
Language  as  an 
intellectual tool: From 
hieroglyphics to APL 

We learn  elementary  mathematics  before 
understanding  the source of its symbols and 
procedures, which therefore appear, incorrectly, 
to have  been  decreed  ready-made.  Language  and 
reason  are  intimately  related,  and  the 
embodiment  of  an  idea in a  symbol may  be 
essential to  its comprehension. APL unifies 
algebra into a single consistent notation; it 
allows us to exploit the  powerful  concepts  of 
functions and  operators;  and it helps us to 
escape from the tyranny  of  scalars  by giving us 
the tools to think in terms  of  arrays, or multiple 
quantity, as J.  J. Sylvester so eloquently  urged 
us to do a century ago.  APL  has  an  intellectual 
consistenc that is a  source  of satisfaction and 
pleasure. x i s  paper traces  the history of 
symbols from hieroglyphics to APL. 

T he APL language, a language with  symbols and 
not words,  is one of the intellectual triumphs of 

our time. Its  modern incarnation began with Iver- 
son notation,’,’ but its roots go far back into  the 
past. 

In the  beginning 

Perhaps  the earliest record of what came to be APL 
was  carved on a sculptured mace of granite about 
3100 BC, before  the invention of papyrus. Of course 
you cannot read it, unless as  is the case with con- 
temporary APL, you  know the meaning of the sym- 
bols. 

by D. B. Mclntyre 

We shroud in mystery whatever we do not under- 
stand. In crystal optics we speak of “extra-ordinary’’ 
rays, though there is, of course, nothing extra-or- 
dinary about them. Negative numbers were called 
absurd or fictitious. Even after Leonard0 of Pisa 
(known as Fibonacci), in the year 1202, had taught 
us to recognize debt as a negative asset, it took 
another 400 years before  the number scale was rep- 
resented geometrically. Intellectual progress is 
slow, and an additional 250 years passed before 
Sylvester  showed how absurd it  was to style  as  imag- 
inary the quantities represented by the symbols  i, j, 
k of “complex” numbers and quaternions. 

I remind you of the words of Whitehead: “Math- 
ematics is often considered to be a difficult and 
mysterious science, because of the numerous sym- 
bols  which  it  employs. Of course, nothing is more 
incomprehensible than symbolism  we do not un- 
der~tand.”~ 

The inscription illustrated in Figure 1 is a record of 
the triumph of Menes, founder of the first  dynasty 
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Figure 1 An example of early hieroqlyphics 
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Figure 2 The key to hieroglyphic numbers 

1 

THE RHIND PAPYRUS 
USES THE SYMBOL 
ABOVE FOR THE LOTUS 
FLOWER  ORGINALLY 
PORTRAYED IN STONE  AS w 

of historical pharaohs, who united the two king- hundred is represented in  hieroglyphics by a picture 
doms of Egypt.  With Figure 2 as our key,  we read of the coiled rope used by Egyptian  surveyors, or 
that  he  captured 400 000 oxen, 1 422 000 goats, and “rope-stretchers,” whose descendants today use the 
120 000 prisoners. “chain” as a unit of measurement. We should re- 

member that  Eratosthenes,  the director of the great 
Although the variables are  named, the example library in Alexandria, was the first to measure the 
lacks the equivalent of APL’S assignment arrow. A earth’s circumference, thus initiating the science of 



Figure 3 Examples of Egyptian  methods of arithmetic 

637 + 405 - 1042 637 + I 11042 

I DOUBLING 637 - 1274 1 I 6 3 7  1 DOUBLING I = 11274 

I 6 3 7  x 10 - 6370 I x I10 I I I I 6370  

geophysics. Lotus flowers and tadpoles represent 
large numbers, and one can only hold up one’s 
hands in amazement at so large a number as a mil- 
lion. The base is, of course, 10. Poor though 10 is 
as a base,4 it was and remains popular because we 
have 10 fingers to count on.  The Egyptian  system, 
like the Roman, did not use place notation, and so 
had no need for zero. 

Egyptian methods of arithmetic are illustrated in 
Figure 3, reading the symbols from right to left, i.e., 
the more significant  figures are  to  the right. The 
three examples represent: adding 637 and 405; dou- 
bling  637; and multiplying  637 by 10. The system 
has been derided as clumsy, but for more than a 
thousand years no nation was able to improve on 
the Egyptian notation and methods.’  Again, Figure 
2 is the key to understanding the notation in Figure 
3. This system  makes addition, subtraction, dou- 
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bling, and multiplying by 10 easy.  We, on  the  other 
hand, must memorize 55 combinations in order  to 
add, and we must learn another table in order  to 
multiply. 

Most of us probably  imagine that children always 
learned addition and multiplication tables, but in 
1542 Recorde had to explain at length how to mul- 
tiply  two numbers between 5 and 10. Consider the 
implication of Samuel  Pepys’s entry in  his  diary for 
July 4,1662: “Comes Mr. Cooper of whom I intend 
to learn mathematiques, and do begin  with  him 
today. After an hour’s  being  with  him at arithme- 
tique, my first attempt being to learn the multipli- 
cation table.” Five  days later he records: “Up by 
four o’clock, and at my multiplicacion-table [sic] 
hard, which is all the trouble I meet withal in my 
arithmetique.” Now Pepys  was a 30-year-old grad- 
uate of Cambridge, an able man of business, soon 
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Figure 4 First appearance of symbols in  print 

V 

A 

to become a Fellow of the Royal  Society (as pres- 
ident of the society,  Pepys  gave  his imprimatur to 
Newton’s “Principia”). As Secretary of the Navy he 
became one of the nation’s leading financiers. 

How seldom do we look back  in maturity at what we 
learned by rote as children, and  that is why I like the 
title (as well as the  content) of  Klein’s Elementary 
Mathematicsfrom an  Advanced  Standpoint. We are 
taught as if the common mathematical symbols 
came to humankind in antiquity engraved on stone; 
as if they had no history. The  dates when some of 
these symbols  first appeared in print show that  our 
notation evolved  over centuries7,* (see Figure 4). 
The imprints on our bank checks show that in our 
own time technology has changed some of our fa- 
miliar  symbols. 

The  acceptance of symbols 

The symbol forplus is probably an abbreviation for 
the Latin et, and that  for minus may be “a simple bar 
used by merchants to  separate  the indication of the 
tare, for a long time called ‘minus,’ from that of the 
total weight of the merchandise.”’ De Morgan 
thought the symbols  might be marks on sacks or 
barrels showing whether they were over or under 
weight. Recorde, in 1557, first  used these signs in an 
English book, the same one in which he gave us the 

equals symbol,  which he chose “because noe 2 
thynges can be  moare equalle.” Euler’s 2 (sigma) 
suggests summation; epsilon is the first letter of the 
Greek esti (is a), which  suggests membership; and 
the symbol for or is the first letter of the Latin vel. 

In his  survey of the development of mathematics, 
Kline pointed out  that Leibniz “certainly appreci- 
ated  the  great saving of thought that good symbols 
make possible. Thus by the  end of the seventeenth 
century, the deliberate use of  symbolism-as op- 
posed to incidental or accidental use-and the 
awareness of the power and generality it confers 
entered mathematics.”” 

Our notation having been at least 500 years in the 
making,  it  is no surprise that  the story is not yet at 
an end. What is remarkable is that Iverson is ap- 
parently the first to look at the consistency and 
completeness of the notation as a whole. Function 
syntax  is inconsistent; e.g., summation has its argu- 
ment to  the right, factorial to  the left, and absolute 
value is written on both sides of its argument. Ex- 
ponentiation has no symbol at all; its second argu- 
ment is  merely written as a superscript. Iverson also 
considered which other functions have  sufficient 
utility to warrant separate graphic symbols. He 
showed that function names should not be elided, 
and pointed out  the advantage of each symbol rep- 
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Figure 5 Exponents  enclosed  in  circles  (Stevinus, 1585) 

resenting related monadic and dyadic  functions. 
Iverson  simplified  syntax by abandoning function 
hierarchy (originally imposed for writing  polyno- 
mials) and making each function take everything to 
its right as its right argument. 

Acceptance of good  symbols has, however,  never 
been easy. After introducing the times symbol 
(Saint Andrew’s  cross) in 1631, Oughtred wrote: 
“This manner of setting downe Theoremes, 
whether they be Proportions, or Equations, by  Sym- 
boles or notes of words,  is  most  excellent,  artificiall, 
and doctrinal1 [i.e., serving to teach]. Wherefore I 
earnestly exhort every one,  that desireth though but 
to looke into these noble Sciences Mathematicall, 
to accustome themselves unto it: and indeede it is 
easie, being most agreeable to reason, yea  even to 
sence. And out of this working may  many  singular 
consectaries [i.e.,  conclusions] be drawne: which 
without this would,  it may be, for ever lye hid.”” 

But 15 years later, still more encouragement was 
needed: “[My] Treatise being not written in the 
usual1  synthetical manner, nor with verbous expres- 
sions, but in the inventive way  of Analitice, and with 
symboles or notes of things instead of words, 
seemed unto many  very hard; though indeed it  was 
but their owne  diffidence,  being scared by the new- 
ness of the delivery; and not any  difficulty  in the 
thing it  selfe. For this specious [i.e.,  pleasing to  the 
eye] and symbolical1 manner, neither racketh the 
memory  with  multiplicity of words, nor chargeth 
the phantasie with comparing and laying things to- 
gether; but plainly presenteth to the eye the whole 
course and processe of every operation and argu- 
mentation.”” 

It seems that not much has changed, judging from 
the experience of Giuseppe Peano (who  provided 
two of APL‘S symbols). We are told that  he “used a 
great deal of symbolism because he wished to 
sharpen the reasoning. . . . Peano used this sym- 
bolism  in  his presentation of all of mathematics, 

notably  in  his Formulario mathematico (5  vols., 
1895-1908). He used it also  in  his lectures, and his 
students rebelled. He tried to satisfy them by pass- 
ing  all of them, but that did not work, and he was 
obliged to resign  his professorship at  the University 
of Turin.”12 

Smith, quoting Nesselmann’s Algebra ofthe Greeks 
(1842),  says that mathematics evolves through 
three stages: rhetorical, with  words and sentences in 
full; syncopated, in  which  words are condensed by 
abbreviation; and symbolic, in  which there  are  no 
words at all.13,14 Consider the way  we write equa- 
tions. Comparison of  20 examples from 1463 to 
169315  shows  how long  it took to pass from words 
to our present symbolic  system.  Simon  Stevin 
(Stevinus,  1548-1620), for instance, made great 
progress by identifying exponents, writing them en- 
closed  in  circles (See Figure 5). His books (1585, 
1586) were influential in promoting the use of the 
new methods. (See Reference 16.) 

The superscript method of denoting a to  the power 
b (that is, a b )  was  used by Hume in  1636, though his 
use of Roman numerals for the exponent shows he 
thought only of integer powers. The form we use 
now  was first  used by Descartes in  1637. John Wal- 
lis, a distinguished predecessor of Sylvester’s as Sa- 
vilian Professor of Geometry in  Oxford, was one of 
the first to write equations in the form we use today, 
though even he often wrote aaaa for a4.  Until the 
end of the eighteenth century it  was, indeed, com- 
mon practice to write aa for a ’. Wallis,  who  gave  us 
our symbols for greater-than-or-equaZ-to (2) and 
less-than-or-equal-to (5) and our symbol for infinity 
(m), found a meaning for negative exponents (1655, 
1657), but Newton  was the first to permit the ex- 
ponent to  be positive,  negative, integer, or frac- 
tional (1676). 

Euler, in  1777, introduced the symbol i (impossible 
or imaginary) for d-1, and by 1837  Sir  William 
Rowan Hamilton had so adopted the geometrical 
interpretation of complex numbers (Wessel, Gauss, 
Argand) that it  could be said that exponentiation 
had been extended to  the case of a negative number 
with a fractional exponent. Cayley further extended 
the scope of exponentiation by raising matrices to 
positive integer powers and to the power -1 ,which 
he called the “inverse or reciprocal” matrix. ‘’~3 To- 
day’s APL handles all these cases  directly. 

To indicate that a word  was abbreviated, the prac- 
tice used to be to put a stroke (solidus) through the 
last letter. This accounts for the lines still seen in 
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symbols for the British pound (&, Latin libra), the 
dollar ($, an abbreviation of pesos), the cent (e), 
and  the sign Ij (for the Latin recipe, or  the imper- 
ative “take”) displayed by pharmacists. 19920 Cardan 
used Ij for  “root” (Latin radix) in  1539, and we still 
talk of “extracting” (pulling out)  the root. Although 
Euler believed the  square  root symbol (d) to be 
the deformed letter r (abbreviating radix), Cajori 
doubts this, suggesting its origin might be a dot.21 

We  are taught that it  is a simple step from expo- 
nents  to logarithms, and few developments have 
been more important. Laplace recognized our im- 
mense debt to Napier in his  well-known remark 
about logarithms, that, by halving the labor, they 
had doubled the life of the astronomer and math- 
ematician; but we seldom think of the primitive 
state of the conceptual tools available in  1614, or 
recognize Napier’s genius. In his  day, algebra dif- 
fered little from arithmetic, and the notation we 
take for granted was almost nonexistent. Napier’s 
discovery came three years before he invented the 
decimal point, and less than 60 years after Recorde 
introduced the equals sign and first  used the signs 
+ and - in an English book. Just how Napier suc- 
ceeded in calculating his table of logarithms is  well 
described by Gittleman. 22 

In a volume commemorating the 300th anniversary 
of Napier’s Description of the  Marvellous Canon of 
Logarithms, Glaisher well expressed the power of 
good notation: “Nothing in the history of mathe- 
matics  is to me so surprising or impressive as the 
power  it has gained by its notation or language. . . . 
By his invention [of logarithms] Napier introduced 
a new function into mathematics. . . . When math- 
ematical notation has reached a point where the 
product of n x s was replaced by x ” ,  and  the ex- 
tension of the law x” * x” = x”+” has suggested 
x”’ - x2/’ = x, so that could be taken  to  denote 
the square  root of x ,  then  the fractional exponents 
would  follow as a matter of course, and the  tabu- 
lation ofx in the equation 10” = y for integral values 
of y might naturally suggest  itself as a means of 
performing multiplication by addition. But in Napi- 
er’s time, when there was  practically no notation, 
his  discovery or invention was accomplished by 
mind alone without any  aid from symbols.”u (See 
also Reference 24.) 

“We who  live in an age when algebraical notation 
has been extensively developed can realise only by 
an effort how  slow and difficult  was  any step in 
mathematics until its own language had begun to 
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arise, and how.great was the mental power  shown 
in Napier’s  con’ception and its realisation. . . . In our 
days when the rules of computation are precise, and 
when the construction of instruments has reached 
a high state of efficiency, the processes of multipli- 
cation and other arithmetical operations can be 
performed by machines designed for the purpose. 
These apparatuses which  save mental strain and 
time are effective aids to calculation, and they  may 
be regarded as the modern successors to Napier’s 

APL and  functional  programming 
APL‘S concise notation helps us grasp the intellec- 
tual content of an algorithm without the distraction 
of extraneous and irrelevant matters prescribed by 
a machine. APL is a succinct and admirably  consis- 
tent language that not only  uses verbs (functions) to 
act on nouns (data arrays), but uses adverbs and 
conjunctions (operators)  to derive new verbs, and 
permits definition of  new verbs, adverbs, and con- 
junctions. It has the subtlety and suggestiveness 
which, as Bertrand Russell said, makes a good no- 
tation “seem almost like a live tea~her,”’~ and, to 
quote Pledge, “Suggestiveness  is the essential ser- 
vice of ~yrnbolism.”~~ 

With APL, the goal of functional programming 
(Backus, 1978) can be achieved. The wordfunction 
(derived from functio, meaning a performance or 
execution) was  used at  the  end of the 17th century 
by mathematicians writing  in Latin. Leibniz,  who 
gave us many terms such as constant, variable, and 
parameter, used “function” in our sense in  1673. 
Euler used the  symbolffor a function in  1734, and 
in  1754  used the  notation$(a,n) for a function of 
the variables a and n, i.e., to  state  that  the result 
depends upon the  current values of a and n. Iverson 
does better  than this; in  1976  his method of direct 
definition2’ of functions shows  formally  exactly how 
the result is derived from the arguments, and  Eul- 
er’s parentheses are  not needed. 

The relationship between ordinary APL and direct 
definition is illustrated by the following  examples: 

In ordinary APL: 

VZ+ A PLUS B 
[11 Z+ A + B 
c21 v 

3 PLUS 4 
7 



vz+ F N 
C11 a( N=O )/”+O, OpZ+l’ 
C21 Z+Nx F N-1 
C31 V 

F 4  
24 

In direct definition: 

PLUS: a + w 

3 PLUS 4 

F: w x F w-1 : w=o : 1 

F 4  

7 

F 

24 

The left and right arguments are denoted a and w. 
The recursive definition of the factorial should be 
read: “The factorial of w is w times the factorial of 
w-1 unless w equals zero, in  which  case the factorial 
of w is 1.” 

To illustrate the advantage of Iverson’s method, 
consider the problem of cluster analysis. Each en- 
tity, described by n variables, can be considered a 
point in n-dimensional space, and we are required 
to compute the distance between each point and all 
the others. If n is 2, the  data  are given  in a matrix 
of two columns.  We then represent each entity as a 
point, with coordinates x and y ,  plotting the points 
on a scatter diagram. The theorem of Pythagoras 
lets us determine the distance between any  two 
points, and the results complete a square matrix. 
This similarity  matrix gives the closeness of each en- 
tity to every other one based on all measured prop- 
erties. The matrix is symmetric  with zeros on the 
diagonal. In APL the algorithm automatically  ex- 
tends to higher dimensions. 

Hellerman used this as an example of APL notation, 
in a book that (in both of its editions) is a landmark 
in the history of A P L . ~  His solution is as follows: 

VZ+DISTANCE P;N;I;J 
c11 N+( p P )  C01 
C21 D+(N,N)pO 
C31  J+O 
C41 LO:I+O 
C51  Ll:D[I;Jl+(PCI;I-PCJ;l 1 

+.x(PCI;I-PCJ;I 1 
C 6 1 +( N>I+I+l )/L1 
[71 +( N>J+J+l )/LO 

V 
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one new to AFJL, I would point out that if  we already 
know  how to add, subtract, and square numbers, 
there  are only three AFJL functions to learn: inner 
and outer products and dyadic transposition. I re- 
member Adin Falkoff  saying that good notation 
cannot make an inherently recondite concept  easy, 
but it can remove  unnecessary impediments by  ex- 
pressing the concept in as simple a manner as pos- 
sible:  Einstein’s E = m x c2  is a simple statement 
of a relationship that probably can be fully under- 
stood by  very  few. 

For a further illustration consider eight statistical 
functions, first  in standard APL notation: 

VZ+MEAN X 
[ll Z+(+/X> + olpx 
C21 v 

VZ+DEV X 
111 Z+X- (MEAN X>..+ ( 0 ~ p X ) p O  
c21 v 

VZ+SS x 
113 Z+(  DEV  X)+.*2 
c21 v 

QZ+VAR X 
c11 Z+(SS x>+ -1+01px 
121 v 

VZ+SD X 
111 Z+(VAR X h 0 . 5  
c21 v 

VZ+SP X;M 
C11 Z+M+.x QM+ DEV X 
C21 v 

vz+cov x 
[11 Z+( SP X)+ -1+oqx 
c21 v 

VZ+COR X ; S  
C11 Z+(COV X)+So. xS+SD X 
c21 v 
They  define the means, deviations from the means, 
sums of squares of the deviations, variances, stan- 
dard deviations,  sums of cross products, covari- 
ances, and correlation coefficients. 
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The functions form a pedagogic sequence in the 
sense that  to understand any one of them you  must 
first understand those that precede it. Each func- 
tion can be directly defined in a single line, and each 
takes the original data as its argument. 

Next,  in direct definition: 

MEAN: (+/w)+Olpw 
DFV:w- (MEANw)o .+(Olpw)pO 
SS:(DFVw)+.*2 
VAR: ( SSw)+-l+Olpw 
SD:(VARw)*0.5 
SP:M+.xQM+DFVw 
COV:( SPw)+-l+Olpw 
COR: ( COVw ) + S o .  xS+SDw 

Using  Iverson’s new dialect J,29-31 the same func- 
tions can be defined  even more succinctly, and with- 
out parentheses. Not only are no variables assigned, 
no explicit reference is made to  the arguments. This 
is tacit  definition, or pure functional programming 
(Backus,  1978),  which leads to efficient  execution 
and invites parallel processing. (Version 3.3 of Iver- 
son’s J is  used for the examples that 

mean=.+/%# 

dev=.-mean 

ss=.+/@*:@dev 

var=.ss%<:@# 

sd=.%:@var 

s p = . t /  .*-I:@dev 

cov=.sp%<:@# 

cor=.cov%*/-@sd 

The sequence of functions starts with the mean and 
ends with the correlation coefficient. Is this struc- 
tured programming? Is it top down or bottom up? 
Such questions seem to vanish  in a sequence that is 
almost self-documenting. 

The style of programming brings to mind the words 
of Babbage: “The almost mechanical nature of 
many  of the operations of Algebra, which  certainly 
contributes greatly to its power, has been strangely 
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misunderstood by some  who  have  even regarded it 
as a defect. When a difficulty  is  divided into a num- 
ber of separate ones, each individual will in  all 
probability be more easily  solved than that from 
which  they  spring. In many  cases several of these 
secondary ones are well  known, and methods of 
overcoming them have  already been contrived: it is 
not merely  useless to re-consider each of these, but 
it would  obviously distract the  attention from those 
which are new: something very  similar to this occurs 
in Geometry; every proposition that has been pre- 
viously taught is considered as a known truth, and 
whenever  it  occurs  in the course of an investigation, 
instead of repeating it, or even for a moment think- 
ing on its demonstration, it is referred to as a known 
datum. It is this power of separating the difficulties 
of a question which  gives  peculiar force to analytical 
investigations, and by which the most  complicated 
expressions are reduced to laws and comparative 
~irnplicity.”~~ 

Revisiting  our  roots 

Being aware of the long  history of functions in 
mathematics, and having seen examples written in 
current APL, we can now use APL to illuminate our 
roots, which reach back to Egyptian  hieroglyphics. 
The word algorithm, according to  the Oxford En- 
glish  Dictionary,  is an erroneous refashioning of 
algorism, a word  derived  from  “al-Khowarazmi, the 
native of Khowarazm, surname of the  Arab math- 
ematician who flourished early  in the 9th Century, 
and through the translation of whose  work on Al- 
gebra, the Arabic numbers became generally 
known  in Europe.” In its original form it  was  used 
by Chaucer, and the Oxford dictionary cites the use 
of algorithm in  1774.34,35 I found it  first  used by 
Sylvester36  in one of the earliest papers to speak of 
matrices (compare References 27 and 37 for APL 
treatment of polygons and polyhedra). 

The earliest known book of algorithms is the Rhind 
Papyrus,  based on work written 2000-1800 BC and 
copied by Ahmes the scribe  in  1650 BC.38-40 It is a 
textbook on solving  practical  problems. Consider a 
simple  example,  shown  in Figure 6 and using Figure 
2, again, as the key; to multiply 12 by 12  begin by 
writing  down  12, and by successive  doublings obtain 
1,2,4, and 8 times 12.  Check the rows 4x and 8x 
(on the papyrus the check  marks are red) and add 
them to get the required  result. The symbol  preceding 
the answer  is a rolled-up  scroll (quod  erat  demon- 
strandurn), which  in  fancy  we  may take  as the ancestor 
of our equals and APL‘S assignment symbols.41 



Figure 6 Rhind Papyrus problem 32: multidvina  12 bv 12 

/ 

IBM’s System/360* and its descendants use this an- 
cient method to multiply integers. Microcode for 
fixed-point multiplication builds the 1 x ,   2 x ,  3 x ,  
and 6 x  products of the multiplicand in local stor- 
age. Then, just as the scribes did nearly 4000 years 
ago, it combines the products corresponding to  the 
multiplier. If the multiplier is 8 or more, a shift of 
4 is  first made (corresponding to multiplication by 
16), and then products are subtracted rather  than 
added; e.g., to multiply by 11,  first  shift to multiply by 
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16, then subtract 6x and  add 1 X. One may  ask  why 
the products  used by Systed360 are 1 X,  2 X,  3 X, and 
6x instead of the lx ,   2x ,   4x ,  8x used by the Egyp- 
tians.  When  I  raised  this  question  in  a lecture in  New 
York in  1982, John Macpherson  (who  was the first to 
implement  binary  coded  decimal on an IBM com- 
puter) gave  me the explanation  in  engineering  terms. 

However unfamiliar its symbols  may be  to us, the 
hieroglyphic  message  is inherently simple. So it  is 
with the symbols of APL, all of which stand for well- 
known or easily understood operations. Many to- 
day, as Oughtred found 350 years ago, are “scared 
by the newness of the delivery; and  not by any  dif- 
ficulty  in the thing itself‘! 

The ancient Egyptians used mathematics for prac- 
tical purposes, such as paying  wages and collecting 
taxes. Consider the instructive example of salary 
distribution at the Temple of Illahun-not  paid  in 
salt (as the word “salary” implies) but in jugs of beer 
and loaves of bread. Division, of course, often pro- 
duces fractions, and the hieroglyphic way to  repre- 
sent fractions can be seen in Figure 7. 

All fractions were represented as unit fractions, i.e., 
with  a numerator of 1. Even 2/3,  which seems like 
an exception, was represented as the unit fraction 
1 / 1 5  The eye-like  symbol is perhaps  the earliest of 
all APL function symbols. It is the reciprocal, or 
monadic divide, which in APL has become an eye 
closed into a slit, with. dots above and below (+). 

If a  loaf of bread is  divided into 10 parts, and you 
are  to get 1 share, your portion is  1/10; if you are  to 
get 2 shares your portion is 1/5; and if you are  to get 
5 shares your portion is  1/2. From these simple frac- 
tions, other shares can be computed by combina- 
t i ~ n . ~ ’  For example,  3 shares  are  the same as 1 + 
2 shares, i.e.,  1/5 + 1/10; 4 shares are  the same as 
2 + 2 shares, i.e.,  1/5 + 1/5,  which, by consulting a 
table of values of  2/14  is set down as 1/3 + 1/15. 

Sylvester became interested in the unit fractions of 
the Egyptians when reading “the  chapter in Can- 
tor’s Geschichte der Mathematik which  gives an ac- 
count of the singular method in use among the an- 
cient Egyptians for working with fractions. It was 
their curious custom to resolve  every fraction into 
a  sum of simple fractions according to a certain 
traditional method, not leading, I need hardly  say, 
except  in  a  few of the simplest cases, to  the expan- 
sion under  the special form to which  I  have the 
name of a fractional 
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Sylvester's algorithm is expressed in APL with tol- 
erance as left argument: 

VZ+T F x 
C11 @(X1T)/f+o,OpZ+to' 
[21 z+z, T F x-+z+x 
C31 V 

Sylvester's example is: 

1E-16 F 335+336 
2 3 7 4 8  

In direct definition, this leads to a useful paradigm 
for writing recursive functions in APL: 

Roger Hui (in a personal communication) trans- 
lated this into  thepurelyfunctional form in J, using 
@. for agenda: 

f=. i.@8: ' (>.@% @ 1 , [ f  I->.&.%@]) @.<: 

le-16 f 335%336 
2 3 7 4 8  

The initial  result of the function  must  be the identity 
element for the primary  function,  which  for catena- 
tion is an empty  array of the appropriate shape-in 
the case of  Sylvester's algorithm  this  is an empty  vec- 
tor. 

An example  using  recursion 

A good way to introduce recursion is  by one of the 
oldest of  all algorithms: the calculation of pi by 
approximating inscribed (and circumscribed) poly- 
gons." The symbol  pi (T) was chosen by William 
Jones (1706) because pi  is the length of the perim- 
eter of a circle of unit diameter. An inscribed hexa- 
gon has 6 sides each of length 0.5, which  gives 3 as 
the first appr~ximation.~~ 

Doubling the sides of the hexagon  gives  a better 
approximation, and  further doublings give  still 
closer values. The secret is, therefore,  to compute 
the length of a  new chord from the length of an old 
one, which  is not difficult to  do once the theorem 
of Pythagoras is  known. CH gives the new chord as 
a function of the old one. 

VZtCH x 
C11 2 4  0.5~1-( 1-X*2 )*O. 5 )*O. 5 
c21 V 
For a circle of unit diameter,  the first approxima- 
tion is  given by the  perimeter of a  hexagon  whose 
sides are each equal to the radius, i.e., the approx- 
imation to pi  is 3. 

After 8 doublings (8 applications of CH), pi  is  given 
by: 

6x( 2 x 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2  ) x C H  
CH CH CH CH CH CH CH 0.5 

3.14159 

We have  a notation (exponentiation) that allows us 
to abbreviate this to: 

6x(  2*8)xCH CH CH CH CH 
CH CH CH 0.5 

3.14159 

With APL we can use recursion to effect successive 
applications of the function CH: 

VZ+N c x 
E11 m ( N = O  )/'+O, OpZt X' 
c21 Z4N-1) c CH x 
C31 V 

VZ+PI N 
[11 Z+6x( 2*N)x N C 0.5 
c21 V 

In direct definition these functions can be given 
more concisely: 

CH: ( .5~1-( 1-~*2 )*. 5 >*. 5 
C:(a-l)C caw: a=O : w 

PI 8 
3.14159 

Because Iverson's  J includes primitives for square 
root (X : ), halve (- : ), and square (* : ), and a con- 
junction (dyadic operator) for raising  a function to 
a  power ( A  : ), we  have the following formulation: 

ch=. '%:  -: 1- %: 1- *: y . '  : " 

6*(2̂ 8)*ch ch c h  ch ch ch ch ch 8.5 
3.14159 

6*(2^8)*(chA:8)  8.5 
3.14159 
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Though the ancient Egyptians used heap as a gen- 
eral term for  an unknown quantity, 46,47 Diophantus, 
a Greek mathematician in Alexandria about 300 
AD, was  probably the original inventor of an algebra 
using letters  for unknown q ~ a n t i t i e s . ~ ~  Diophantus 
used the  Greek capital letter delta (not for his  own 
name!) for the word power (“dynamis”; compare 
“dynamo,” “dynamic,” and ‘‘dynamite”), which  is 
therefore  one of the oldest terms in mathematics. l4 

Today we use a conjunction to raise a function to 
a power. The syntax brings out  the parallelism be- 
tween raising a number to a power and applying a 
function an  equal number of times. The algorithm 
fails when the number of doublings is further in- 
creased. 49 

Hindu-Arabic  numerals  and  zero 

Hindu-Arabic numerals were introduced to  the 
western world by Leonard0 of Pisa (Fibonacci) in 
1202  with these words: “Novem figure  Zndorum  he 
sunt 9 8 7 6 5 4 3 2 1. Cum his  itaque nouem figuris, 
et cum hoc sign0 0, quod  arabic  cephirum  appellatur, 
scribitur  quilibet  numeros.” [The nine numerals of 
the Indians are these: 9 8 7 6 5 4 3 2 1. With them 
and with this sign 0, which in Arabic is called cipher, 
any desired number can be written.”] (Slightly  dif- 
ferent in Reference 51.) 

It was, however, far easier for most people to add 
and subtract with Roman numerals (or with  Egyp- 
tian hieroglyphics for that  matter), and this was 
sufficient for their needs. They also believed that, 
with the new  system, accounts could be more easily 
falsified-for instance by changing zero into 6 or 9. 
Adoption of the new  symbols  was therefore very 
slow. The oldest known Hindu-Arabic numerals on 
a gravestone are dated 1371, and their earliest use 
on coins outside Italy  was  in  1424. They were not 
used on  an English coin until 1551. ’* Even today 
Roman numerals are used for royalty.  Clocks not 
powered by digital technology still commonly  dis- 
play old-style symbols on their dials. 

As long as calculations were performed on counters 
or boards (see the etymology of bank and bankrupt) 
there was no need for a symbol to show an empty 
column. Menninger has some excellent sentences 
on  the subject: “Zero is something that must be 
there  to show that nothing is there, [for] only the 
abstract place-notation needs zero. Zero first lib- 
erated  the digits from the counting board.”s3 

Surely one of the most remarkable inscriptions in 
Europes4 is: I - Vc V . It records the  date 1505  in 
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symbols  which, though Roman, are used with a po- 
sitional significance  unknown  in Rome.  The scribe 
“had heard about the new place-value system and 
now tried to find  it  in the  Roman numerals. Since 
the meaning of the  zero was  still not clear to him, 
I V 0 V = 1505; at the critical point he yielded and 
retreated  into  the ‘named’ place-value n o t a t i ~ n . ” ~ ~  
He solved  his problem by inserting a superscript 
letter c to identify the  hundreds column (compare 
Sylvester’s locative symbols). It is  exciting to catch 
the conversion from the old way to  the new as it  was 
happening! 

If it took so long for Hindu-Arabic numerals to 
make their way in the western world, we can hardly 
expect APL to  be universally adopted in 25 years. 
But we can find encouragement in Menninger’s 
words: “These ten symbols  which today all peoples 
use to record numbers, symbolize the world-wide 
victory of an idea. There  are few things on  earth 
that  are universal, and  the universal customs which 
man has successfully established are fewer  still. But 
this one boast he can make: the new Indian nu- 
merals are ~niversal.”’~ 

One of the satisfactions in  working  with APL comes 
from its consistency and completeness, exemplified 
by its recognition of identity elements, i.e., argu- 
ments that, used with a dyadic function, give a result 
identical to  the  other argument. If at each iteration 
in a FORTRAN loop, we accumulate by adding to a 
variable named SUM, why must  we set SUM to  zero 
before entering  the loop? The reason is that zero is 
the identity element for addition, as 1 is  of multi- 
plication. APL, being  rich in scalar dyadic functions, 
needs more kinds of identity elements than  other 
languages do. 

Although the computation of pi by inscribed poly- 
gons is recursive, we did not accumulate interme- 
diate results, but proceeded at once to  the next 
approximation. On  the  other hand, Sylvester’s al- 
gorithm for Egyptian unit-fractions constructs a 
vector, and  the starting point must therefore be an 
empty vector. 

We  can calculate interest payments on a declining 
balance by following the same recursive paradigm. 

Ordinary APL: 

VZ+ A where W 
[11 Z+A 
c21 v 
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VZZ+N IB W;Z;B;R;I 
C13 &( O>A+N-1 )/‘+O, OpZZtO 3 ~ 0 ’  
C21 ZZ+Z, COIA IB WCO 11 ,lrZ+B,R,J 

I where B~WC21-R+WClI-I+x/W[O~21 
r31 v 

I Direct definition: 
where:a:O:w 
IB:Z,COIA IBw[O II,~TZ+B,R,I 

where BcwC21-RtwClI-I+x/wCO  21: 
O>A+a-l: 0 3pO 

where B = current balance; R = amount going to 
reduce principal; I = amount going to pay interest. 

If the principal is  $20,000, the interest is 10 percent, 

computes a table for 12 months (numbers are 
rounded): 

l and  the monthly payment is $1,000, the function IB 

12 IB 10  1000  20000+1200 1 1 
19167 833 167 
18326 840 160 
17479 847 153 
16625 854 146 
15763 861 139 
14895 869 131 
14019 876 124 
13136 883 117 
12245 891 109 
11347 898 102 
10442 905 95 
9529  913  87 

In J’s pure functional form, define i ,  r, and b as three 
forks: 

i=. 2&1 * { .  
r=.  1&{ - i 
b=. 2&1 - r 

i b = . ( ( b , r , i ) @ l ,  
<:@[ i b  (2&1.,b)@])’ 
(0 3&$ @ 0:) @ . ( = @ : I  

To understand the  structure of this function, con- 
dense it as follows: 

i b = . ( f @ l ,  <:@[ i b  g@l)’h 
@. (=@: 

Read it thus: 

To  the result of function f of the right argument, 
catenate  the item (row) resulting from the function 
ib with a decremented left argument, and a right 
argument computed by function g from the previ- 
ous right argument. Function h gives the identity 
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element for catenation of  rows to a table with 3 
columns. Terminate when the left argument is zero. 

Because calculation of interest payments on a de- 
clining balance builds a table, we must start with 0 
rows and 3 columns. Zero, then, is not enough; any 
language is incomplete if it  fails to include different 
kinds of emptiness. 

The identity element for matrix multiplication is 
the appropriately named identity matrix, first rec- 
ognized by  Cayley: “A matrix  is not altered by its 
composition, either as first or second component 
matrix,  with the matrix  unity.”17 In the following 
example, the recursive function MP raises a matrix 
(left argument) to an integer power (right argu- 
ment),  and consequently requires the identity ma- 
trix of the same shape as the matrix argument. 

Ordinary APL: 

VZ+M MP N;I 
r11 ~ = o ) / ’ + o ,  opz+Io.=I+ll+pM’ 

r31 v 
C21 Z+M+.xM MP N-1 

More succinctly in direct definition: 

MP:a+.xaMPw-l: w=O : I o . = I + ~ l t p c ~  

Me3 3p19 
M+.xM+.xM 

180  234  288 
558  720  882 
936  1206  1476 

M MP 3 
180 234 288 
558  720  882 
936  1206  1476 

Zero seems to behave like the  queen in chess; for 
is it not  the most  powerful piece on  the board? Any 
number multiplied by zero is reduced to zero. But 
emptiness is more powerful still, because any num- 
ber, including zero, is reduced to emptiness when 
multiplied by an empty vector. Emptiness is not, 
however, to be confused with nothing, which  is the 
result of executing an empty vector. You cannot 
multiply a number by  nothing-a value  emor results 
if you  try. Shakespeare made the fool touch some- 
thing profound in saying to  the king without a 
throne: “Now thou art  an 0 without a figure. I am 
better  than thou art now; I am a Fool, thou  art 
nothing.”57 
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Unlike the play on words  in  Lewis  Carroll’s 
Through  the Looking Glass, the distinctions be- 
tween zero, emptiness, and nothing are not only  use- 
ful but essential. The recursive APL functions al- 
ready given include in  a  single line, zero, an empty 
vector, and (when the end condition obtains) noth- 
ing. 

Logic 

Because logic deals with  two states, true and false, 
the mathematics of 0 and 1 is  said to be logical. 
Propositions, or statements that may be judged true 
or false, are logical statements, and computers are 
logical  machines because they manipulate binary 
digits (bits). The mathematics of logic  began  with 
B o ~ l e , ~ ~ ~  just at  the time Sylvester introduced the 
term matrix. Jevons considered Boole’s  work to be, 
perhaps, “one of the most  marvellous and admira- 
ble pieces of reasoning ever put together.”62 Ber- 
trand Russell thought highly  of  Boole’s  work,  going 
so far  as  to claim that  “Pure mathematics was dis- 
covered by Boole in  a  work  which he called ‘The 
Land of Thought.’ 7’63 

“Let us  conceive, then,” wrote Boole,  “of an Alge- 
bra in  which the symbols x, y,  z, etc. admit indif- 
ferently of the values of 0 and 1, and of these values 
alone.”64 Today we call  a vector consisting of 1s and 
Os a  logical or Boolean vector, and Iverson nota- 
tion, from its outset, used Boolean vectors to select 
from arrays, whether or not they were logical.’ 
Where Boole used x(s) to stand for the selection of 
all the x s from subset s, Iverson  used u/s in APL (or 
u#s in J), which  is compression if u is Boolean and 
replication if it is not. 

Because  a computer’s memory and registers can be 
described as arrays of 1s and Os, we  now recognize 
that Boole laid the foundation for the design and 
description of modem computers-which are log- 
ical  machines.  But to most of his contemporaries 
his  work seemed of little significance. The obituary 
notice in The Athenaeum (December 17, 1864) 
dryly reported that  “The Professor’s  principal 
works were ‘ A n  Investigation into the Laws  of 
Thought,’ and ‘Differential Equations,’ books 
which sought a  very limited audience, and we be- 
lieve found it.” 

The Oxford  English Dictionary cites the use ofBoo- 
lian algebra [sic]  in 1895 and 1902, but however we 
spell it, the usage  is questionable. As Sylvester em- 
phasized, there is  only one universal algebra, which 
must, of course, include logic: “I have  also  a great 
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repugnance to being made to speak of Algebras in 
the plural; I  would as lief  acknowledge  a  plurality of 
Gods as of Algebras.”65 I am sure he would  have 
approved of APL, which incorporates logical func- 
tions so that they can be used together with arith- 
metic functions in  a  single  expression. For example, 
from Iverson: 

“A theorem is  a proposition which  is  claimed to be 
universally true, i.e., to have the value 1 when ap- 
plied to any element in the universe of discourse. 
For example, the proposition 

((0=21x>~(O=31x>>~0=61x 

is  a theorem which  may be verbalized  in  a  variety of 
ways: 

“X is  divisible by 2 and X is  divisible by 3 implies that 
X is  divisible  by 6. 

“Any number divisible by both 2 and 3 is also di- 
visible by 6. 

“If X is  divisible by both 2 and 3 then X is  divisible 
by 6. 

“Divisibility by 2 and 3 implies  divisibility by 6.” 

According to  John Venn (whose name is  well 
known  in connection with the diagrams that so ef- 
fectively illustrate the meanings of and, or, and not), 
Jevons “was  certainly the first to popularize the new 
conceptions of symbolic  logic.” The boldness,  orig- 
inality, and beauty of Boole’s  system fascinated 
him, and Jevons’s book67 was  largely founded on 
Boole.  Jevons,  unlike Boole, emphasized the im- 
portance of the inclusive or and his  symbol ( e  I e)  

survives (though without the dots) in PL/I and in 
countless IBM technical  manuals. 

In 1865, Jevons completed construction of his rea- 
soning machine, or logical  abacus, adapted to show 
the workings of Boole’s  logic  in  a  half  mechanical 
manner, a  full account of which  was  published by 
the Royal  Society  in 1870.@ Mechanical  devices 
had been designed by Napier, Pascal, Thomas of 
Colmar, and in  Jevons’s own time by Babbage, 
Stanhope, 69 and Smee, 70,71 but Jevons claimed that 
until the work  of  Boole,  logic  had remained  substan- 
tially  as  molded by Aristotle 2200 years  ago. De Mor- 
gan,  whose Formal Logic” was  published, by coin- 
cidence, on the same  day as Boole’s book5* pointed 
to the connection  between two  revealing  facts:  “logic 
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is the only  science  which  has made no progress 
since the revival of letters; logic  is the only  science 
which has produced no growth of symbols.” In my 
view APL is  in the best tradition of Boole, De Mor- 
gan, Jevons, and Venn.73 

One of the most  striking features in  Iverson’s A 
Programming  Language is his demonstration that 
“the generalized matrix product and the selection 
operations together provide an elegant formulation 
in  several established areas of mathematics. A few 
examples will be chosen from two such areas, sym- 
bolic  logic and matrix algebra.”74 Iverson pro- 
ceeded to show  how his notation leads to a natural 
extension of De Morgan’s  laws.75 

De Morgan’s  law: 

Iverson’s  extensions: 

In ordinary AFT: 

In J, the latest form of Iverson’s notation, his 1962 
example  is executed as follows: 

u = . ? 5  4 3 $2 
v=.?3 6 7 8 2  

(u-:/ . * . v ) - : - . ( - . u )  =/ .+.(-.v) 
1 

where: 

- : is NOT EQUAL; * . is AND; - : is MATCH; 
- . is  NOT; and +. is OR. 

In algebra a leading negative can be removed by 
changing the signs of all quantities in the expression 
that follows;  in APL a leading NOT (-) can be re- 
moved by interchanging the pairs AND and OR, 
EQUALS and NOT-EQUALS, etc. In  the following  ex- 
ample both functions F and G remove redundant 
blanks from a  string. 
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Ordinary APL: 

VZ+F s;u 
[11 z+( -uAl@u+s= ) / s  
c21 v 

VZ+G S;U 
c11 Z+( U v l @ U + S # ’  I )/S 
c21 v 
Direct definition: 

F: ( -  UAl@u+w=’ ) / w  
G :   ( U v l @ U + w $ ’  ’ > / w  

APL continues to grow  in  power, and Iverson’s 
final e~ample,’~ written but not executable as 
+. / in APL, can be executed  in J as follows. 

Given: 

A=.  1 3 2 0 ,   2 1 0 1 , :  4 0 0 2  
B=. 4 1, 0 3. 0 2,: 2 0 
f=. -:&I3 
h = .  +/ @ # “ e  

Then: 

( f  A )  + / .h  B 
4 6  
6 4  
6 1  

Iverson’s generalized matrix product found imme- 
diate application in  his formal description of in- 
dexed addressing on  the IBM 7090 computer,77 
which  in one line made clear what takes half  a  page 
of text  in the Principles of Operation manual for that 
machine. There  are, of course, many  similar  exam- 
ples  in Reference 78. 

Arrays and locative symbols 

APL is often referred to as the array processing lan- 
guage, and its power does to a great extent come 
from its ability to work  with arrays directly,  a fea- 
ture of increasing importance as vector processors 
and parallel computing become available. When we 
specify  a place by  giving its latitude and longitude, 
or define a point on a scatter diagram by  giving its 
X and Y coordinates, we intend that two numbers 
should be taken together to identify one object. 
This is the first step in  thinking  in terms of what 
Sylvester  called multiple quantity. 

Stevinus  was the first to show  how forces combine 
in the manner we  know  as the parallelogram of 



forces. 7941 The discovery  is so important that New- 
tonsZ stated it as Corollary I immediately after his 
Laws of Motion. Authors of modern textbooks of- 
ten suggest that  the rule for vector addition is quite 
arbitrary by saying that  the sum of  two vectors is 
defined to  be a third vector  whose components are 
given by the sum of the corresponding components 
of the given  vectors.  Such a statement disguises the 
fact that in the  real world  we observe that forces 
combine in this manner. 

Many  first encounter the word vector in  Kepler’s 
so-called Second Law  of Planetary Motion: the ra- 
dius vector sweeps out equal areas in equal times. 
Kepler’s prodigious calculations are even more re- 
markable when we remember how  few mathemat- 
ical  symbols were available-logarithms, and even 
the decimal point had not yet been invented. 

Once Kepler had found a mathematical relation- 
ship that held throughout space, he looked for a 
deeper reason. Introducing the Newtonian concept 
of force into science, he claimed that a magnetic 
force (anima m o t h )  emanated from the sun and 
carried the planets in their orbitss3 

Vector is the Latin word for a carrier, and it is used 
in medicine today in this sense. Vector meus is  “my 
horse,” and vehicle, wagon, way, and convection are 
from the same root. It was therefore an appropriate 
word for whatever it is that carries the planets in 
their orbits round the sun. I looked in  vain for it  in 
K e ~ l e r , ~ ~  but Smallss  gives radii  vectores. Harris, in 
1704, defines vector to  be “A line supposed to be 
drawn  from  any Planet moving round a Centre, or 
the Focus of an Ellipse, to  that  Centre or Focus, is 
by some writers of the New  Astronomy,  called the 
Vector; because ’tis that line by which the Planet 
seems to  be carried round its Centre.”“j 

A vector in  two dimensions can be represented by 
a complex number (and vice versa). Wessel, a Nor- 
wegian  surveyor,  was the first to realize this, but his 
work, though published in 1799, was unrecognized 
until 1897. A modern geometric treatment of the 
addition and multiplication of complex numbers 
was  given by Argand in 1806, but these ideas re- 
ceived little attention until Gauss took up the topic 
in 1831. 

If complex numbers can represent points in a plane, 
it is natural to try to create hypercomplex numbers 
to represent points in three-dimensional space. Sir 
William Rowan Hamilton finally succeeded in do- 
ing this in 1843.s7 
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In a long paper on “algebraic couples” written in 
1837 Hamilton said: “In  the THEORY OF SINGLE 
NUMBERS, the symbol d - 1  is  ‘absurd’ [it is an im- 
possible root, or an imaginary number]; but in the 
THEORY OF COUPLES, the same symbol d - 1  is 
‘significant’  [i.e.,  it denotes a possible root, or a real 
couple].” What did he mean? I found the answer 
more clearly  in Hamilton’s own words than in  mod- 
ern textbooks. 

Knowing that if you double a force you double the 
vector that represents it, Hamilton looked on 2 
times as the operator  that doubles; it is a special 
case of what he called a tensor, an  operator  that 
stretches (not to be confused with the modern use 
of the word). In  the same way -1 times is a reversor. 
Moreover if d 2  times is applied twice  it doubles; 
and if d-1 times is applied twice  it  reverses. Con- 
sequently i times (where i is d - 1 )  is a versor, or 
operator  that  rotates a vector without changing its 
length; it is taken as producing a counter-clockwise 
rotation of 90 degrees. Application of -2i times 
would then be  the composition of a rotation, a 
stretch, and a reversal. It is to Hamilton that we  owe 
our terms scalar and vector (1846). 

It seemed plausible that if couplets represent vec- 
tors in  two  dimensions, triplets would represent 
vectors in three dimensions, but after years of un- 
successful attempts, Hamilton realized, in a flash of 
genius, that a consistent algebra of triplets is  im- 
possible. Four terms (quaternions) are needed, 
shown  in the example  below: 

complex: a + bi 
i z  = -1 

quaternion: a + bi + cj + dk 
i2 = jz..= kZ = ijk = -1 
ij = -JI 

Quaternions are of interest to  the pure mathema- 
tician because they do not obey the laws  of ordinary 
arithmetic: multiplication of quaternions is  asso- 
ciative but not commutative. 

Hermann Grassmann (a German schoolmaster) 
worked on vector systems at about the same time as 
Hamilton, and it was Grassmann who,  in 1862, gave 
us inner and outerproducts, analogous to the scalar 
and vector parts of Hamilton’s  multiplication of 
quaternions. 88-90 

All of Arthur Cayley’s  early papers were on, or 
used, determinants, and both he and Sylvester pub- 
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lished on  the rotation of a solid  body. These are all 
topics that led naturally to  the algebra of matrices. 
A matrix can, as we know, be looked upon as an 
array of multidimensional vectors, and so it  is  in- 
teresting that in  1843, the year Hamilton discovered 
quaternions, Cayley published on  “the Geometry of 
(n) dimensions.” Work on matrices was almost 
bound to follow. 

Cayley  was  much influenced by Hamilton and vis- 
ited Hamilton in Dublin. Cayley wrote his  first pa- 
per  on  quaternions in  1845 at  the age of  24, and 
considered the  quaternion theory to be “a gener- 
alization of the analysis  which occurs in ordinary 
Algebra.” Later  the same year he wrote on  “The 
octuple system of imaginaries,” showing that con- 
sistent arithmetics exist for couples, quadruples 
(but  not triplets), and eight-fold hypercomplex 
numbers. Two years later he demonstrated  that “in 
the octuple system of imaginary quantities neither 
the commutative nor the distributive law holds.” 

In 1848  Cayley  showed that  the combined effect of 
two rotations could be  represented as the product 
of two quaternions, and shortly afterwards 
Sylvester (in the year he introduced the term ma- 
trix) pointed out  that any number of rotations can 
be represented by a single rotation about one axis. 
As we would  now  say: each rotation can be repre- 
sented by a matrix, and the product of these ma- 
trices is a matrix completely describing the com- 
bined rotation, whose axis is an eigenvector of this 
matrix, and the angle of rotation can be found from 
the corresponding eigenvalue. By 1855  Cayley  used 
matrix product (calling  it the composition of ma- 
trices), and in his memoir of 1858 he wrote: “It will 
be seen that matrices comport themselves as single 
quantities; they may be added, multiplied, or com- 
pounded together, etc.: the law  of the addition of 
matrices is  precisely  similar to that  for  the addition 
of ordinary algebraical quantities; as regards their 
multiplication (or composition), there is the pecu- 
liarity that matrices are not in general convertible; 
it  is nevertheless possible to form the powers (pos- 
itive or negative, integral or fractional) of a ma- 
trix . . . ”17 In this memoir he uses Sylvester’s latent 
roots (eigenvalues), but without naming them. 

Sylvester’s paper, written in 1882,  begins thus: “Pro- 
fessor Sylvester referred to  the general question of 
representing the product of sums of two, four, or 
eight squares under the form of a like sum, and 
mentioned that Professor Cayley had been  the first 
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Figure 8 Sylvester’s locative symbols 

0 + 8h + 8t + 2u 

is 1882 

p =  ah+ bp+ cv+ dn 

to demonstrate, by an exhaustive investigation, the 
impossibility of extending the law applicable to  2,4, 
and 8 to  the case of 16 squares. The new  kind of 
so-called imaginaries referred to by Professor Cay- 
ley are, as far as Mr. Sylvester  is aware, the first 
example of the introduction into Analysis of loca- 
tive  symbols not subject to  the strict law  of associ- 
ation, and he considers the law regulating the con- 
nexion of the two products represented by a 
succession of three such symbols,  most interesting, 
inasmuch as such products are  either identical, or 
if not identical, of the same absolute value, but with 
contrary signs:  most persons, before this example 
had been brought forward, would  have felt inclined 
to  doubt the possibility of locative  symbols  (‘vulgo’ 
imaginary quantities) whose multiplication table 
should give results inconsistent with the common 
associative  law, being capable of forming the 
groundwork of any real accession to algebraical sci- 
ence . . . . ”91 

His footnote is illuminating (compare also Refer- 
ence 92): “Using 8, h, t, u to  denote thousands, 
hundreds, tens, units, the year of grace in which  we 
live  may be represented by 8 + 8h + St + 2u [-I 
8, h, t, u, being locative  symbols  which  it  would be 
absurd to style  ‘imaginary quantities’; but they are 
as  much entitled to  that name as the i, j, k, or any 
like set of  symbols-the  only essential difference 
being that  one set of symbols  is limited, the  other 
unlimited in number-and  accordingly the law of 
combination of the  one set is  given by a finite and 
of the  other  an infinite ‘multiplication table’ . . . The 
‘locatives’ indicate out of what ‘basket,’ so to say, 
the ‘quantities’ appearing in an analytical expres- 



Figure 9 Sylvester’s  multiplication  tables 

COMPLEX  NUMBERS 

QUARTERIONS 

MATRIX  MULTIPLICATION 

sion are  to  be selected-the multiplication table 
determines the basket into which their product is to 
be thrown. . . . The whole  analytical side of the  the- 
ory of quaternions merges into a particular case of 
the general theory of Multiple  Algebra. As far as the 
present writer is aware, Professor Cayley  in  his 
Memoir on Matrices (1858),  was the first to recog- 
nize the parallelism between quaternions and ma- 
trices . . . ”91 
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Sylvester’s  locative  symbols and multiplication 
tables for complex numbers, quaternions, and ma- 
trix  multiplication are given  in Figures 8 and 9 
(from References 18,91,93,94). By this method of 
representation Sylvester states in  1884: “a matrix is 
robbed as it were of its areal dimensions and rep- 
resented as a linear sum.”  Sylvester’s 2 by 2 matrices 
I ,  L ,  M ,  and N are given  in Figure 10, where the 
matrices, “construed as complex quantities, are a 
linear transformation of the ordinary quaternion 
system 1, i, j, k.” As he said:  “Every  matrix of the 
second order may be regarded as representing a 
quaternion, and vice  versa.” 

Sylvester’s  matrix identities given  in Figure 10 can 
be demonstrated very  concisely  in  Iverson’s J, 
which supports complex numbers. The inner prod- 
uct  is  given byp, and square computes the product 
of a matrix  with  itself; i is d-1. One line suffices 
to express the identities. The match function is - : 

i=.%:-1 
p=.+/ .*  
square=.p- 

I = .  1 8 , :  8 1 
L=. (i,@),:@, -i 
M=. 8 -1.: 1 8 
N=. (@,-i),: -i,O 

( < - I ) - : & . >  (square &.> L;M:N),  
< L p M p N  

WJ 
These matrices, derived by Sylvester (see also Ref- 
erences 71,95) as an exercise  in pure mathematics, 
are intimately connected to  the Pauli spin matrices, 
which  have central significance  in  relativistic quan- 
tum theory; they are also  close to the spinor  trans- 
formation,96 to basis  quaternions, and the basis  ele- 
ments of the 16-dimensional  Clifford numbers,” 
whose algebraic roperties can easily be demon- 
strated in A~L.’”’’ The  three Pauli matrices (ul, uz, 
and u3) describing the spin of an electron, together 
with  all permutations of Pauli’s identities, can be 
stated formally and executed. These are shown be- 
low  in J with the numbers in square brackets from 
Pauli. 

Given: 

p=: 1 =  ;; *; 
- 
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Figure 10 Sylvester’s 2 by 2 matrices 

The matrices are: After  Sylvester returned to England, the principal ex- 
ponents of the New Algebra  in the United States were 
Benjamin  Peirce  and J. Willard  Gibbs.  Sylvester 
called  Peirce’s 1870 memoir95 “a work  which  may  al- 

c33 ’ lo’ most be entitled to take  rank  as the ‘Principia’ of the 
philosophical  study of the laws of algebraical opera- 
tion.”  Gibbs’s address “On Multiple  Algebra” to the 

and the permutations are: Section of Mathematics and Astronomy of the Amer- 
ican  Association  for the Advancement of Science  is a 
classic. In it  Gibbs  wrote the following: 

I = .  1 0,: 0 1 

sl=. 0 1 , :  1 0 
s2=. ( 0 , - i ) , : ( i , 0 )  
s3=. 1 0 , :  0 -1 

z=. @ 1 21.p. s l ; s 2 : ~ 3  

I -:“2 p”’2 > y C33.91 
1 1 1  

f=. p-p- L33.111 
g=. ( { .  f 1 & { )  -: ( 2 * i ) & *  @ (2&0 
1 - : “ e  g “ 3  > z 

1 1 1  

f=. p : - @ p- 
g=. 1 .  ( >  @ f )  1&{ 
h=. g -:“2 i&* @ (2&0 
1  1 -:‘I1 h “3  > z 

1 1 1  

C33.12al 

f=. p+p- [33.12b1 
g=. { .  f ( 1 & 0  
( 0  0 , : o  0 )  -:“2 g “ 3  > z 

1 1 1  

In each of these identities, function f describes the 
essential relationship; functions g and h make it 
possible to test all  “cyclical permutations of the in- 

IBM SYSTEMS JOURNAL,  VOL 30, NO 4, 1991 
I 

“The multiple quantities corresponding to concrete 
quantities such as ten apples or  three miles are 
evidently  such combinations as ten apples + seven 
oranges, three miles  northwestward + five  miles 
eastward, or six miles  in a direction 50 degrees east 
of north . . . . But if  we ask  what  it is  in multiple 
algebra  which corresponds to an abstract number 
like  twelve,  which  is  essentially an operator, which 
changes one mile into twelve  miles, and $1,000 into 
$12,000, the most general answer  would  evidently 
be: an operator which  will  work  changes  as, for 
example, that of ten apples + seven oranges into 
fifty apples and 100 oranges, or that of one vector 
into another. If the operation is distributive, it may 
not inappropriately be called multiplication, and 
the result is par excellence the product of the op- 
erator and the  operand.  The sum of operators, qui  
operators, is an operator which  gives for the prod- 
uct the sum of the products given by the operators 
to be added. The product of  two operators is an 
operator which  is equivalent to  the successive op- 
erations of the factors.”’” 



Figure 11 Gibbs’s example of transformation 

0 10 
APPLES 

50 

Figure 11 illustrates the problem Gibbs posed and 
makes the answer  obvious. Although Gibbs did not 
turn  to Hamilton, Sylvester, or Cayley for the so- 
lution, I betray their influence in Figure 12, where 
I separate  the versor (as a rotation matrix) and  the 
tensor (a scalar). The example can be worked as 
follows: 

The transformation matrix (with tensor and versor 
composed): 

X+ 50  100 B 10  -7,[-0.51 7 10 
N+ (1  -1 x X),C”0.51 ox 
N+.x 10 7 

50  100 

Isolate the  tensor and determine  the angle of ro- 
tation in degrees: 

I+- Y+ (+/ X*2)*0.5 
9.16 

(180+ol)x  -2  -1 0 X+Y 
28.44  28.44 

Confirm by composing the tensor and versor, where 
RFD is Radians From Degrees: 

VZ+RFD x 
[11  Z+OX+180 
c21 v 

VZ+F x 
c11  262 2pl -1 1 1x2 1 1 20RFD x 
c21 v 

(9.16 x F 28.44) +.x 10 7 
50 100 

The  wondrous  tale of multiple  quantity 

This example, simple though it  is, throws light upon 
the  nature of the “new world of thought” to which 
Sylvester  gave the name of “Universal Algebra or 
the Algebra of multiple quantity” in  1884. 

James Joseph Sylvester  was born in  1814. In 1837 
he completed his studies at Cambridge and pub- 
lished the first of  his  342 papers. It was on crystal- 
lography. His next two papers were on  the motion 
of fluids and rigid  bodies-all  topics of importance 
to my own subject of  geology-and  all amenable to 
matrix algebra. Some additional history  can be 
found in Reference 102. 

Sylvester, ‘03-’06 the self-styled mathematical Adam, 
gave “more names (passed into general circulation) 
to  the  creatures of mathematical reason than all the 
other mathematicians of the age combined” (1888). 
In 1850, the year he was called to  the bar, he in- 
troduced the term matrix for “a rectangular array of 
terms, out of which different systems of determi- 
nants may be engendered as from the womb  of a 
common parent.”’07,’08  Sylvester introducedlo9  the 
Greek  letter lambda (A) for the  latent roots of a 
characteristic equation (his terms) in  1852-three- 
quarters of a century before  the  term eigenvalue was 
invented; and in  1853 he introduced the inverse 
matrix. ‘lo 

In 1884, at the age of 70, he published his Lectures 
on the Principles of Universal Algebra, the  “apo- 
theosis of algebraical quantity,” in the American 
Journal of Mathematics, which he himself founded 
and  edited. His title reminds us that Newton used 
the term universal arithmetic for what  we  call alge- 
bra. Emphasizing the importance of matrices as 
multiple quantity, he speaks of a second birth of 
algebra, its avatar in a new and glorified form. ”’ In 
the words of this enthusiast, who  lived a century 
before APL was implemented: “A matrix of quadrate 
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form . . . emerges . . . in a glorified  shape-as an 
organism composed of discrete parts, but having an 
essential and undivisible  unity  as a whole of its  own. 
. . . The conception of multiple quantity rises upon 
the field of vision. . . . [Matrix] dropped its provi- 
sional mantle, its aspect as a mere schema, and 
stood revealed as bona fide multiple quantity sub- 
ject to all the affections and lending itself to all the 
operations of ordinary numerical quantity.” 

“This revolution,” he continued, “was effected by a 
forcible injection into  the subject of the concept of 
addition; that is, by choosing to regard matrices as 
susceptible to being added  to  one  another; a notion 
as it seems to me, quite foreign to  the idea of sub- 
stitution, the nidus in which that of multiple quan- 
tity  was laid, hatched and reared. This step was, as 
far as I know,  first made by Cayley . . . in  his  [im- 
mortal] Memoir on Matrices [1858], wherein he 
may be said to have  laid the foundation-stone of the 
science of multiple quantity. That memoir indeed 
(it seems to me) may in truth be affirmed to have 
ushered in the reign of Algebra the 2nd; just as 
Algebra the 1st . . . took its rise  in Harriot’s Artis 
Analyticae Praxis, published in  1631, . . . exactly  250 
years before I gave the first course of lectures ever 
delivered on Multinomial Quantity, in  1881, at  the 
Johns Hopkins University.”” References 112 to 
115 add some additional information about Cayley. 

If Sylvester were here today, what pleasure would 
he find  in  Iverson’s notation, implemented even on 
our personal computers as an interactive lan- 
guage-this notation that encourages, and as it 
were expects, us to think in terms of arrays or mul- 
tiple quantities, manipulating them as entities in 
the spirit of  Sylvester’s exhortations! That eloquent 
mathematician would be even more moved, I am 
sure, by boxed arrays (arrays of arrays), and array 
processors, which are APL machines. 

A century ago both Sylvester and Gibbs urged us to 
think in terms of arrays. Most computer languages 
and what  Backus  called (perhaps unfairly) the Von 
Neumann bottleneck, force us, however, to work 
with scalars. Within the confines of a few  pages, I 
have attempted  to  trace  the development of nota- 
tion and methods from hieroglyphics to APL. I have 
tried to show that APL is  much more  than yet an- 
other computer language; that its intellectual im- 
portance is great; and that (yet again using  Sylves- 
ter’s  words) APL continues “The wondrous tale of 
Multiple Quantity.” 
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Figure 12 Separation of versor  and  tensor 

a b  
I C  d 

n 10 APPLES 
7 ORANGES 

9.1 I cos 28 -sin 28 
sin 28 cos 28 

The story will,  of course, never be completed. We 
have seen the recent introduction of two hitherto 
undefined phrases now called hooks and forks.116 
One example of each must  suffice here. 

+/ % j /  y computes the sum over the reciprocals 
of the tally  of y, which  is  unlikely to  be useful, 
whereas, if we  unify the phrase, placing it in pa- 
rentheses, it becomes a fork ( +/ % {/ ) y equivalent 
to ( +/ y 1 % ( j / y  1, which computes the mean (or 
means over the leading axis  if the rank exceeds 1). 

( -  mean)  y is a hook, equivalent to y - (mean 
y ), which  gives the deviations from the mean, a 
necessary step in computing variance. 

It should be  noted  that when  we define the phrase, 
as for example me a n= . +/ % j /  the phrase is 
unified without requiring parentheses. The func- 
tions used above for the Pauli identities are exam- 
ples of forks. The statistical examples above include 
hook (sums of cross products) and fork (correlation 
coefficients). The function for interest on a declin- 
ing balance (ib) includes a train of  five functions, 
three of which (i, r, b)  are forks, and it ends with an 
interesting hook. 

In a paper published in  1866  we  find  Sylvester  writ- 
ing on  the subject of operators.  “The force of the 
bracket [Le., parentheses] explains  itself. This won- 
derful symbol has the faculty of extending itself 



without ambiguity to every  possible development, 
however  new, of mathematical language. It is sus- 
ceptible only of a metaphysical  definition as signi- 
fying the exercise,  with regard to its content, of that 
faculty of the human mind  whereby a multitude is 
capable of being regarded as an individual, or a 
complex as a monad. In a word,  it  is the symbol  of 
individuality and unification.” I am unable to assert 
that Sylvester  foresaw thephrasal forms of modern 
APL 125 years ago, but his words seem remarkably 
apt in reference to these new developments. 

Notation  as  a  tool of thought 

In ending I wish to  quote from some of our great 
predecessors who appreciated the power of  sym- 
bols as an aid to reasoning, or in  Ken  Iverson’s 
memorable phrase, “notation as a tool of thought.” 

Lavoisier wrote a memoir in 1787 on the necessity 
of reforming the nomenclature of chemistry. In it 
he made this statement: “Languages are intended, 
not only to express by signs, as is  commonly sup- 
posed, the ideas and images of the mind; but  are 
also  analytical methods, by the means of which, we 
advance from the known to  the unknown, and to a 
certain degree in the manner of mathematicians. 
. . . Algebra  is the analytical method by excellence 
[sic];  it has been invented to facilitate the  opera- 
tions of the understanding, and to render reasoning 
more concise, and to contract into a few lines what 
would  have required whole  pages of discussion;  in 
fine, to lead, in a more agreeable and laconic 
method [plus commode, plus prompte  et plus sdre], 
to  the solution of the most complicated questions. 
Even a moment’s  reflection is sufficient to convince 
us that algebra is  in  fact a language:  like  all other 
languages it has its representative signs, its method 
and its grammar, if I may use the expression: thus 
an analytical method is a language; a language is an 
analytical method; and these two  expressions are, in 
a certain respect synonimous  [sic].”’17 

In 1821, Babbage, in  his thought-provoking paper 
“On  the Influence of Signs  in Mathematical Rea- 
soning,”  said: “The quantity of meaning com- 
pressed into small space by algebraic signs  is a cir- 
cumstance that facilitates the reasonings we are 
accustomed to carry on by their aid. The assump- 
tion of lines and figures to represent quantity and 
magnitude, was the method employed by the an- 
cient geometers to present to  the eye some picture 
by  which the course of their reasonings might be 
traced: it  was  however  necessary to fill up this out- 
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line by a tedious description, which  in  some in- 
stances even of no peculiar difficulty became nearly 
unintelligible,  simply from its extreme length: the 
invention of algebra almost entirely removed this 
inconvenience, and presented to  the eye a picture 
perfect in  all its parts, disclosing at a glance, not 
merely the conclusion  in  which it terminated, but 
every stage of its progress. At first  it appeared prob- 
able that this triumph of signs over words  would 
have  limits to its extent: a time it might be feared 
would arrive, when oppressed by the multitude of 
its productions, the language of signs  would  sink 
under the obscurity produced by its own multipli- 
cation. . . . Fortunately however  such anticipations 
have  proved unfounded. 

“Examples of the power of a well-contrived nota- 
tion to condense into small space a meaning  which 
would-in ordinary language-require  several 
lines, or even  pages, can hardly  have escaped the 
notice of most of  my readers: in the calculus of 
functions, this condensation is carried to a far 
greater extent than in  any other branch of analysis, 
and yet, instead of creating any  obscurity, the ex- 
pressions are far more readily understood than if 
they were written at length. . . . The power we pos- 
sess by the aid of symbols of compressing into small 
compass the several steps of a chain of reasoning, 
whilst  it contributes greatly to abridge the time 
which our enquiries would otherwise occupy,  in dif- 
ficult  cases  influences the accuracy of our conclu- 
sions: for from the distance which  is sometimes in- 
terposed between the beginning and the end of a 
chain of reasoning, although the separate parts are 
sufficiently clear, the whole is often obscure. . . . 
The closer the succession  between  two ideas which 
the mind compares, provided those ideas are 
clearly  perceived, the more accurate will be the 
judgement that 

“The advantage of selecting  in our signs, those 
which  have  some resemblance to, or which  from 
some circumstance are associated  in the mind  with 
the thing signified has scarcely been stated with 
sufficient  force: the fatigue, from which  such an 
arrangement saves the reader, is  very advantageous 
to the more complete devotion of his attention to 
the subject  examined; and the more complicated 
the subject, the more numerous the symbols and 
the less their arrangement is susceptible of symme- 
try, the more indispensable will  such a system be 
found. This rule is  by no means confined to  the 
choice of the  letters which represent quantity, but 
is meant to extend, when it is possible, to cases 
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where new arbitrary signs are invented to denote 
operators. . . . The  more complicated the enquiries 
on which  we enter, and the  more numerous the 
quantities which  it becomes necessary to represent 
symbolically, the more essentially  necessary  it will 
be found to assist the memory by contriving such 
signs as may immediately recall the thing which 
they are intended to  repre~ent.””~ 

Sylvester, in 1877, said “It is the constant aim of the 
mathematician to reduce all  his expressions to their 
lowest terms, to retrench every superfluous word 
and phrase, and to condense the Maximum of 
meaning into  the Minimum of language.”120 

Whitehead, in  1911, claimed that “By  relieving the 
brain of all unnecessary work, a good notation  sets 
it free  to concentrate on  more advanced problems, 
and in effect increases the mental power of the race. 
. . . By the aid of  symbolism  we  can make transitions 
in reasoning almost mechanically by the eye,  which 
would otherwise call into play the higher faculties 
of the brain. It is a profoundly erroneous truism, 
repeated by all  copy-books and by eminent people 
when they are making speeches, that we should cul- 
tivate the habit of thinking of what we are doing. 
The precise opposite is the case.  Civilization ad- 
vances by extending the number of important op- 
erations which  we can perform without thinking 
about them.” ”’ 
Bertrand Russell said: “The  great master of the  art 
of formal reasoning, among men of our own day,  is 
an Italian, Professor Peano, of the University of 
Turin. He has reduced the  greater  part of mathe- 
matics (and he or his  followers  will,  in time, have 
reduced the whole), to strict symbolic form, in 
which there  are no words at all.” 

In  the first paragraph of his book in 1959, Russell 
wrote: “There is one major division in my philo- 
sophical work:  in the years 1899-1900 I adopted  the 
philosophy of logical atomism and  the technique of 
Peano in mathematical logic. This was so great a 
revolution as  to make my previous work, except 
such as purely mathematical, irrelevant to every- 
thing I did later.  The change in these years was a 
revolution; subsequent changes have been of the 
nature of an evolution.”’22 

And finally, Giuseppe Peano himself,  in  his paper 
on  “The  Importance of  Symbols in Mathematics” in 
1915 wrote: “The oldest symbols,  which are also the 
most used today, are  the digits used in arithmetic, 
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which  we learned  about 1200 from the Arabs, and 
they from the Indians, who were using them about 
the year 400. The first advantage that  one sees in 
the digits is their brevity. . . . Further reflection re- 
veals that  these symbols are not just shorthand, i.e., 
abbreviations of ordinary language, but constitute a 
new  class of ideas. . . . The use of digits not only 
makes our expressions shorter, but makes arith- 
metical calculation essentially easier, and hence 
makes certain tasks possible, and certain results ob- 
tainable, which could not otherwise be  the case in 
practice. For example, direct measure assigned to 
the number Pi, the  ratio of the circumference of a 
circle its diameter, the value 3. . . . 
“Archimedes, about 200 B.c., by inscribing and cir- 
cumscribing  polygons about a circle, or rather by 
calculating a sequence of square roots, using Greek 
digits, found Pi to within M O O .  The substitution of 
Indian digits for the  Greek allowed Aryabhata, 
about the year 500, to extend the calculation to 4 
decimal places, and allowed the  European mathe- 
maticians of  1600 to carry the calculation out  to 15 
and then 32 places, still  following Archimedes’ 
model. Further progress, i.e., the calculation of  100 
digits  in  1700, and  the modern calculation of  700, 
was due  to  the introduction of series. 

“The same thing may be said for the symbols  of 
algebra. . . . Algebraic equations are much shorter 
than their expression in ordinary language, are sim- 
pler, and clearer, and may be used  in calculations. 
This is because algebraic symbols represent ideas 
and not words. . . . Algebraic symbols are much  less 
numerous than  the words they  allow us to  repre- 
sent. 

“The evolution of algebraic symbolism  went like 
this: first, ordinary language; then, in Euclid, a tech- 
nical language in  which a one-to-one correspon- 
dence between ideas and words  was established; 
and then  the abbreviation of the words of the tech- 
nical language, beginning about 1500 and done in 
various ways  by different people, until finally one 
system of notation, that used by Newton, prevailed 
over the others. 

“The use of algebraic symbols permits schoolchil- 
dren easily to solve problems which  previously  only 
great minds like Euclid and Diophantus could 
solve. . . . The symbols of logic too  are not abbre- 
viations of words, but  represent ideas, and their 
principal utility  is that they make reasoning easier. 
All those who  use  logical  symbolism attest  to 
this.” 123 



Concluding  remarks 

A progression of great thinkers has moved the  hu- 
man race towards the adoption, first of an econom- 
ical and efficient number system containing zero 
and based on place value, and then of a universal 
algebra, APL, which operates  on arrays or multiple 
quantities, and is totally devoid of words. 

There have  also been those who resisted the inev- 
itable progress, who found it difficult to  adopt new 
and improved tools for thought. In  our own time we 
hear appeals to revert from this high intellectual 
level and use English words, and  to submit to  the 
tyranny of scalars, as if Sylvester’s eloquence a cen- 
tury ago had fallen on deaf ears. 

Unlike its predecessors, APL is an executable no- 
tation. APL represents, in a phrase used by Babbage, 
the  “triumph of  symbols over words.” As so many 
of our distinguished predecessors predicted, it 
makes reasoning easier. APL is the result of brilliant 
insight, careful thought, and hard work through at 
least 5000 years. Iverson is the latest in a succession 
that includes Peano, Sylvester,  Cayley, De Morgan, 
Boole, Newton, Leibniz, Napier, Stevinus, Fibon- 
acci, Diophantus, and the unknown Egyptian whose 
work  was copied by Ahmes the scribe. 

In 1866  Sylvester proclaimed that: “TO attain clear- 
ness of conception, the first condition is ‘language,’ 
the second ‘language,’ the third ‘language’-Pro- 
tean speech-the  child and  parent of thought.”la 

In reflecting on the significance of APL I have 
adopted a historical approach. Having done so I 
find that Sylvester had something to say on  that 
subject also. The occasion  was  his Presidential Ad- 
dress to  the British Association’25  in  1869 when he 
said: “the relation of master and pupil is  acknowl- 
edged as a spiritual and lifelong tie, connecting suc- 
cessive generations of great thinkers with each 
other in an unbroken chain.” 

We think in a different way because of APL. 
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