensor measurement scheduling:  an enhanced dynamic,
preemptive algorithm

Gregory A. McIntyre, STUDENT MEMBER SPIE
Kenneth J. Hintz, MEMBER SPIE
Department of Electrical and Computer Engineering
Mail Stop 1G5
George Mason University
Fairfax, VA 22030
E-mail: gmcintyr@bzy.gmu.edu

khintz@gmu.edu

Abstract.  This paper presents an enhanced architecture for a sensor measurement scheduler as

well as a dynamic sensor scheduling algorithm called the On-line, Greedy, Urgency-driven, Pre-

emptive Scheduling Algorithm (OGUPSA).  The premise is that the function of sensor

management can be partitioned into the two tasks of information management, essentially an

information to measurement mapping, and a sensor scheduler which takes the measurement

requests along with their priorities and optimally maps them to a set of  sensors.  OGUPSA was

developed using the three main scheduling policies of Most-Urgent-First to pick a task,  Earliest-

Completed-First to select a sensor, and Least-Versatile-First to resolve ties.  By successive

application of these policies.  OGUPSA dynamically allocates, schedules, and distributes a set of

measurement tasks from an information manager among a set of sensors.  OGUPSA can detect

the failure of a measurement task to meet a deadline and improves the dynamic load balance

among all sensors while being a polynomial time algorithm.  One of the key components of

OGUPSA is the information in the applicable sensor table.  This table is the mechanism that is

used to assign requested tasks to specific sensors.

Subject terms:  sensor scheduling, sensor management, resource scheduling, sensors



2

1 Introduction

Multisensor fusion has become a heavily researched area for modern sensor systems with sensor

management being one of its key element.  It is imperative that sensors operate synergistically in

order to take full advantage of each sensor’s strengths while not underutilizing any other sensors.

This is accomplished through the use of a sensor manager which can be defined as a “…process

which seeks to manage or coordinate the use of sensing resources in a manner that improves the

process of data fusion and ultimately that of perception, synergistically1.”  A sensor management

system can be expected to

− Reduce the workload for the operator by automating sensor allocation, moding, pointing,

and emission control2

− Prioritize and schedule service requests to meet both integrated flight management and

weapon control requirement2

− Aid in sensor data fusion by coordinating fusion requests with the data collected from

different sensor and sensor modes2

− Support reconfiguration and degradation due to the partial or total loss of sensors or sensor

modes2

− Develop a sensor schedule that optimizes (or at least suboptimizes) the use of the available

sensor assets

− Communicate desired actions to the individual sensors

Given these functions, a sensor management system can be partitioned into two separate

processes.  The first process is the information manager that determines what measurement tasks

are required in order to maintain a specified level of knowledge about the environment or

information rate as well as the time by which these measurement tasks are required to be



3

completed.  Its ultimate goal is to optimally task a sensor scheduler to make measurements.  The

second process is the sensor scheduler itself.  Stated another way, sensor management (consisting

of the information management and sensor scheduling) can be considered as a resource-

constrained scheduling problem.  Scheduling involves the allocation of resources (including time)

to measurement tasks such that the desired objective function is minimized (or maximized).  The

resource allocation problem is, therefore, little more than a synonym for the scheduling problem.

Popoli3 describes the sensor scheduling problem as "…given the ability to decide which tasks

are important…, how do we set up a time line of tasks for the sensor to perform."  He then

proceeds to describe two general approaches for scheduling sensor tasks, best first and brick

packing.  Best first is a myopic method that schedules tasks according to measurement task

priorities.  Brick packing is a locally optimal approach that subdivides a given time interval into

smaller intervals and schedules tasks according to completion times.  Other tasks are then

“packed” into any unscheduled time intervals.

This paper presents an enhanced architecture for a sensor measurement scheduler as well as

an improved dynamic sensor scheduling algorithm called the On-line, Greedy, Urgency-driven,

Pre-emptive Scheduling Algorithm (OGUPSA)4.

2 Review of Scheduling Algorithm

An information management system should have some mechanism which  handles resource

allocation problems as well as has scheduling policies to arrange the order among the tasks (or

jobs) to be executed.  Most of the papers which take a theoretical approach to resource allocation

and scheduling come from the Operations Research (OR), Computer Science (CS), and Electrical

Engineering (EE) communities.  The generalized resource allocation problem is NP-hard and it is



4

customary to use heuristic/approximate algorithms such as simulated annealing5, tabu search6,

stochastic probe approaches7, genetic algorithms8,9, and neural networks10,11,12,13 to solve NP-hard

problems.  For some special cases, however, there do exist polynomial time algorithms14.

Generally, the scheduling problem with constraints is modeled using graph theoretical

approaches7,15,16,17,18,19,20, but in some cases it also can be modeled as a Petri net21,22,23.  In this

section, selected techniques are classified according to their focus, OR, CS, or EE, although it is

sometimes difficult to distinguish among them.  Useful ideas can be acquired from each

community.

2.1 The OR Community View

From the operations research point of view, the resource allocation problem is normally viewed as

an optimization problem with constraints.  It is a special case of the nonlinear (mainly integer)

programming problem.  OR researchers concentrate primarily on static, i.e., off-line, techniques to

solve job-shop and flow-shop problems including queuing theory.  The typical resources

considered in OR problems are manpower, machines, factory cells, etc.  The most common

objective functions utilized by the OR community are:

− minimizing makespan (schedule length)

− minimizing maximum cost

− minimizing tardiness

− minimizing the number of tardy jobs

Effective approaches such as branch-and-bound algorithm, decomposition technique, and heuristic

algorithms are often used in order to solve NP-hard problems.  Many well-known algorithms used

for resource allocation problems can be found in a paper by Cherkassky and Zhou 12.



5

2.2 The CS Community View

Computer Science researchers mainly focus on dynamic (on-line) techniques.  Their typical

resources include:

− CPU cycles

− memory

− processors

with an objective function being based on:

− minimizing response times

− maximizing the number of arriving tasks that meet their deadline

− achieve load balance among processors

For real-time scheduling, Ramamritham and Stankovic 24 summarize the state of the real-time

field in the areas of scheduling and operating system kernels.  They primarily discuss four types of

scheduling approaches, which are:

− static table-driven scheduling

− static priority preemptive scheduling

− dynamic planning-based scheduling

− dynamic best effort scheduling.

Generally, real-time tasks must be scheduled to meet their deadlines and to maintain high

utilization of system resources.  In practice, real-time tasks are categorized as periodic or

aperiodic according to their arrival times.  If the related system is a distributed real-time system,

the task assignment will become a key problem.  Usually, the objectives of task assignment are:



6

− load balance

− low communication costs

− high utilization of system resources

− fault tolerance

2.3 The EE Community View

The electrical engineering point of view is best expressed in terms of optimal control theory in

which a process is modeled by a functional with the particular parameters chosen to minimize a

performance measure.  Various approaches are available for continuous and discrete event

systems which are based on the degree to which the future is predicable as determined by the

stochastic nature of the process and is stationarity.  Optimal control of dynamic systems is

concerned with the problem of determining the time history of the system's control variables

which minimizes a specified performance index or cost function, subject to whatever constraints

are imposed on the solution.  The performance index is generally a function of the system's state

variables and control variables.  In order to have a well-posed problem to solve, the performance

index is required to be:

− a scalar function of the state and control variables,

− a symmetric (even symmetry) function of the cost,

− a monotonically non-decreasing function of the cost, and

− a function which has a value of zero when the cost is zero.

In optimal control, one set of constraints which always has to be satisfied is the set of state

equations which model the system being controlled.  For a discrete-time system, they have the

form:



7

( )x f x u kk k k+ =1 , , (1)

This equation gives the time response of the state based on the previous value of the state and

control variables and time.  If the system being controlled is linear and time-invariant, the state

equations become

x x uk k k+ = +1 A B (2)

where A and B are matrices of appropriate dimension.  Other constraints which might be imposed

on the solution are boundary conditions of the initial and final states and maximum values on the

state and/or control variables.

The optimal control problem can then be stated as the following:  determine the value of

the control variable uk for 0 < k < (N-1) while satisfying the system's state equations, boundary

conditions, and any other constraints imposed on the system.  Methods for determining the

optimal control include the calculus of variations, Pontryagin's Minimum Principle, and the

dynamic programming method developed by Bellman.

There are several specific optimal control approaches which can be considered including

receding horizon control25, decentralized control of discrete systems26,  and application of the

principle of decomposition coordination.

By combining techniques and principles from the OR, CS, and EE fields, an on-line, dynamic

scheduling algorithms can be developed.

3 The Sensor Scheduling Algorithm

First, it is important to distinguish between the functions performed by the information manager

and the sensor scheduler.  The information manager is concerned with intersensor issues such as:



8

− How accurately to measure?

− Which service to perform (e.g., search, track, fire control, etc.)?

− From what physical location of the environment to obtain a measurement?

− When is the earliest time allowed to begin the measurement?

− What is the latest completion time allowed for the measurement?

The problem for the information manager is to determine how to maximize the effectiveness of

individual sensors or a collection of sensors while simultaneously optimizing such conflicting

objectives or goals as

− Detection

− Tracking

− Identification/Classification

− Emission control (EMCON)

In contrast, sensor scheduling deals with intrasensor issues (e.g. measurement to sensor

allocation) in order to determine how to best accomplish a list of measurement tasks based on

sensor availability and capabilities.

An effective implementation of this requires a hierarchical methodology based on layers, each

with an appropriate, but necessarily imperfect, model of the next lower process for local

optimization within that layer.  The sensor scheduler then maps these measurement requests to

sensors or pseudo-sensors (e.g. a specific mode of a multimode sensor or the cooperative use of

bearings-only sensors).  At each level in the hierarchy, this imperfect but workable model can be

used to approximate lower level functions.  An example of a general sensor manager architecture

of this type is described in Denton et al 27.



9

The sensor scheduling problem is one of how to effectively assign a set of measurement tasks

to a set of sensors with some constraints.  These constraints may include time constraints as well

as the constraint that a task may be able to be executed by only a subset of the set of all sensors.

A scheduling algorithm should dynamically assign arriving tasks to these sensors in order to

maximize the number of the tasks that meet their deadline.  This is in addition to the need for a

preemptive mechanism to insure that some important tasks will be executed promptly.  Since this

paper focuses only on the sensor scheduling problem for real-time systems, scheduling arriving

measurement tasks from the information manager to meet their timing constraints is a major

consideration.  Therefore, one of the sensor scheduler's primary objectives is to maximize the

number of arriving tasks that meet their deadline with no concern for how the priorities were

established.

3.1 Terminology and Definitions

The sensor scheduling problem can be viewed as a method of ordering and allocating a

measurement task list from the information manager to observation lists for each sensor where it

is assumed that each task, Ti, has the following properties assigned to it by the information

manager:

− Measurement task type i

− Interruptable/noninterruptable

− Priority

− Initiation time (time no earlier than)

− Deadline (complete no later than).



10

The following terminology will be used in our discussion.

ti
TNLT time no later than deadline for task i

ti
TNET time no earlier than constraint for initiation of task i (no constraint when ti

TNET

=  0)

Pi priority of measurement task i

S { S1, S2, …, Sm }, the set of all available sensors

SS Subset of sensors Si that can meet the deadline of task Ti

UIi urgency index (UI) for task i, which is a value derived from the priority and

deadline of task i

UI function a function f: R2→R, which is used to map (Pi, t
i
TNLT) to UIi, i = 1, 2, …, l

INAQ inactive queue, a queue of arriving tasks which have been prioritized but not

yet scheduled

TINA { T1, T2, T3, … }, all tasks in inactive queue. All tasks are sorted by their UI.

INAQHP a working queue used by scheduler, normally receiving tasks, which have the

highest urgency, from INAQ

TINAHP { T1, T2, …, Tn }, all tasks in INAQHP.  It will be modified by scheduler

dynamically.

AQ active queue consisting of m individual queues Qj, one associated with each

sensor. They are FIFO queues.

HV { tc1, tc2, …, tcm }, horizon vector, where tcj, j = 1, 2, …, m, is the time when

all tasks in Qj will be completed



11

SATSi a set of applicable tasks in TINAHP for sensor i, i = 1, 2, …, m. It is a subset of
TINAHP, such that

�
i

m

i INAHPSATS T
=

=
1

(3)

SASTj a set of applicable sensors for tasks type j, j = 1, 2, …, l. which models the

constrained conditions of sensors.

Qj
LP a subset of tasks which are interruptable and have lower priorities than

currently scheduling task Tk in Qj.

AST Applicable Sensor Table, a table which records the important relation between

task type and sensor.  A sample table is show in Table 1where ∆tij, i = 1, 2,

…,l, j = 1, 2, …, m, means the dwell time when a type i task uses sensor j to

do a measurement. ∆tij = ∞ means type i task is not applicable to sensor j,

3.2 The Dynamic Sensor Scheduler Architecture

The Sensor Scheduler (SS) is an important part of any sensor management system.  A detailed

architecture used to develop the OGUPSA algorithm is shown in Figure 1.  The input consist of

prioritized measurement requests or tasks and the output consists of rejected measurement

request and sensor command.

The arriving measurement tasks first enter the inactive queue in which they are sorted by

their urgency indices (UI).  This is done by the INAQ Manager.  The tasks with the highest UI

will be moved into INAQHP by the Scheduler, if the INAQHP is not full.  The task with the

highest UI in the INAQHP will be dispatched into active queues (AQ) by the Scheduler according

to the OGUPSA algorithm.  If a measurement task can not be scheduled to meet its deadline, it is

rejected and notification is passed back to the information manager.  When a measurement task in



12

the AQ is completed by a sensor, the AQ Manager will remove it from the AQ and modify the

HV.

There are many ways to choose a UI function.  Normally, one assumes that the priorities of

tasks are positive integers.  The UI function in our case is

f P t P
t C

i TNLT
i

i
TNLT
i( , ) = +

+
1

(4)

where C is a positive constant, which is used to make the second term in the UI function above

less than 1.  That means that tasks with the same priorities will be sorted by their due times, that is

Earliest-Deadline-First (EDF).

3.3 The OGUPSA Algorithm

The original development of OGUPSA focused on the unit execution time (UET) task scheduling

problem without any task preemption.  The recent enhancements to OGUPSA include the

expansion and development of the AST to more realistic non-UET tasks.  Logic has also been

added to insure that a task requiring more than a unit execution time is not interrupted during the

performance of a task.  As part of the information in the sensor queue is the time to complete the

task.  It is assumed that the sensor is tasked until that time.  Task interruption is based on the

Urgency Index and is restricted to tasks currently in the active sensor queues that have scheduled

but not currently being executed.  If a task is preempted, it is placed in the INAQHP for

rescheduling.  If the interrupted task cannot be scheduled, this fact is reported back to the

information manager which may pass it back to the mission manager.  The tasks can be discarded

(if it has become obsolete), a new deadline (modified time no later than) set, or the priority

increased by either the information manager or mission manager.



13

Another improvement restricts the scheduling and initiation of a task by adding a “commence

no sooner than a desired time” value to each requested measurement.  This can be used to

schedule future tasks at specific times.  The final enhancement involves the use of pseudo-sensors.

Two types of pseudo-sensors have been incorporated into a simulation of OGUPSA28.  The first is

a sensor that operates in several modes.  An example of this is a Doppler radar operating either

using Doppler or not using it.  The other type of pseudo-sensor is the cooperative use of multiple

bearings-only sensors at different locations in order to obtain range and bearing measurements of

a target.  A sensor management model and simulation developed by McIntyre and Hintz28

demonstrates the use of the enhanced OGUPSA algorithm.

The detailed algorithm for the enhanced OGUPSA is shown below:

Step 1: Move the tasks with the highest UI and ti
TNET � current time in INAQ to INAQHP

if INAQHP is not full

Calculate or Modify SATSi, i = 1, 2, ..., m

Step 2: Get the task with the highest UI in INAQHP.

Assume it is task Tk, k' is its task type.  That is,

k i

i INAQHP

UI =  UI
  T T

max
∈ (5)

Step 3: Determine whether the deadline of Tk can be met.

i i k i

j j i

i k

tec = tc +_ t
SS = {S  | tec =   tec }

S SAST

′

′∈

∆
min (6)

If (tecj > tk
TNLT) then

Go to Step 6



14

else

Select the least versatile sensor1 in SS.  That is,

|SATS | =   |SATS |

   S SS
j i

i

min
∈ (7)

Step 4: Assign task Tk to sensor Sj and modify HV.  That is,

j j k

j j k j

Q   Q {T }

tc   tc  +  t

← ∪
← ′∆ (8)

If Sj is a cooperative pseudo-sensor

Assign tasks to individual sensors comprising pseudo-sensor and modify the HV

If Sj is a sensor that is part of a cooperative pseudo-sensor

Assign tasks to pseudo-sensor and modify the HV

If Sj is a multimode pseudo-sensor

Assign task to actual sensor queue and set operating mode flag

Step 5: Remove Tk from TINAHP.  That is,

INAHP INAHP kT   T  -  {T }← (9)

Go to Step 1.

Step 6: The entry of the preemptive mechanism.

SS  SAST k← ′ (10)

Step 7: Select the least versatile sensor in SS.

|SATS | =   |SATS |

    S SS
j i

i

min
∈ (11)

                                                       
1  Versatility means that a single sensor is capable of performing more than one type of task and its capabilities
overlap that of another sensor. If this is the case, then a specific task admits of two different sensors satisfying that
task. The one which is chosen is the one which has the least ``versatility'' in that it does not have as much
capability overlap with the rest of the sensors so as to maintain the largest capability in the, as yet, unscheduled
sensors.



15

Step 8: Obtain Qj
LP, a subset of tasks in Qj, which are interruptable and have lower priorities

than Tk.

Step 9: Determine whether the deadline of Tk can be honored.  If it preempts the tasks in Qj
LP.

′ ′∑

∈
j j q j

q LP
j

tc  =  tc  -   t

         T Q

∆
(12)

If (tc'j + ∆tk'j) <= tk
TNLT  then

Go to Step 11.

else

SS ← SS - {Sj}

Step 10: If SS is not empty, then go to Step 7.

else Reject Tk and go to Step 5.

Step 11: Assign Tk to sensor j, shift all tasks in Qj
LP to INAQHP and modify HV. That is,

j j LP
j

k

j j k j

INAHP INAHP LP
j

Q   ( Q  -  Q ) {T }

tc   tc  +  t

T   T Q

← ∪
←

← ∪
′ ′∆ (13)

If Sj is a cooperative pseudo-sensor

Shift all tasks of individual sensors comprising the pseudo-sensor to INAQHP and

modify HV of each individual sensor

If Sj is a sensor that is part of a cooperative pseudo-sensor

Remove all task of cooperative pseudo-sensor and modify HV

Go to Step 5.



16

It is easy to see that OGUPSA is a natural and intuitive algorithm and the computational

complexity has been shown in the original paper4 to be of polynomial time dependent on the

number of tasks in the TINAHP and the number of sensors available with the dominating

computations in Step 1 and the loop from Step 6 to Step 10.  It uses the prior existing information

in AST and uses the accumulated dynamic information represented by the Horizon Vector (HV).

A set of sets, SATSi, i = 1, 2, ..., m, are used as future information.  In OGUPSA there are three

main policies used in order during scheduling.  It first uses the Most-Urgent-First (MUF) policy to

select a task, then uses Earliest-Completed-First (ECF) to select applicable sensors.  If there is a

tie among the sensors, the third policy of Least-Versatile-First (LVF) is used to select sensor.  If a

tie still exists, a random selection will be used.

The concept of an HV plays a major role in the design of OGUPSA.  The HV can be

interpreted as a measure of the dynamic load of the AQ.  The greediness of OGUPSA is reflected

by the second policy of ECF.  By using the LVF policy OGUPSA leaves the most options for the

unscheduled tasks in INAQHP.  The ECF and LVF also improve the dynamic load balance among

the sensors.  The preemptive mechanism in OGUPSA does not guarantee that the later arriving

higher priority task will be definitely executed before the earlier arriving lower priority task when

both their deadlines are honored.

If all tasks in TINAHP have the same UI and ∆tij = 1 or ∞, the problem will reduce to a problem

called the scheduling problem with constrained processor allocation.  An example consisting of

five sensors and nine tasks using the AST shown in Table 2 can be shown to obtain an optimal

schedule.

  SASTj, j = 1, 2, ..., 9 and SATSi, i = 1, 2, ..., 5 can be easily calculated from the AST. The change

of the HV is:



17

HV =  ( 0, 0, 0, 0, 0 ) → ( 1, 0, 0, 0, 0 ) → ( 1, 1, 0, 0, 0 ) → ( 2, 1, 0, 0, 0 )

→ ( 2, 2, 0, 0, 0 ) → ( 2, 2, 1, 0, 0 ) → ( 2, 2, 1, 1, 0 ) → ( 2, 2, 1, 1, 1 )

→ ( 2, 2, 1, 1, 2 ) → ( 2, 3, 1, 1, 2 ).

The final result produced by OGUPSA is:

Q1 = { T1, T3 },

Q2 = { T2, T4, T9 },

Q3 = { T5 },

Q4 = { T6 },

Q5 = { T7, T8 }

which is the same as the proved optimal result produced by Chang and Lee29 with a minimum

makespan equal to 3.  McIntyre and Hintz28 demonstrate the use of a reasonable non-UET AST

for sensor scheduling that includes the use of multimode sensor and the cooperative use of

multiple bearings-only sensors in a sensor management simulation.

4 Conclusion

An enhanced scheduling algorithm called OGUPSA is presented based on several scheduling

schemes found in the OR, CS, and EE literature.  OGUPSA provides a preemptive mechanism

and uses a suitable urgency index function to meet the requirement of the most urgent task first.

This algorithm can also detect the deadline failure of the tasks.  It is able to generate an optimal

schedule in the sense of a minimum makespan for a group of tasks with the same priorities by

introducing the concept of a Horizon Vector.  Moreover, it seems to lead to dynamic load balance

among all of the sensors by using the policy of selecting the least versatile sensor first.  It has been

refined to accommodate multimode sensors and the cooperative use of multiple bearings-only



18

sensors.  Finally, from a computational standpoint, it is a polynomial time algorithm.



19

Table 1  Applicable Sensor Table

Sensor
Task type

S1 S2 ... Sm

1 ∆t11 ∆t12 ... ∆t1m

2 ∆t21 ∆t22 ... ∆t2m

... ... ... ... ...

l ∆tl1 ∆tl2 ... ∆tlm

Table 2  The AST for the UET scheduling problem

Sensor
Task type

S1 S2 S3 S4 S5

T1 1 1 ∞ ∞ ∞

T2 1 1 ∞ ∞ ∞

T3 1 1 ∞ ∞ ∞

T4 1 1 ∞ ∞ ∞

T5 ∞ ∞ 1 1 1

T6 ∞ ∞ ∞ 1 1

T7 ∞ 1 ∞ ∞ 1

T8 ∞ 1 ∞ ∞ 1

T9 ∞ 1 ∞ ∞ 1



20

Inactive Queue
Manager

Applicable
Sensor Table

Active Queue
Manager

Personality Modules

Q1

Qm

Q2

. . . . . .

tc2

tc1
Active Queues

tcm

Scheduler

Rejected Task

Inactive Queue

Preempted
Task(s)

T a sk  R e q u e s t in c lu d in g
     P r io r i ty
     T im e  n o  e a r l ie r  t h a n
     T im e  n o  la te r  th a n
     T a s k  ty p e
     R a n d  a n d /o r  b e a r i n g

. . .

. . .

. . .

. . .

Figure 1  Enhanced OGUPSA architecture



21

BIOGRAPHIES

Gregory A. McIntyre received his B.A. degree in Math and Computer Science from Washburn

University of Topkea in 1981 and his M.S. in Operations Research in from the Air Force Institute

of Technology (AFIT) in 1986.  He was a distinguished graduated of ROTC and received his

commission in the Air Force in 1981 and is currently a Major in the Air Force.  His assignments

have taken him to Utah, Ohio and Washington D.C.  While in Utah he performed real-time data

analysis and computer support for several cruise missile and remotely piloted vehicle programs.

Following Utah, he attended AFIT in Ohio where he was a distinguished graduate.  For the last

10 years, he has been in several assignments in the Washington D.C. area as scientific analyst and

budget analyst.  He is currently on an Air Force fellowship and is a doctoral student in

Information Technology at George Mason University.

Kenneth J. Hintz received his B.S. degree in Electrical Engineering from Purdue University in

1967 and his M.S. and Ph.D. in Electrical Engineering from the University of Virginia in 1979 and

1981 respectively.  Since 1987 he has been an Associate Professor in the Department of Electrical

and Computer Engineering at George Mason University.  Before joining GMU, he was with the

Naval Surface Warfare Center, Dahlgren, VA, working in electronic warfare and radar signal

processing where he designed and built the AN/ULQ-16.  He holds two patents and is a Senior

Member of IEEE and a member of SPIE.  His current research interests are in X-ray, thermal, and

visual image processing, computer architectures and algorithms for real-time signal processing,

and self-organizing machines including the application of genetic algorithms to the design of

neural networks.



22

Figure 1  Enhanced OGUPSA architecture

Table 1  Applicable Sensor Table

Table 2  The AST for the UET scheduling problem



23

References

1. J. M. Manyika and H. F. Durrant-Whyte. Data Fusion and Sensor Management : A

Decentralized Information-Theoretic Approach, Ellis Horwood:  New York; (1994).

2. R. A. Adrian, “Sensor Management,” Proceedings of the 1993 AIAA/IEEE Digital Avionics

System Conference, IEEE:  New York, NY, 32-7 (1993).

3. R. Popoli, “The Sensor Management Imperative”, Chap. 10 in Multitarget-multisensor

tracking : applications and advances, vol. 2, Y. Bar-Shalom, Ed., pp. 325-392, Artech

House, Norwood, MA (1992).

4. Z. Zhang and K. J. Hintz, “OGUPSA Sensor Scheduling Architecture and Algorithm,”

Signal Processing, Sensor Fusion, and Target Recognition V.  Proceedings of the SPIE -

The International Society for Optical Engineering, 2755, SPIE, 296-303 (1996).  K. J. Hintz

and Z. Zhang, “Dynamic Resource Allocation and Sensor Management for OBATS,” Final

Report, George Mason University, (1994).

5. D. E. Jeffcoat and R. L. Bulfin, "Simulated annealing for resource-constrained  scheduling,"

European Journal of Operational Research, 70(1), 43-51 (1993).

6. E. L. Mooney and R. L. Rardin, "Tabu search for a class of scheduling problems,"  Annals of

Operations Research, 41(1-4), 253-78 (1993).

7. L. Tao, B. Narahari and Y. C. Zhao, "Assigning task modules to processors  in a distributed

system," Journal of Combinatorial Mathematics and  Combinatorial Computing, 14, 97-

135, Oct. 1993.

8. L. J. M. Cluitmans, "Using genetic algorithms for scheduling data flow graphs,"  Report No:

EUT 92-E-266, Issued by Eindhoven Univ. Technol., Netherlands, (1992).



24

9. T. J. Starkweather, "Optimization of sequencing problems using genetic algorithms

(scheduling)," PhD dissertation, 1993, Colorado State University.

10. R. Thawonmas, N. Shiratori and S. Noguchi, "A real-time scheduler using  neural networks

for scheduling independent and non-preemptable tasks with  deadlines and resource

requirements," IEICE Transactions on Information and  Systems, E76-D(8), 947-55 (1993).

11. L. C. Gonzalez, J. C. Sutton and R. M. Felder, "The use of neural networks to  solve

resource-constrained process scheduling problems," Proceedings. Fourth International

Conference on Industrial and Engineering Applications of  Artificial Intelligence and

Expert Systems (IEA/AIE-91), 1, 338-44 (1991).

12. V. Cherkassky and D. N. Zhou, "Comparison of conventional and neural network  heuristics

for job shop scheduling," Proceedings of the SPIE - The International  Society for Optical

Engineering, 1710, pt.1, 815-25, vol.2 (1992).

13. S. Vaithyanathan and J. P. Ignizio, "A stochastic neural network for resource  constrained

scheduling," Computers & Operations Research, 19(3-4), 241-54 (1992).

14. T. Ibaraki and N. Katoh, Resource allocation problems: algorithmic approaches. The MIT

press (1988).

15. R. Jain, J. Werth, J. C. Browne and G. Sasaki, "A graph-theoretic model for the  scheduling

problem and its application to simultaneous resource scheduling,"  Computer Science and

Operations Research. New Developments in their interfaces, 321-48 (1992).

16. H. H. Ali and H. El-Rewini, "Task allocation in distributed systems: a split  graph model,"

Journal of Combinatorial Mathematics and Combinatorial Computing, 14, 15-32 (1993).

17. Chiun-Chieh Hsu and Pao-Jyh Lee, "Distributed task assignment using  critical path



25

estimate," Information Sciences, 74(3), 191-212 (1993).

18. D. Rafaeli, D. Mahalel and J. N. Prashker, "Heuristic approach to task  scheduling: 'weight'

and 'improve' algorithms," International Journal of  Production Economics, 29(2), 175-86

(1993).

19. H. Oudghiri and B. Kaminska, "Global weighted scheduling and allocation  algorithms,"

International Journal of  Production Economics, 29(2), 491-5 (1993).

20. N. C. Audsley et al., "The DrTee architecture for distributed hard real-time  systems,"

Distributed Computer Control Systems 1991. Towards Distributed  Real-Time Systems with

Predictable Timing Properties. Proceedings of the  10th IFAC Workshop, 49-53 (1991).

21. Q. Chen and J. Y. S. Luh, "Operational scheduling using truncated Petri net  technique,"

Proceedings IEEE International Workshop on Emerging Technologies and  Factory

Automation - Technology for the Intelligent Factory, 230-5 (1992).

22. J. -M. Gourgand and S. Norre, "Petri net based methodology for task scheduling on

multiprocessor architectures," Simulation, 61(3), 185-92, (1993).

23. S. Balaji et al., "S-nets: a Petri net based model for performance evaluation of real-time

scheduling algorithms," Journal of Parallel and Distributed Computing, 15(3), 225-37

(1992).

24. K. Ramamritham and J. A. Stankovic, "Scheduling algorithms and operating systems support

for real-time systems," Proceedings of the IEEE, 82(1), 55-67 (1994).

25. D. Q. Mayne and H. Michalska, "Receding horizon control of nonlinear systems,"  IEEE

Transactions on Automatic Control, 35(7), 814-824, (1990).

26. F. Lin and W. M. Wonham, "Decentralized control and coordination of discrete-event



26

systems with partial observation,"  IEEE Transactions on Automatic Control, 35(12), 1330-

1337, (1990).

27. R. V. Denton, E. I. Alcaraz, J. P. Knopow, J. Llinas and K. J. Hintz, "Towards modern

sensor management systems," DFS-93, 1, 659-78 (1993).

28 G. A. McIntyre and K. J. Hintz, “Sensor Management Simulation and Comparative Study,”

Proceedings of the SPIE - The International  Society for Optical Engineering, 3068, (1996).

29 R. S. Chang and R. C. T. Lee, “On a scheduling problem where a job can be executed only

by a limited number of processors,” Computers and Operations Research 15(5), 471-8

(1988).


