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Introduction

0.1. Let X be a smooth, complete and geometrically connected curve over F,
of genus g > 1. The purpose of the geometric Langlands program initiated by
V.Drinfeld in [2] and by G.Laumon in [10] is to associate to any n-dimensional
{-adic local system F on X, a sheaf Autg on the moduli stack Buny, of n-bundles
on X, which is a Hecke eigen-sheaf with respect to E.

The construction of automorphic sheaves which was suggested in [2] and de-
veloped in [10] and [11] is inspired by a construction of automorphic functions for
GL(n) due to Shalika and Piatetski-Shapiro, and is based on considering a geo-
metric analog of Whittaker functions (see [4], Sect.1-3 for a detailed discussion).
Let us briefly review it.

We embed the stack Bun, into Sh,~the moduli stack of coherent sheaves of
generic rank n on X. This is an open embedding and our task will be to construct
a sheaf Sz on Sh, whose restriction to Bun, will produce the sheaf Autz. As we
shall see (cf. Theorem 2), in order for Autz to be an E-Hecke eigen-sheaf, it is
natural to require that 8y satisfies the modified Hecke property with respect to
E.

For an integer k let Shj (resp., °8h)) denote the stack that classifies pairs
(Mg,s : Q®F~1 — M), where My is an object of 8hy and s is a regular map
(resp., s is an embedding of sheaves), see Sect. 2.1.1. We have an open embedding
ju ° Shi — Shi. Serre’s duality implies that the categories of sheaves on 8
and on °8hj ., are equivalent by means of a Fourier transform functor Foury.

Let now Sz be a sheaf on Shy; we shall denote by 8% its pull-back to °Sh;,.
Let us now apply to 8 the following procedure: we make a Fourier transform
to get a sheaf on Shl,_; and then restrict it to °8h;,_; and so on. After n —1
iterations we will get a sheaf on °8h]. It follows from Laumon’s work (Corollary
4.3 of [11]) that if Sf satisfies the modified Hecke property with respect to E,
the resulting sheaf on °8h} must be a pull-back of some explicit sheaf L on Shy,
which we shall call Laumon’s sheaf (cf. Definition 3).

This phenomenon is a geometric counterpart of the Casselman-Shalika for-
mula. It is the sheaf Lp that encodes the input of the local system E and its
construction in terms of F is local with respect to X.

Suppose now being given a local system E and let us now try to reconstruct
the sheaf Sp. We shall start with £z and pull it back to °8h7. However, in order
to apply to it the Fourier transform and get a sheaf on 8hj, we must choose its
prolongation onto the whole of Sh;.

If we use the extension by zero and iterate the procedure n — 1 times, we will



get a sheaf on 98h! that has “lost” all its degenerate Fourier coefficients (a precise
statement on the level of functions is proven in [4]).

It is, therefore, natural to use the Goresky-MacPherson extension on each step
of the construction. We conjecture, following Laumon, that for any local system
E the resulting sheaf on °8h;, is a pull-back of a sheaf on Sh,,.

The first case in which this result has been proven is when n = 2 and the local
system F is geometrically irreducible (this is a statement equivalent to the main
theorem in [2]). Since n = 2, we have to apply the Goresky-MacPherson extension
only once and it turns out that in this case it coincides with the extension by
zero, due to a theorem by Deligne. In this work we will give another proof of
Drinfeld’s theorem and we will prove also that the resulting sheaf Autg on Buny
is an E-Hecke eigen-sheaf.

Let now E be a direct sum E = F; & ... & E, of 1-dimensional pairwise non-
isomorphic local systems. In this case, Laumon’s sheaf L also splits into a direct
sum (cf. Corollary 3) and let us construct the sheaf 8'; on °8h/, according to the
procedure described above.

We claim, that it is a pull-back of a sheaf 8g on 8h,, which can alternatively
be described as the geometric Fisenstein series corresponding to Ei,...,E, (cf.
Definition 1). This is a true statement, but we will not prove it in this paper. We
will only identify certain direct summands of the two sheaves (cf. Main Theorem
B), and this information would be enough to derive some fundamental properties
of the geometric Eisenstein series.! This and a new proof of Drinfeld’s theorem
are the main results of this work.

0.2. Let us now describe the contents of the paper.

In Sect.1.1 of Chapter 1 we introduce, following [9], the geometric Eisenstein
series. As an input we use n pairwise non-isomorphic 1-dimensional local systems
and Eisg, ... g, is defined as a direct sum of the sheaves EisdEll”':jjfign (cf. Definition 1)
where (dy, ..., dy) run over the coweights of GL(n).

Main theorem A states that EisdEll”':jjfiE“n are irreducible perverse sheaves that
satisfy a geometric version of the functional equation. 2

In Sect.1.2 we will recall the definition of the modified Hecke functors (they
were first considered by G.Laumon in [11] and on the level of functions by
M.Kapranov in [7]). We will show that the sheaf Eisg, g, satisfies the mod-
ified Hecke property with respect to the n-dimensional local system E; @®... ® Ey;

LA proof of the more general result mentioned above will be given elsewhere.
2Tt was shown in [9] that on the level of functions Eisg,,...,r, corresponds to the classical
Eisenstein series multiplied by the value at 1 of a suitable product of L-functions.



this will imply, in particular, that Eisg, g, is a Goresky-MacPherson extension
of its restriction to Bun,.

In Sect.1.3 we will show that any sheaf on Bun,, whose Goresky-MacPherson
extension to Sh, has the modified Hecke property with respect to an n-dimensional
local system, is a Hecke eigen-sheaf with respect to this local system. 3 We will
prove also a general statement (Theorem 4) that in order to check that a sheaf on
Bun, is a Hecke eigen-sheaf, it is enough to do so only for the first Hecke functor;
the proof of this result uses ideas of Drinfeld’s approach to the definition of the
convolution product of the Hecke functors (cf. [13]).

In Sect.2.1 of Chapter 2 we will introduce the “fundamental diagram” and for-
mulate Main Theorem B, that identifies for some weights (dj, ..., d,) the pull-back
of Bisg % to 98h;, with a direct summand of the sheaf 8, whose construction
we have described above. We will then show how to deduce Main Theorem A
from Main Theorem B.

The proof of Main Theorem B occupies Sect.2.2 and 2.3. It is much simpler
when n = 2, since in that case we can describe explicitly the Goresky-MacPherson
extensions 7y, of the pull-backs to °Sh] of all the direct summands of Lz, e, oz,

The main technical difficulty that shows up when n > 3 is that we cannot
avoid considering the Fourier transform functor from the category of sheaves on
8hy, to that on 98hy, over the locus of Shy, where the dimensions of the fibers of
the vector bundle 8hj, jump, or equivalently, where the map =}/ :® 8hy ., — Shy
is non-representable.

Chapter 3 is devoted to the case of a 2-dimensional geometrically irreducible
local system.

In Sect.3.1 we will formulate Main Theorem C and present a “simple” proof
of Drinfeld’s theorem. The main idea of our approach is that one can deduce
that the sheaf 8% is a pull-back of some sheaf on Shy, from the fact that it is
irreducible and from the fact that the Euler-Poincaré characteristics of its stalks
are constant over a sufficiently big sub-stack of 8hs,.

To prove the required property of the Euler-Poincaré characteristics of the
stalks of 8%, we show that they are equal to the Euler-Poincaré characteristics of
the stalks of the sheaf 8%, o 5,, where E; and Ej are two arbitrary non-isomorphic

3We conjecture that the converse is also true: if a perverse sheaf on Bun,, is a Hecke-eigen-
sheaf with respect to a n-dimensional local system F, then its Goresky-MacPherson extension
on the whole of Sh,, satisfies the modified Hecke property with respect to E. This statement
follows from a conjectural description of the intersection cohomology sheaf on some explicit
algebraic stack.



to each other 1-dimensional local systems on X. This is done using Theorem 6
and Proposition 8.

Theorem 6, which is proven in Sect.3.2 generalizes a theorem by Deligne (cf.
[2], Appendix) and it is a deep result that reflects the fact, that the sheaf Autp
corresponding to a geometrically irreducible local system E is cuspidal. *

In Sect.3.3 we will complete the proof of Main Theorem C by establishing the
Hecke property of the resulting sheaf Autg := Sg|pun,. This is done by combining
Theorem 4 with Corollary 4.3 of [11].

0.3 Generalizations. We will mention two possible generalizations of the results
of this work.

Let G be an arbitrary reductive group and let E be a local system on X with
respect to the maximal torus of “G. Using Drinfeld’s compactification of the
stack Bunp (cf. [3]), we can define the sheaves Eis}, indexed by elements p of the
weight lattice of LG.

It follows like in [8], that in the case of G = GL(n) one reproduces the usual
Eisenstein series that were discussed above.

In this set-up one can prove the Hecke property of @ Eisf, (cf. [5]); the proof

"
being a generalization of the second proof of Theorem 2 for n = 2. Moreover, in
this way one reproves the main result (Theorem 4.3) of [13] (the situation here is
analogous to the one of Theorem 13.2 of [3]).

Assume now that E is regular, i.e. that w(F) is not isomorphic to E for any
element w of the Weyl group. In this case one can prove the functional equation
by reducing it to the case of rank=I.

We conjecture by analogy with the case of GL(n), that for E regular, the
sheaves Eisk, are perverse and irreducible, but we have no idea at the moment
how to prove that.

This will be a subject of a future publication.

Let us return now to the case of GL(n) and let E be an n-dimensional geo-
metrically irreducible local system. In a forthcoming paper by the authors of (4],
we will show that to prove the existence of an automorphic sheaf 8z attached
to E, it is sufficient to know a generalization of Deligne’s theorem (cf. proof of

41n fact, a more general result than Theorem 6 is true: the maps
i o my* (Lr) = ju o my"(LE) = jru 0w (L)

are isomorphisms not only over 8h;%<!, but over 8hy%<* provided that d is large enough
comparatively to t. A proof of this fact will appear in a subsequent publication.



Theorem 6) on each step of the fundamental diagram. If we recall the proof of
Deligne’s theorem given in [2], we shall see that this amounts to knowing the
Langlands’ correspondence in the opposite direction for GL(k), k < n.

0.4 Conventions. Throughout the paper we will be working with algebraic
stacks in the smooth topology and with perverse sheaves on them (cf. [12]).

For example, when we write: “consider the stack that classifies pairs M; —
M, with M, (resp. Ms) being a coherent sheaf on X of generic rank i; and of
degree dy (resp., of gen. rk. i, and of degree ds)”, the reader should keep in
mind that what we mean is the stack that corresponds to a functor that to any
scheme S associates the category, whose objects are pairs M; — M of coherent
sheaves on S x X that are S-flat and such that for any closed point s € S we
have: My|sxx — Ma|sxx is an embedding and the conditions on the generic rank
and on the degree of M;|sxx, ¢ = 1,2 hold. Morphisms from an object M; — M,
to an object M| < M} are by definition isomorphisms M; — M] and My — M,
such that the corresponding square becomes commutative.

When we write M € Y, where Y is some stack, we always mean that M is an
object of the corresponding category for an arbitrary parameterizing scheme S.

All stacks in this paper will be unions of open sub-stacks of the form Y/G,
where Y is a scheme and G is a smooth group-scheme over a base which is also
a scheme. A perverse sheaf on a stack Y/§ is the same as a perverse sheaf on Y
which is G-equivariant (appropriately shifted).

Throughout the paper the word “sheaf” will mean an object of a suitable
derived category (the emphasis is that it is not necessarily perverse). However,
the existence of such a derived category will never be used: any complex will
appear only through its cohomologies (in the perverse sense).

If f: Y, — Y, is a map between algebraic stacks, we have the functors f' and
f* defined on the derived category. When f is representable, we have also the
functors fi and f,. When f is non-representable, the functors fi and f, are “sick”:
they may have an infinite cohomological dimension, etc. We will never use them
for non-representable morphisms except in the case when Y; ~ Y| /A, where the
map Y, — Y is representable and A is a smooth unipotent group scheme over Y,
(in this situation there is no problem to define these functors). If, moreover, ¥;
is itself a smooth unipotent group-scheme (resp., a principle homogeneous space
with respect to a smooth unipotent group scheme) over Y, and the action of A on
Y, comes from a homomorphism of the corresponding group-schemes, we will say
that the map Y; — Y, is a generalized (non-representable) vector (resp., affine)
fibration.



For a fixed curve X, we denote by Bun, (resp., 8h,) the moduli stack of
n-bundles on X (resp., the moduli stack of coherent sheaves of generic rank n
on X). Both these stacks are smooth. By Shi we will denote the connected
component of the stack Sh, that corresponds to coherent sheaves of degree d. We
will denote by Sh< (resp., by 8hd) the open (resp., locally closed) sub-stack of
8he that corresponds to those coherent sheaves whose maximal torsion sub-sheaf
has length at most ¢ (exactly t).

For two strings of integers (dy, ..., dg) and (41, ..., %) we will denote by Fld" ’d‘
the stack that classifies n-tuples (0 = M; < My < ... < M},), where M, ...
are coherent sheaves on X with M;/M;_; being of generic rank i; and of degree

d;. We have a map denoted pzl’ ’d’“ from .'Er"ldl’ ’d’“ to the stack ShiF&t--+% that

i1+t i
sends an n-tuple as above to Mk € Shflljgf :;‘zk It is easy to see that this

map is representable an proper. In addition, we have a map denoted qdl’ b

from S’Zdl’ ’dk to the direct product Sh{* x 8hd2 X Shfij that sends an object

(0 — M, < M2 o> M) € FU ’dk to My x M2/M1 X oo X My My_1.

dla >d}~
‘Lk

affine fibration. This implies, in part1cu1ar that the stack Cﬂdl""’dk is smooth.

We will denote by Pic the Picard of X in the stack—theoretlcal sense (it identi-
fies to the quotient of the Picard-variety by the trivial action of Gy,). By Pic? we
will denote the connected component of Pic that corresponds to line bundles of
degree d. We will denote by () the canonical line bundle on X and we will choose
its square root 0F € Pic?~!. We let “det” denote the natural maps 8h, — Pic
(note that these maps are smooth for every n > 1).

In this paper we will work for definiteness over I, as the ground field. However,
all our discussions apply also in the case of a ground field of char=0 (Q,-adic
sheaves will have to be replaced by holonomic D-modules).

We will fix a square root of ¢ in @, and define using it the sheaf Q,(3) over
Spec(FF,). The Fourier transform functor is normalized so that it maps perverse
sheaves to perverse sheaves and preserves weights.

It is easy to check that the map g is a generalized (non-representable)

10



Chapter 1

Basic properties of Eisenstein
series

1.1 Laumon’s definition of Eisenstein series

1.1.1
For a partition n = 1+ 1+ ..+ 1 and a weight d* = (dy,...,d,) € Z" with

deg(d") := ), d; = d consider the diagram

dyye,dn
a,.., n ; det*™ B, g
Fiiresdn Dol gpds 48T D pid

i=1 i=1

Let Ey, Fs, ..., E, be 1-dimensional local systems on X. Throughout the paper
we will be assuming that H°(X, E; ® EY) = 0 for i # j.
Following [9], we define the geometric Eisenstein series sheaf Eis%{;::"%ﬂ as
follows:
Let
2p=(2p1,..,2p,) =(n—1,n-3,..,83—n,1—-n) € Z"

be the sum of the positive roots of GL(n) and for each i let E denote the
1-dimensional local system on Pic% that corresponds to Ej; via the geometric
abelian class field theory.

11




Definition 1.
dl )d . (g 1)2,013 ydn—(g 1)2Pn dl-(g“‘l)Qﬂl 1-A«,dn‘(g—1)2pn*
Bisp" B, = pl 1 OP1,.1 o

n

odetxn*g@lEfi‘(-"*”z“)g (B oy, ® (221 di](=pi - i)

o 1))®£_9:_1_MHT+1M

® (Qe[ﬂ(g

?

(we used the fact that 1+ 22 + 32 + ... 4 n? = 2tlCotl))

Remark 1. We have introduced the shift by p in the definition of Eisenstein series
in order to simplify the form of the functional equation. It is analogous to the
p-shift in the definition of Verma modules.

We will denote by Eisg, .. g, the direct sum & Els‘i" ’d’} and by Eis¢ B, B

dy,.. »” 7dn

the restriction of Eisg, .. g, to Shﬁ.

Lemma 1. Let EY,..., EY be 1-dimensional local systems dual to Ey, ..., B, re-
spectively. Then ]D(E1sdE11' ’d") E1sdElJ ,dgv

Proof. We only have to show that the cohomological shift and Tate’s twist in the
definition of Eisenstein series were chosen correctly. This is an easy computation.
O

1.1.2

The following theorem is one of our main results.
Main Theorem A

(1) The sheaves E1sd1’ ’d” are perverse, irreducible and pairwise non-isomorphic
for different (d, ... d )

(2) The functional equation holds:
Let o be an element of the Weyl group of GL(n), i.e. a permutation on the
set {1,..n}. Then

di,. ;dn ~ g :a(n)
ElSEla El Ea’(l)a s n(n)

The proof of this theorem will be given in Sect. 2.1. In this chapter we will
use it to derive some basic properties of the geometric Eisenstein series.

12



1.1.3

Let n =N+ ..y be a partition and let us fix for each 4, 1 < < k a weight
d% = (di, ..., d},,) of the group GL(n;) and a collection Ei, ..., EXof 1-dimensional
local systems on X.
Let d" = (d™, ...,d™) be the corresponding weight of GL(n):
dn = (di,. d: ds,..d2

oy lps g

k k
o diy e dy ).
Consider the correspondence:

Qeg(@T), . eg@F) P BTk g
Fl eg( )yndeg(d™k) - y x Sh eg(d™)

NiyeesTlp

deg(m) ,,,,, deg(m) l
Pnl ,,,,, nk

I hgeg(gﬁ)

Let 2p(™>+) be the sum of those positive roots of GL(n) who are contained
in the unipotent radical of the parabolic subgroup of GL(n) that corresponds to
the partition n = n; + ... + n as above. It has the form

(n1,...,nk) . gnl,...,nk) (m,...,nk) . ('n.l,...,nk) . (n1,...,nk) .

?’pl ) ,2/7 J)\zp ""12p2 ) '-1?pk ’ "72pk

s v vV
n1 na ne

(n1,0ng)
2

The following statement is almost immediate from the definitions (cf. [9]):
Proposition 1. We have an isomorphism

n

ar T = ok k
. dn deg(d™1),...,deg(d™F) deg(dT),....deg(@F)* ( 1o s T |
EISE%p--’Ekk = p’nls-.-,nk 3ty ! o Q'ﬂly...ynk ! (@l EISEL'-',E}”)®
S (B B )(g-120" ")
7
® (Fi®..9E,) JRPR )

up to a cohomological shift and Tate’s twist that depend only on the integers
ni, ..., N and the genus g.

13



Proof. In the diagram below the square is Cartesian

e k e k
Fiy — XFTT L s x(Xsnd
" j=1 e i=1 j=1
k=
dni
l 2 11
Qe (@), deg(@F) g kg
g reideg T N eg(d™i
‘rﬂnla T ! 7.;(18’7’711'
deg(d™),.. deg(ﬂ)l
pnl,...,
deg(d™
$hd (d™)
. di
and the compositions S’I‘f, — Shdeg(dn) and 9’ld ol Sh . X 8hy"* that

result from the diagram coincide with the maps pl 1 and ql A, respectively.

This implies the assertion, since p = p{mm%) 4 (p (GL(nl)), wory p(GL(ny))).
El

Corollary 1. The assertion of Main Theorem A(2) for n = 2 implies Main
Theorem A(2) for all n.

Proof. Tt is enough to prove the assertion of Main Theorem A(2) for o being a
simple reflection. So, let us assume that o acts as a transposition of two elements
(,1+1) € (1,...,n).

Consider the partition n = (i — 1) + 2+ (n —i — 1) and let Ef,..., E} | be
equal to By, .., Ej_y correspondingly, E} = Ej, E} = E;j.1, E} = Ejyy; for
1< j<n—i—1. Let us also define di-! = (diy oy dict), AV = (digay ., dn).

According to Proposition 1, Eisy, o

. Uiy Eig1yen B and EISEl,mEi.}.hEi,,,,,En ldentlfy
with the images under the functor

deg(d’ &=T),d;+di1,deg(dm— "‘1) deg(di—1),di+di4 ,deg(dn"‘l)
1—1,2,n—3—1 1 i—1,2,n—i—~1

of the sheaves

- did dn—i-1
(Exs‘” i, X EISSE o+ X Bisd, B

and _
(Bis. 5, REsS 2 REisS )

SEita,.
respectively, up to tensoring with a 1-dimensional vector space, which is canoni-
cally the same in both cases.

14



Now, by Main Theorem A(2) for n = 2 we have:

. (di+1,di) ~ . (di,di+1)
EISEH.;[,E,; - ElSEiaEi+l ’

which implies the assertion of Main Theorem A(2).

1.1.4

Assuming Main Theorem A(2) (for n = 2) we obtain the following local finiteness
property of Eisg, g,:

Corollary 2. The stack Sh,’,i1 i8 a union of open sub-stacks, such that over each

of them only finitely many of the EisdEll’;j_'jf,;‘n are non-zero.

Proof. For an integer d’ consider the open sub-stack in Shi that corresponds to
those sheaves M € 8h? who admit no coherent sub-sheaves of generic rank 1 of
degree > d' — p;. We claim that Eis%;;_’_‘_’ﬁ;‘n vanishes on this sub-stack if d; > d’'
for some 1.

Indeed, EisdEll”'jjjfiE"n clearly vanishes if d; > d', since the preimage of our sub-
stack in S’Z‘f".:’{l"“’d”"’" is empty in this case. The assertion for other i’s follows
from the functional equation (Main Theorem A(2)).

O

1.1.5

Consider the map m : S8h® x Pic® — $h&tme

given by
MxL—M® L.

For Ly € Pic® we will denote by my, the restriction of m to ShfL X L.
The next assertion is an immediate consequence of the definitions:

Lemma 2. We have:

P . dr—c(1,...,1) n c
m (ElsEl)n-;En) =~ Fisp 5. El(ig)lEi)

15



1.2 The modified Hecke property of Eisenstein
series

1.2.1

Consider the open sub-stacks ™SShS 7 8h§ of Sh§ that correspond to regular
semi-simple and regular sheaves respectively.
We have a smooth map X(© — "8hS and "s*8hg identifies with X — A/GY,,
where A is the divisor of coinciding points.
——
We will denote by T“sg’l(l): : é the preimage of "**8hg in F lé:::é. The restriction
—

[+]

of the map péijﬁj:é to "¢ B’Zé:jj::cl, is an S¢-Galois étale cover and we have a Cartesian
square:
C TS 1,.-.’1
Xe=A — Ty

symCl p%,:::::él
X© A —— T8k
(here sym® denotes the natural map X°— X @,
For a local system E on X we define Springer’s sheaf Spré; on Shy:
Definition 2.
Sprey =Py 0 goo” 0 det™ (B R .. R E),
where we have denoted by E the corresponding sheaf on Shy ~ X/Gn.
When E is the trivial 1-dimensional local system on X, we will denote the
corresponding Springer sheaf simply by Spr.

Lemma 3. (1) The sheaf 8pry is perverse and it coincides with the Goresky-
MacPherson exstension of its restriction to "*Shg.
(2) The sheaf Spr carries a natural S°-action.

Proof. The first point follows from the fact that the map pé:jjj:é is small.

Consider now the pull-back of 8prg to X (©) — A. Tt identifies to the sheaf
sym¢(E®°)|x@_a. According to the first poin of the lemma, it is enough to
show that sym?¢(E®®)|xw_a carries a natural S°-action, but this follows from the
fact that the sheaf E®¢ on X¢is S°-equivariant.

O

16




Definition 3. For a local system E on X, we define Laumon’s perverse sheaf
% on 8hg as Homge (triv, 8pry), where “triv’ denotes the trivial representation
of the symmetric group S°.

It is easy to see, that the pull-back of L4 to X(9) identifies with the sheaf E(©)
and Lemma 3(1) implies that L% is the Goresky-MacPherson extension of its
restriction to "*8hg. Therefore, the sheaf L§ is irreducible (resp., semi-simple)
if E' is irreducible (resp., semi-simple).

1.2.2
Fix two non-negative integers ¢;, ¢c; and consider the diagram:

€1,€2

Fig L5 gha x ghe

C1,C9
Po,o0 J'

c1tec2
ShS

Given two local systems E' and E" on X we define the sheaf £3/%, on 8hg

as

c1-t+co

C1,C2 C1,C2 %
Pog 1o o T (L% B LE).

The basic properties of the sheaves £% and £%%, are summarized in the
E E' B

following proposition:

Proposition 2. (1) If E is 1-dimensional, L ~ det*(E®).
(2) q810,02. Op81602*(£‘c1+62) ~ LCI X ch

3) Let E be a direct sum E=FE' @ E". Then L% = @ L&8
0<e1<e BB

E/ EII EII El
5) Let E" be another local system on X. Then for c; +co = c:

(3)
(4) c1,02 02;61
(5)

HomSho (LEIII ) LCEII’ E”) ~ HomS’L‘Sl (LcElm, cEl/) ® H0m5h82 (Lgm, CEzu).

Proof. The first point is obvious and the second one is Theorem 4.1 in [11].

The map pg'® is a small map, which is finite over "*8hf. Therefore, each
L5 is a Goresky—MacPherson extension of its restriction to ™*8hg and it is
enough to prove points (3) and (4) of the proposition for the pull-backs of the
corresponding sheaves to X (¢ — A,

17




We have a Cartesian square

X(e) 5 x(ea) - A | 9‘339:181662

! !

X(c1+cg) - A —_— 'rssSh(ﬂ)

The pull-back of ¢33 (L% K LZ,) to X x X () — A identifies with B’ K
EIICZ.

This makes the assertion of point (4) obvious and point (3) follows from the
fact that the sheaf (E'®E")¢ on X (9 identifies with the direct sum over ¢; between
0 and ¢ of the direct images of the sheaves E'® & E"°™% on X (&) x X(e-en),

The fifth point follows from the second and the third one by adjointness (we

will use the facts that the map pgls™ is proper and that the map gg's is smooth):

c C1,C C1,C2% [ C1,C2 % c1 C2 ~
Homgpg (Lgm, Lign) o Hommg}d” (PO (LFm)> dog ™" (L) BLE)) =
C1,C2 C1,C2% c c1 €2\ ~~
Homgpe: spez (90671 0 poyg " (L), L BAG) =~
Homg s (0550 B L5003 8 £3,) = Homg,es (05, £3) @ Homgyes (£, £,)

a

Corollary 3. Assume that E is a sum of 1-dimensional local systems E;. Then

LCJ ~ @ Lclr'"r‘}n
E c1+...Fen=c BryeerBin?

where
o e ClynsCn ClyeresCr XT [ [C1 7 c
Loy p, =Dolg 1o g g™ det™ (BT B ... B Epr).

Moreover, the perverse sheaves L5 ™ are irreducible and pairwise non-isomorphic
provided that Hom(E;, E;) = 0 for i % j.

1.2.3

For ¢ > 0 consider the correspondence:

d—e,c
Pn,o !

Flog© s She

d—c,c
qn,O J{

Shi=c x 8h¢

n

18




We have two functors

% = g5 0 e (0t + D)) ang
X g5, 0 i 00 eln + 1))~ S22

from the category of sheaves on 8h; to that on 8h%™¢ x ShS. We shall call them
the modified Hecke functors.

Theorem 1.

c,C * Cn+1 ”——cn
oo @, g )letn+ DY) » o BT T, meT o~
c, -y cn+1
~ gl o g (Bis, g, )[—eln+ 1>](w(—2-)),

where ¢ runs over n-tuples (cy, ..., ¢,) that satisfy 0 < ¢; < d;.
Proof. Let d be deg(d™) = deg(d"— (g—1)2p) and consider the Cartesian product
of FIi "% with F12°¢ over $hd:

Friee G-z P FIT—o-02
d 1

T

/pd"f“‘(9~1)2p pdf”—’(rl)%l
d—c,c pi—oc g d
Flpo — Sh,
i
Shi=¢ x 8Sh¢

The sheaf g2 o pi, o "*(Eisa,;m g, ) identifies with

G o 'ph U, 0 B o (det™ ™) (BT R R B0 1%n)

tensored by

é ( Ei(g-1)2pz

ghons (200 - i) (=i - d1)) @ (Q[1)(5 )) e
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The stack FI4>° x Fl?_gg ~12% admits a stratification by locally closed sub-
¥ 8 ﬁ 3ty
stacks Uz parameterized by n-tuples ¢® with 0 < ¢; < d;:
We say that a point

O=+M->M->T—>0,M .. M =M

is a point of Uz if the filtration T} — ... = T, = T' on T given by the images of
M’s satisfies:
length(T;/Ti-1) = ;-

We have Uz C Ugs if B¢ <Ti_jejforeach 1 <i<n—1.

We denote by gz= the restriction of the composition qff,—oc’“ of p(f:ff’gg_l)?p to

and by Tz the restriction to Uz of the sheaf

o

lpf?l,-ac,c* o (detxn)*(Eiir(g—l)zm Egn—(g-1)2pn)

qhap (=200 di)(—pi - di)) ® (@e[ﬂ(%))(w:m%m.

tensored by .@%1 ( Ezig-l)?pi
=

Lemma 4.

. T g c(n+1)
e (Tzﬁ) = EISdE1 En chEly---:En[_c(n + 1)](—"”2—”)

yeery

Proof of the lemma
We have a map

Gor : Uge = UL 507020 s g2 |
that sends a pair
O=>M->M->T—-0,M < ..M, =M
as above to
(MNM{—sMnMy— ..o M0=T —..T,=T).

It is easy to prove by induction that this map is a (non-representable) gener-
alized vector fibration of relative dimension ¢; + 2¢3 + ... + ne,.
Note, that
c(n +1) - (2p,0%)
5 .

c1+2c+ ...+ nc, =
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We have ggr = (p "% x p§7_4) o G
Moreover, T 1dent1ﬁes with

~ d1—(g—1)2p1 e, —(g—
gzﬁ*o(qll (9-1)2p1,..dn—(9—1)2pn qul, ,cn)

(det*™* (B~ g | ® Edn—(0-D%n) R det*™ (B K ... R ES))

yerey

tensored by
n _ ; — 1 (g=1)n(n+1)(2n+1)
B (B =20 d)(—pi-d)) @ @GNS T
Therefore, by the projection formula,

gom(Tge) = pT970%, o det ™ (B~ 1| R Fe=(o-D2m)

- (2p,c_"))

c* —_ o
R p,.. o 0 det™ ™" (B} ®... o)=Y = @) clnt1) .

2

?

tensored by

’

n —1)2p; — 1 —Dn(n+1)(2nt1
B (B 4, [=20- dil(—pi - ) @ (@1 (5))

which identifies with Elsd”“cn EQLC" L —c(n + 1)](@)
O(Lemma)

The fact that all the sheaves Eis‘lEl B RLE %r. Ey, O1 Sh=¢ x 8h¢ are perverse
(Main Theorem A(1)) implies the degeneration of the Cousin spectral sequence
that computes the direct image

qg Oc cI o /pcll_i:gg—l)Z o /pd c,Ck (detxn)*(Efl K. K Eg")

with respect to the stratification by the Ug's. B

Therefore, we get an increasing filtration on qd ““ o pi O (Bish g )e(n+
1)](6(”"’1)) parameterized by the partially ordered set of ¢*'c (the order is that of
adjunction of the Us’s), with successive quotients being EISE - 5, RS g

However, we can consider qd 0% 0 Pl “*(Elsg':l’i’,;‘nj;, d}gl)[ (n + 1)](°(”; Ly,
which on the one hand is isomorphic to qd &6 opr oo (Eish - En)[c(n+1)](ﬂﬁ;—11),
according to Main Theorem A(2) and to Proposition 2(4), and on the other hand
acquires an decreasing filtration with the same successive quotients.
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Since these successive quotients are irreducible and pairwise non-isomorphic
(Main Theorem A(1)), the above filtrations degenerate canonically into direct
sums.

This establishes the isomorphism

c(n+1)

d— . . T o
G 10 pi 0 C*(EIS%I,...,E,L)[C(” + 1))( 5 ) = @ElsdEl,...,En XLE, . B,

cﬂ-
The second isomorphism stated in the theorem follows by applying the Verdier

duality. d
Corollary 4. We have:

- . e(n+1)
tno "1 0 Py 0 *(ElsdEl,.”,En)[C(” + 1)](—_5__) EISEl@ o8, BhEo. o8,

1.2.4

Proposition 3. FEach Elsdl’ N ,Zjn is a Goresky-MacPherson of its restriction to
Bun,,.

Proof. Since D(Elsdl’ ’d“ B,) = Elsd“ " ’dg‘,, it is enough to prove that the restriction
of E E1sd1’ "f,;:h to Shie hves in cohomological degrees < 0 for ¢ > 0.
Let us denote temporarily by V the preimage in ﬂ’lﬁ’_o"’c of Bun?® x8h{ under

d—e,c

the projection g, 5"

Obviously, V over Bun?~¢ x8A¢ is a smooth representable vector bundle and
let Bun?® x8h§ =~ V, C V denote the zero-section.
We have a Cartesian square:

o — V

l pi’-c‘cl

She® —— Shy,

The restriction of the map pd ¢ Fldﬂc — 8h& to V is smooth of relative

dimension n - ¢. Therefore, it is enough to show, that p CCl(EIS%;’ e [~ cllw

is concentrated in cohomological dimensions < 0.
However, since pd > c'(Elsdl’ ’d” 5. )|v is a Gp-equivariant sheaf on a vector bun-
dle,

P (Bisg 5, )ve = dro™ s (g™ (s, 5, ) Iv),
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the latter by Theorem 1 identifies with

ar—ot o

@ Eisg, " g, L%:’Z,...,En[(” +1)c],
C'n

up to Tate’s twist.
Therefore,

d—c,e! fps i yoennd . FE_mw o
Pn,oc C'(ElsEll,...,ﬁn)[_n ]|y = ﬁ‘gElSdE‘t,.fEﬁ Lg;,...,En [c],
C

up to Tate’s twist, which implies the assertion.
O

In the course of the proof of Proposition 3 we have obtained the following
result:

Corollary 5. The pull-back of Eis%;::_’j%n |gpae under the natural map

8hd=c x 8he — Shdic

n

identifies with ® Eis, 5 WLE, g [e(1 - n))(£52).

1.3 The Hecke property of Eisenstein series

1.3.1
diyensln

Let us denote by the same character the restriction of the perverse sheaf Eisp "5
to Bun, C Sh,. We will deduce from Theorem 1 the usual Hecke-property of the
sheaves Eis%;,m, g, on Bun,.

Let Mod} be the stack that classifies triples (z € X, M < M), where M
and M' are two n-bundles on X with M'/M being a torsion sheaf of length 1
supported at z.

We have the maps §, ¢ : Mod,ll ~ Bun,, that send a triple as above to M’ and
M respectively and a map supp : Mod, — X that sends (z € X, M < M') to z.

We have a correspondence:

Mod! —"— Bun,

q Xsuppl

Bun, xX
23




The functor (q x supp): o p*[n — 1](%+) from the category of sheaves on on
Bun, to the category of sheaves on Bun, xX is called the (usual) first Hecke
functor.

Theorem 2.

n -1
2

: n : ceaglig—1Lyiey
(9 x supp)s 0 " (Bisy 5. [muns) [0 — 1(=5—) = & Bisy "5 pun, B B
1=

1.3.2

The proof of Theorem 2 is based on the following general result:

Proposition 4. Let Y be an algebraic stack and let a: € — Y be a vector-bundle
over it. Let Pa : P& = Y denote the corresponding projectivized bundle.

Let now K be a perverse sheaf on & with the following additional properties:

(a) K is equivariant with respect to the Gn, action on €.

(b) K is the Goresky-MacPherson estension of its restriction to the comple-
ment of the zero section.

(c) ar(X)[1] is a perverse sheaf on .

Then Pay(K') ~ a:(K)[1](1), where X' is the perverse sheaf on PE correspond-
ing to XK.

Proof of the Proposition
Let °8 > & denote embedding of the complement to the zero section. The
assumption on X implies that

Hi(a! Ojl og*(f}()) =9
except for i = 0 or i = 1. This in turn implies that H*(Pay(X')) = 0 except for
i=0.
Let now &€ denote the blow-up of &€ along the zero section and let 7 (resp., b)

denote the embedding of °€ into i (resp., the projection g - &).
The fact that H:(Pa,(X’)) = 0 for ¢ # 0 implies that

Jis oj*(ﬂ() ~ by 037!* OJ*(:]C)
Therefore,

Pay(K') == (a0 b)y © jie 0 §*(K)[1](1) = ay(K)[1] (1).
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O(Proposition)
Proof of Theorem 2.

We have a smooth map Bun, xX — Sh, x 8h} and the stack Mod. identifies
with the projectivization of the pull-back of the vector bundle F1* 0 OVer 8hy, X Shy
to Bun,, xX.

The composition

d
Bund xX  x  FIdb o g1l 2 gpd+t
8he x8h}

is a smooth map. Therefore, the pull-back of Elsd" d}}} to Bunf xX x  Fi%
Shd x 8h}

is a Gp-equivariant perverse sheaf which, moreover, is a Goresky-McPherson

extension of its restriction to the complement of the zero-section, by Proposition 3.

According to Theorem 1,
n+1

Gt © P (Bisgy % n + 1)(——) ~ GBEIS"E‘;, o Bun, B B

and the assertion of the theorem follows by applying Proposition 4.
O

1.3.3

Let us now present another proof of Theorem 2 for n = 2, which is independent
of Theorem 1, and therefore of Main Theorem A.

Second Proof of Theorem 2 for n = 2.

Consider the Cartesian product Modj X FIy®.
5h21 2
This is a smooth stack that classifies quadruples

(z,M < M' + L)

where M’,M € Buny, deg(M') = dy + dy, and L € Pic®. We have a map

pr:Mod; X 975‘11#2 — FIH% x X that sends
Shy dit

(&, M = M' = L) = (L(-=) = M,3) € FR x X
Consider now the closed embedding of stacks:

t: FUHET X o FIPTE ) X
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that sends (z,L — M) to (z,L(—z) — M).

- r !
Fihohh o X B Mod) x  FUy® Tt FIPy®

sho1tds
gyt xidl i gy ® l
qXsupp
Bun, xX &522 Mods} —"  Bun,

(The left square in this diagram is NOT Cartesian)
Lemma 5.
pr, op’*(det x det)* (B K Eg?) ~
o (det x det)* (B~ ® B) R By @ t,, o (det x det)*(B{* ® B3> ™) B Ey[-2](-1)
The assertion of the theorem immediately follows from the lemma.
O(Theorem)
Proof of the lemma

The map pr is proper and semi-small. It is an isomorphism over the comple-
ment of t(?lf}l’drl x X) in ?lf}l—l’dz x X, and

(Fihtx X)  x  Mody x FIH®
1,1 g —1d 2 ' L1
(FUY 2 xX) Shyl 742

is a projectivization of a 2-dimensional bundle over Sfl‘f}f L2 o X
This implies the lemma.
O(Lemma)

1.3.4

We define the sheaf Autg,g.ep, on Bun, to be the restriction of the sheaf
Eisg,,... 5, to Bun, C Shn.

Corollary 6. The sheaf Autg,g..om, Satisfies:

n—1

(q x supp): o p*(Autme..em,)[n — 1( ) =~ Autp..08, R(E1 © ... ® Ey).

We will now show that Corollary 6 implies that Autg,g. ez, is a Hecke eigen-
sheaf with respect to the n-dimensional local system E; @ ... @ En.
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1.3.5

Consider the stack Mod]" that classifies pairs (M < M'), where M and M’ are
two rank-n bundles on X with deg(M') = deg(M)+m, m > 0. Obviously, Mod}’

»m—1

identifies with the open sub-stack p;’5~'(Bun,) C F1,.

We will denote by ,q™ X oq™ the projection Mod;' — Bun, x8hg', which is
obtained by restricting the map g;> to Mody' and by pj* the restriction to Mody’
of the projection p;. *

We will also denote by supp] the composition map

Mod™ 2%, ghm 22" x(m)
(suppl is a version of the Harish-Chandra map).
Theorem 3. For a local system E on X let Autg be a perverse sheaf on Bun,

satisfying:

(95 x suppy)i o pr*(Autg)[n — 1](?—2;—1) ~ Autgp XE.

Then there is an isomorphism that preserves the S™-action:
— 1
(w7 X5upDT) 0B X0 7) (Aut B8pr™) (@el1] (5))°™" ) = Auts Bsym™ (B™).

Proof. Let us denote by 1\7[?)21;” the fibered product

N”’,L
Mod,, := Mod™ x Flg"7.
Shgpr 7

In other words, l\m;n is the stack that parameterizes strings of length m of

n-bundles on X:
(M < My < ... < Mp, = M'),

where M;/M;_, is a torsion sheaf on X of length 1.

Let us denote by cov the natural map I\’/lef — Mod? and by p™ and ,q™
the compositions p™ o cov and ,q o cov from 1\715212’ to Bun, and by o4 the natural
map 1\71521: — fﬂé:::::(l,. We will denote by supp,, the composition

—~ ——— M
suppy ™" o q(l):::::(l) 0oq : Mod,, — X™.

11n Sect. 1.3.1, the maps q%,pL : Mod}, — Bun, were denoted by q and p respectively and
the map suppl~by supp.
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Gy X8uPp, ™ PR Xodn
Bun, xX™ &=——=" Mod,, ——=+ Bun, xFlg"

id % symml covl id xpé:::::él

Bun,, x X(m) £ SPPn Mod;} —— Bun, x8hg
In the above commutative diagram the left square is not Cartesian. However,

in the diagram below both left and right squares are Cartesian and the stacks in
the top row are S™-Galois étale covers of the stacks in the bottom row:

Bun, x(X™—A) +—— &upp, ~}(X™ - A) —— Bun, x"Flg
idxsymml cov | id xpé:::::él
Bun, X (XM — A) +—— supp™~}(X(™ —~ A) —— Bun, x"**Sh"
Lemma 6. We have:

(ng™ % Supp, )1 0 p™*(Autg)[m(n — 1)](—”@) ~ Auty K(EE™).
Proof of the lemma
We have a Cartesian square:
—m =1
Mod,, ——  Mod} ", Bun,

l n% XSUPDy l

—~— m—1 ~m—1_:
Mod,  x X 24 Bun, xX
such that the composition map in the top row is p™. The assertion follows now
from the agssumption on Autg by induction on m.
O(Lemma)
Therefore, by the projection formula,

(ndn % suppy)io (b’ X ody’)* (Auty KSpr™) o
~ (id x sym™) o (o7 X SWBL)r o B (Aut)
m(n — 1))

2

The two S™-actions on the right-hand side (one of them comes from the S™-
action on 8pr™ by functoriality and another comes from the action on sym!*( E¥™))
coincide, since they do over Bun, x (X — A). This implies the assertion of the
theorem.

Aut B sym{™(E¥™)[m(1 — n)](

O
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1.3.6

For 4 between 1 and n, let 3, be the i-th Hecke-correspondence:

. ”hi,
H* — Bun,,

qhhl
Bun,, xX
We have: H! = Mod,,.

Theorem 4. Let F be a local system on X and let Autg be a perverse sheaf on
Bun,, satisfying:

(nqL x suppl); o pr*(Autg)[n — 1](@%) ~ Autp XE.

Then Autg is a Hecke eigen-sheaf with respect to E, i.e.

Ihi o Phi* (Autp)fi(n — 7;)]("(”2" £)

) =~ Auty RAY(E).

Proof. Take m = i and consider the closed sub-stack ™!Shy* ~ 8hy® x X,
X(m)

where the map X — X (™ is the diagonal embedding. Consider also the stack
nil Mod™ := Mod? x X.
X (m)

Let us denote by ™*8pr™ the restriction of the sheaf Spr™ to ™!8hy* and by
nilpm xmilgm (resp., Milg™ x ™! supp™) the projection from ™ Mod]' to Bun, x™8hg'
(resp., to Bun, xX) obtained by restricting the projection pi* x oqy* (resp.,
ndp X supp™).

According to Theorem 3 we have an isomorphism of S™-sheaves:

m(n—l))

5 ~ Auty RE®™.

(g x ™ supp™);o (" x g (*8pr™) fm(n—1))(

Consider now the closed embedding e™ : X/GL(m) — "™8hy — Shy' given
by z =V ® O/O(—z), where V is an m-dimensional vector space.
It is well-known that

Homgn (sign, "8pr) = e/"(Qqx/crm))[=m(m ~ 1)](:—@&%{:—12)’
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where “sign” denotes the sign representation of S™.

We have an embedding €™ : H™ — ™! Mod!" such that the compositions
"o o ¢™ and (Mg x ™ supp™) o ¢™ identify with the maps PhS and 7hi
respectively.

Moreover, we have a Cartesian square:

m

H <, i ModT
l nilpm xa”i‘q;'l‘l

Bun, x X/GL(m) X% Bun, x"$AK"
Therefore,
Homsn (sign, ("7 x5 q)" (Auts B8pr)) = ¢'7oPhi" (Aut) @i{1](5))° ")
and we obtain that
Auty ®A™(E) ~ Homgn (sign, Auty KE®™) ~
Homsn (sign, (3147 x ™' supp™)s o (“pi x B4 ("1pr™)) (@ 1] 5))mr) =

1

Homgm (Sign, (gilq;n 5 Ml Suppm)! o) e’?n o Phil*(AutE))(@e[l](5))®m(n—m)

R

o 988 o 71 (i) (i — m)) ("))

(N

Corollary 7. Let Ey,...,E, be 1-dimensional local systems on X with H(X, E; ®
Ej‘l) = 0 for i # j. Then the sheaf Autpg. on, 1S o Hecke eigen-sheaf with
respect to the local system F1 & ... ® E,.

This is a combination of Theorem 4 and Corollary 6.

1.3.7

Corollary 8. Let E be a n-dimensional local system on X, which is irreducible,
but which splits as a direct sum of 1-dimensional local systems after an extension
of scalars Fy — F{;’L—. Then there exists a perverse sheaf Autg on Shy,, which is a
Hecke-eigen-sheaf with respect to F.
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Proof. Over X IFX F,, the local system E splits as a sum E ~ E; ©...® By, where

q
E;’s are geometrically non-isomorphic, and there exists a permutation o, such

that
F*(Ez) ~ E,,(i),
where F' denotes the geometric Frobenius.
We set the sheaf Autgz on Bun, Fﬁlﬁ'q to be equal to Eisg, .. E, |Bun-
q

For each weight (dy, ...,d,) choose an isomorphism

sqntn o Eigde)do(n)
ElsEl’---y E E SEa(l)v 3 d(n),
which exists according to Main Theorem A(2).
We have

* d17 »dn ey
F*(Bisg, "5 ) ~ ElSEa(l))  Bony?

where F' is the geometric Frobenlus acting on Bun, ]F>1<n F, and we define the [F¢-
q
structure on Autg by:

F*(Autg) ~ F*( @ Els‘“’ 'd")N ® Eis dl”

L1yeenytin lx)n

~ -—1(1): o o=1(n) d1 ,d" ~
—= 69 El Ely :En —_ @ ElS " —_— A.utE .
diyendn diyesln

For each weight d, ..., d, we can choose isomorphisms of Theorem 2 to make
them compatible with isomorphisms

dl, ,dn ~ 6(1)7"'7d0(n)
Eisp, " g, = Bis BotyrnEogn)

This makes the isomorphisms:

(q X supp)s o p*(Autg)[n — 1](” ~ Autp XE

of sheaves over Bun, IF>< F, compatible with the F,-structure, which implies the
q

assertion of the corollary in view of Theorem 4.

O

2Qne can show that isomorphisms of Main Theorem A(2) and of Theorem 1.3.1 are canonical
and compatible with each other. To prove this fact one has to compare the isomorphisms
established in Theorem 1, Main Theorem B and Corollary 4.3 of [11].
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Chapter 2

Eisenstein series via the
fundamental diagram

2.1 Generalized Whittaker model for Eisenstein
series

2.1.1

For an integer n consider the stack Sh/, (resp. °Sh’) that classifies pairs (My, s :
Q¥r=l — M,) (resp. (M,,s: Q®n~1 M,)), where M, is a coherent sheaf of
generic rank n on X. We have an obvious open embedding 7, : 08h,, — Shi.
In addition to the natural projection 7, : 8h! — Sh, we have the projection
Mooy t °8h, — 8hy,_; that sends a pair (M,,s : Q®~1 < M,) € °8h; to
M,/Im(s) € Shy_;.

We have the following picture, which we will call the fundamental diagram:

08 hi—Lt 8, OShy ZEELSRL
A’—l N % Okt “N
Shk_l Shflc

Recall, that 8h%St (resp., Shdi*) denotes the open sub-stack of Shy, that cor-
responds to sheaves of degree d with torsion of length not greater that ¢ (resp.,
the locally closed sub-stack 8h, that corresponds to sheaves of degree d with

Shit1
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torsion of length exactly t). Analogously, Sh;dgsi (resp. OSh;ld;st) will denote the
preimage of Sh%<* in 8h! (resp., in °Sh!). We have:

v_1 -1 (Shi’éf) C OSh’Ind+(”_l)(29*2)25t.

Tn

For an integer ¢ we will denote by .Shy the open sub-stack of 8hy, that corre-
sponds to sheaves M € §hy, with the following property:

Ext'(L, M) = 0,VL € Pic® with ¢’ < c.

We will denote by .Shj, (resp. ,by I8h;,) the preimage of ;8hy, under the projection
T (resp., %m;). We have:

08Ky C my_y " (Shi-1)-

Over (k_l)(gg_z)ghk the stacks (k—l)(29—2)8h;g and ?T;‘;"l((k_l)(gg_g)Shk) - OSIL;C_H
are mutually dual vector bundles and there is the Fourier transform functor,
denoted Foury from the category of sheaves on (k_l)(gg__z)Sh;c to the category of
sheaves on 7} ™ ((k—1)(2g-2) Shi).-

We define the functor comp; from the category of perverse sheaves on JSh}
to the category of perverse sheaves on (x_1)2g—2)°Sh;, by

compy(XK) := (Foury oj,, (compr—1(X)))]

(h=1)(29—2) *Sh}*

By definition, compy is the identity functor.

2.1.2

Let us consider the functor compy, from the category of all sheaves on }8h] to
that on (k_l)(zg-g)OSh;c defined by

compy,(K) := (Foury, o (compry_,(X)))]

(k=1)(29—2)°8h},*

It was shown in [4] that if F is an n-dimensional local system on X, the
restriction of the sheaf

o 1= compy,_y (my* (LE % )

to 08A! TS0 giveg rise to a function on the set of F,-points of this stack

that coincides with the one coming from the Whittaker model. In other words,
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the corresponding function has the same non-degenerate Fourier coefficients as

the automorphic function corresponding to the local system E, provided that the

latter exists. "
However, when the local system E is reducible, i.e. when F ~ @ Ej;, the

i=1
degenerate Fourier coefficients of the function corresponding to 8 are wrong; in

particular, it is not a pull-back of any function on Bun,(IF,).

The next theorem is a statement in the direction that when F is a direct sum
as above, if we use the functor comp,_; instead of compy,_,, we get a right sheaf

on (n_l)(gg_g)OSh;d. We will prove this for n = 2 and will establish a partial result
for any n.

2.1.3

Let now Fj,...,E, be 1-dimensional local systems on X satisfying
Hom(E;, E;) = 0 fori # j.

Let d* = (dy, ..., dy,) be a string of n non-negative integers and let d denote their
sum. Let ¢, denote the integer max(d;) + (n — 2)(2g — 2).

Main Theorem B
-1 (gn Sth:(lg—l)(n~1)(n—2)) 03h;d+(9—1)n(n—*1)

Over ¥ there is an iso-

n-—1
morphism:

M (n-1)(29-2)

—1)(g— ~1)(g— —(g — 1)n?
OW;(EiSjiEI:_(n 1)(g—1).sln+(n—1)(g 1))[d-— (g__~ 1)?’&2]( (g )TL )N

R 2 -

n - —_
 compn-y oy (853755, [d]) ® (B0 guna).

When n = 2, we will prove a prove a little stronger statement:
Main Theorem B for n =2
Over 7Y~ (4,8h%) there is an isomorphism:

"3 (EBisg, gy [ (9 — D4+ d)(=29 +2) =
2 compy (5™ (L35, [d]) ® (By ® Ez)*™" ).
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2.1.4

We will now show how Main Theorem B implies Main Theorem A. First, we will
consider the case of n = 2, where the proof is much simpler.
Proof of Main Theorem A(1) and (2) for n = 2.

It is enough to show that the assertion of the theorem holds for Eis‘f,jl’f'gii2
restricted to every open sub-stack U C Shff"gg_2 of finite type. The assumtion on
U implies that it is contained in ,SAS29"%<! for some ¢ and ¢.

We claim, that we can assume that U is contained in

d+2g—-2;<min(d; ,d2)~(29—2 d+2¢—2
She (01,02)~20=2) (v, 1 SHET292,

Indeed, by Lemma 2, the statement for U is equivalent to the statement for
mz,(U) for any line bundle Lq and if we choose L so that

min(dy, dy) + deg(Lo) >t + 29 — 2 and ¢+ 2deg(Lo) > 29 — 1,

we will have:

mi, (U) C Shg+2g——2+2 deg(Lo);<min(dy +deg(Lo),dz2+deg(Lo))—(29~2) 029__1 8h¢21+29—2+2 deg(Lo) ‘

It is easy to see that for any ¢, the two open subs-tacks tSh‘f and Sh‘f’st“(% =D of
8h{ coincide. Therefore, the restriction of the map s to Y ™ (max(dy d2) S h’ld_zg 2
is smooth, surjective and has connected fibers over

d-+29—2;<min(dy,d2)—(2g~2 d+2g—2
Sh2 ( )=( )ﬂ?.g——l Sh2 g ,

as it is easy to deduce from the Riemann-Roch theorem.

To prove Main Theorem A(1) and (2) it suffices to check, therefore, that
Oﬂg(Eis%ll’fgz) [d—(g—1)n? and o7} (Eisg’%l)[d— (9—1)n? are perverse, irreducible
and isomorphic to one another over 7Y ™ (max(dy a2 S, ¢ 12).

The assertion of Main Theorem A(1) follows now from Main Theorem B (for
GL(2)) combined with Corollary 3, since the functors 7;,, and Four; preserve
the properties of being perverse and irreducible. Main Theorem A(2) follows by
combining Main Theorem B with Proposition 2(4).

(]
Corollary 9. Assume that d > 49 — 4. Then over 2g_2°8h§d+(2g"2) we have an
isomorphism:
O (Bisgy g, ) [—4g+4-+d)(=29+2) = compiomy* (L4, 5, d)) (B1®E2) 7| y).
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Proof. ;From the definition of 5, 28hs it follows that EisdE‘lfg;l’d”g_l vanishes on
this sub-stack if d; > d. Therefore, using Main Theorem A(2), we obtain:
Eigtt29—2 s od1tg—1,da+g—-1

’ dt2g-2 ] Fis d+29-2.
Ey,E» |29_28h2 dy+dp=d,0<d1 <d E1,E2 I29_28h2

Therefore, it suffices to show, that for dy, dy > 0, over gg_QOSh'g‘H(zg -2 the two
sheaves: 07} (EisdEllj“g;l’d”g“l) [—4g+4+d](—2¢+2) and comp, ony* (L‘,ill’fgz d)®
(By ® Eq)97Y Q%) are isomorphic. Without restricting the generality, we can
assume, that d, > ds, therefore, d; > 2g — 2.

The two sheaves above are perverse and irreducible, by Main Theorem A(1).
Therefore, it is enough to show that they are isomorphic over a non-empty open

d+(29-2) . . .
subs-tack of 292081, It is easy to see, that the intersection
d+(29~2 -
29-2"8h5" %0 (1t (a0 1Y)

is non-empty and the needed isomorphism follows from Main Theorem B for
n=2.
|

2.1.5

We will now prove Main Theorem A for any n.
For an integer ¢’ let U% (¢') denote the maximal open sub-stack of $ad Hg~1n(n—1)
over which the projection r, restricted to
_ &'+(g—1)(n-1)(n—2
7[.7\:_1 1(2:Shn_1(g )(n~1)(n ))
is smooth and surjective.
The proof of Main Theorem A is based on the following assertion:

Lemma 7. Let U be an open sub-stack of finite type in Shﬁﬂg“l)"(”“l). Then for
any c there exists a line bundle Ly of sufficiently large degree such that mp,(U) C
Udtndes(Zo) (¢ + deg(Ly)).

Proof. For every sub-stack U C Shiﬂg ~Un(n=1) of finite type, there exists an inte-
ger cg such that U C ,,8h%He=I"=1_ 1f we choose Ly such that cy + deg(Lg) >
(n—1)(2g — 2), then mp,(U) C Co+deg(L0)Shi+"deg(L") and the map %7, will be
smooth over my,, (U).
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For every integer ¢’ < ¢, consider the stack A, that classifies pairs s : M —
Ly ® ), where M € U, Ly € Pic® and s is surjection (since U is of finite type,
only for finitely many ¢”’s the stack Ay will be non-empty). For each ¢’ we have
a projection Ay — Shf:(lg_1)”(”_1)_61_(29_2) that sends a triple as above to the
kernel of s. The union of the images of Ay’s in 8h,_; is contained in a open
sub-stack of finite type.

For every Lg consider the fibered product

Bo (Lo) = oSh;~1d+(9—1)n(n—1)—0'—(29-2)+(n—1)(deg(Lo)~(29—2)) % A,

d+4(g—1 ~1)—c/ —(29-2
Shn_(lg In(n—1)—c’—(29-2)

where the map

d+(g—1 ~1)—c' —(29-2
Sh+(lg Jn(n=~1)—c' —(2g-2)

Ogh’In“ld"‘(g—l)n(n‘l)—d‘(29“2)+(n“1)(deg(L0)"(29-2)) - Sh’n—nl_

used in the definition of A, sends a pair s : Q%2 — M’ to M'® L;* ® Q. This
is a stack that classifies triples:

Q¥ s M'® Lo,0 - M' -+ M — L,®Q — 0),

where M € U and L, € Pic®.
Consider now the fibered product:

X

0gp/ d-+(g~1)n(n—1)+n deg(Lo)
n d-(g—1)n(n—1)+n deg(Lg)
Shy,

constructed using the map U s Shd+(9=Dn(n=1) T gpd(g—1)n(n=1)+ndeg(Lo)
We have a natural map:

d -1 ~1 deg(L
'BCI(L»o) — OSh;L +(9—1)n(n—1)+ndeg(Lo) X U,
8h;{+(g—1)n(n—1)+ﬂ.deg(L0)

that sends a triple
Q8" s M'® Ly, 0 = M' = M — L, ® Q — 0) € By (L)

as above to
Q8" ey M' s M ® Ly, M).
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;From Serre’s duality it follows that mz,(U) is contained in the image under
0 v -1 0 d+ndeg(Lo)+(g—-1)(n—1)(n-2)y . . .
Tn Of Ty ™ (etdeg (o)’ SPn—1 ) if and only if the image of
B (Lo) under the above map when intersected with every fiber of the projection

d4+(9—1)n(n—1 deg(L
Ogh; (9—L)n(n~1)+n deg(Lo) X U=sU
oShi+(9—1)n(n—1)+ndes(Lo)

is a proper sub-variety there.

However, by Riemann-Roch, when the degree of Ly is large, the dimension of
B (Lo) grows as consty + (n — 1) deg(Lo) and the dimension of every fiber of the
above map grows as consts +ndeg(Ly), the second constant being uniform on U,
since it is of finite type.

This proves the required statement.

O
2.1.6
Proof of Main Theorem A(1)
Proof. It is enough to prove that the sheaf Eis}é‘l’,‘;‘jfiE"n is perverse and irreducible

when restricted to every open sub-stack U C Shi“L(g‘l)"(“"l) of finite type.
Using Lemma 2, we deduce that EisdEll’;::jfi,;‘n |v is perverse and irreducible if

and only if EisdEI:?i%(nL")""’d"+deg(L°) Imey(uy 18 for any Lo. Let us choose Lo as in
the lemma, above with ¢ = ¢,.

Since the map %, from

+(9—1)(n—1)(n—2)+(n—1)deg(Lo)> Sk’ d+(g-1)n(n—1)+ndeg(Lo)
—200,

- d
Wx—l 1(cn+deg(Lo)OShn—l Nin-1)29

to §heH—Dn(n=1+ndeg(lo) i smooth and surjective over my, (U), it is enough to
verify that the pull-back of EisdEll':'_fleg;iL")""’d“+deg(L°)[d —(g—1)n? to

0 d+(9—1)(n~1)(n—2)+(n—1) deg(Lo) g—1)n(n—1)+n deg(Lo)
Shn—l )

_ d
T 1M entdeg(Lo) N(n—1)(29—2) Py, *H

is perverse and irreducible. The latter follows from Main Theorem B, since the
sheaf compy—1 (7§ *(LdEll’,':_'_’fign)[d]) is perverse and irreducible.
O

The assertion of Main Theorem A(2) has been already established, by com-
bining Main Theorem A(2) for n = 2 and Corollary 1. Alternatively, we can
repeat the argument used to prove Main theorem A(2) for GL(2).
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Corollary 10. Let Ey, ..., E,, dy,...,d, and ¢, be as in Main Theorem B. Then
the isomorphism

np— —1)(g— —1)(g— ~(g — 1)n?
O, (Bisty 0Dt 0oy (g )T o

7 n— -
~ compny o 3" (0% [d)) @ (B VY| an).

)OSh;IdJr"(n”l)(g—l), whenever the intersection

holds over (n_1)(29—2

v_ -1 gpdtle—Dn—1)(n=2)

d+(g—1)n(n—1
0 o ) N (n—l)(2g—~2)08h';7, (g—1)n( )

s
18 non-empty.

The proof follows from the fact that both the right hand side and the left
hand side of the equation are irreducible perverse sheaves that are isomorphic
over the above intersection.

Remark 2. In the case of n = 2, we have established in Corollary 9, that the
isomorphism as in Corollary 10 holds for any di, ..., d, provided that d is large
enough. This is true for any n, though will not prove it here.

2.2 Proof of Main Theorem B, first step
2.2.1

The proof of Main Theorem B will be based on considering several new geometric
objects.
For a pair of integers (dy,dy) with d; + d = d, consider the fibered product:

d
Shi¢ x Flyy®.
8h¢

This is a stack that classifies triples

(M} — M, € F1fs™,5: 0 = My)

and it is a (non-smooth) vector bundle over ?l'fjddz which is smooth over the

preimage of ¢8h? in ?l‘f}ddz.
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Let W‘“"i2 denote the closed sub-stack of 8h} d X .’r"ld"d2 that corresponds to

those triples (M < M, s) as above for which s factors as
5:0— M{ — Ml.

The stack W;*% is a smooth vector bundle over the preimage of 4,8h? under
d 2

the projection 97ld1’d2 P Sh.
We will denote by r; the projection from W‘l"“l2 to 3’ld1’d2 and by i; the

embedding of W2 into Sh,% x ?ldl’dz.
8he

Sh’ X Fll "— Wl

N /

9’11 0
P1o

Dio
8k
N

Let E' (resp., E") be a 1-dimensional (resp., an m — 1-dimensional) local
system on X.
We define the sheaf F;% E %, on Shi? as:

Shy

Ip‘fld@' ST Qflo’dz*(det (Eidl) & 'E'E”)[d]‘

2.2.2

Lemma 8. j; (9’1‘11’}3,,) o Tr(‘)’*(LdEl,’fgu)[d].
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Proof. Let °W% be the preimage of °Sh) under the map ' p"‘xl’d2
We have a map ‘W% — Eyfl‘i“d2 that sends a triple

(s: O — M; — M)

to
0 — M;/Im(s) — M;/Im(s) = My/M; — 0,

such that the square
OWdl,dz } gt'ldl ,d2

lp'ilo,dz oiy J{ qg,ln,d2 l
a
08h¢ —2- 8hj
is Cartesian.
Moreover, the map

(det x id) o ¢{5® o ry :® W% — Pic™ xShg®

coincides with the composition

(10 0 det x id
oppds _y gidasts 08 gpds o gt X pioh s g

and the assertion follows by base change.

The proof of Main Theorem B is based on the following result.

Proposition 5. (1) Over 4,4 (m-2)(20—2 Sh d, we have an isomorphism:
1-+(m—2)(29—2) ©'41

g'_lﬂl BN = ]1! o -71 (9‘-1}_;;; E”)
(2) Over szh'ld, we have an isomorphism:

7 di,d2 ; (g d1.d2
CF]_EI:EII ko (Sle’,E”)'
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2.2.3

Before giving a proof of Proposition 5, let us show how it implies Main Theorem
B forn = 2.
Proof of Main Theorem B forn =2

According to Proposition 5(2), we must compute the Fourier transform of the
sheaf 'p{s® 0 i1y 0 7} 0 g§™* (det*(B'®) K det* (E"®))[d] on 4,8h;".

Consider the vector bundle °Sh,*t*™2 x CFl"l"d2 over F11%®; when working

sh¢
over p‘lilo’d2 (dZShd) - fT"l”ll’d2 it identifies with with the dual of Sh'd X Hfldl’dz.
She
Let "pfs® denote the projection °8hy™™*0™" x Fuf™<t 5 08pL ™% and let
Sh¢

Four; denote the relative Fourier transform functor from the category of perverse

sheaves on Sh’ X ?ldl’dz to that on °8hs, d-+2g-2 f}'l‘i’““!2
Shé snl

According to the standard properties of the Fourier transform functor,

Four, o'p‘f, {04107} 0 qfldd”(det*(E'dl) det*(E"")) ~

1pdists, o Foury o4 0 1} 0 gl (det” (B'™) R det” (B"™))

Let ¢} : W%z — 0gp #2072 o fﬂdl 2 Jenote the embedding of the orthogonal

8h¢
complement to W, inside °8h,*7% x FIPs® and let ) : W{*% — FI{4* denote
8h{
its projection onto Sfl‘li,lo’dz.
We have:
N et

Four; o4y, 07} © q{l}ddz*(det*(E’dl) L8, ~
do—di+g—1

i, 07" o g™ (det™ (B'™) B det* (B"*))[dz — dy + g — 1) 5 )

and therefore Fourl(S’lg,’,dEz,,) identifies with

Ilplflddzl o ’l/1; o Tl o qclilddz*(det*(EIM) det*(Eudz))(@e[l](é))®dg—d1+g-—l[d].

Lemma 9. We have a natural map:

1d1,dz d1,da+29—-2 Doy d+29—2
Wi — Flyy X Shy
Spit29—2

b
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which is an isomorphism over the preimage of ,1,‘,0811'2‘”29~2 such that:
(1) The map prd"d%z1 Wi didz _y 08, H29-2 hincides with the composition

W/th,dz — ?ldl’d2+2~"‘2 % QShyd+29 2 ogh, d+2g—2
1 1,1 Shg+25— 2 .

(2) The map
(det x det) o g% o 74 : W™ — Pich x Pic®
coincides with the composition

di,d d+2g-2 -
Wit o Uiyttt Ogp TR gyidetent
shg+20=2 !

_ . . mMme—
— Shit x Sh{**?97% — Pic® x Pic? -2 23 Pic* x Pic®

According to this lemma, we obtain by base change:

Four; ojy,, o7y (LdEll’:iﬁz [d]) ~
~ Omy" (Bisg, 8, ™7 @ ((Br ® B2)'™,-4)[d — (49 — 4))(2 - 20)-

O

2.2.4

We will deduce Proposition 5 from the following result:

Lemma 10. Let E' and E" be a 1-dimensional and an m — 1-dimensional local
systems on X respectively satisfying: H*(X,E"™ ® E") = 0. Then:
(1) For any d' < d the sheaf

piy "o gl (et (B) R L)

vanishes oVer g i(m-2)(2g— 2)8h§l
(2) If d > g—1, the sheafpd d-d noqfod d*(det (E"l)ﬂﬁaE" ) over the whole
of 8h% has cohomologies in degrees < d.
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Proof. Tt is easy to reduce the assertion of the lemma to the case when E' is a
trivial local system (we do this in order to simplify the notation).
Consider the stratification of Sh¢ by the locally closed sub-stacks ShH<t We

have:
‘_ d;<t
&/ +(m—2)(29-2)Shy 0<t<d—d —L(Jm-l)(zg“z) e

We stratify ?ld = by locally closed sub-stacks Y4, max(t—d+d',0) < t' < t,
where a pair L' < L € S’Z‘flod‘d' belongs to vyt if L e Sh‘f;t and I € Shcli’;t’_

By restricting the map pj g% to Y% we obtain a map Sy : Y5 — ShT". It
is enough to check that the sheaf obtained by applying the functor By, to the

restriction of qd d=dx (det*(B'Y) R LEY) to Y vanishes over g (m-2)(29-2)ShS
(resp., has cohomologies in degrees < d over $hi,ifd >g—1).

We have a natural map e : 8h%" — Shb. Consider now the following fibered
products:

Sht x srzt i
8

and

V= SR x FUGETY x X0 X gl thd-d ==t

8hf st xspd=—d—t=t)

(we used the natural map X @=¢~(=t) —s §pa=¢=(=¥) 5 define the second fibered
product) and let us denote by v the map Y4 — &"lf,;f”d“d’~(t—t’).
We have a map oy : Y™ — Y5 that sends a pair (I' < L) € Y4 to

(L,0 = T' =T — T/T" — 0) € 8h{" X sfzt = (U)T = LJT) € X 4=t=0),

(0= T/T' = L/L' — (L)T)/(L'/T') — o) € Flog 7,

It is easy to see that ayy is an affine fibration of relative dimension ¢ — ¢ and
that the restriction of qd A=d'x (Qet* (B'Y) R L) to V' identifies with

t—t! d—d’ —(t—t!
at v O’Ytt' ©Poo B )*(LE”)-
The map By, is a composition of oy and the projection

Yot s Shfit x FILETY x x@-d==E) y gpl x Flhi" — shi.
Sho Sho
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According to the projection formula and to Proposition 2(2) we obtain that the

direct image of 0}, 07}, 0Py, a0 (1, 0) on ShEE x FILEY x X(d-d' (1))
t bl
0

identifies with
‘o (L) R Bt — )] (t - 1),

where we have denoted by ’qé(f % the composition map

! t—t!
Shit x FILY - FUL 00, sht x SEEY s SEEY.
8hf

Now, over d:+(m_2)(2_q,2)8h'f, we have:
d—d ~(t-t)>d-d—t>d-d —(d—d —(m—1)(2g—-2)) = (m—1)(29 —2),

hence the hyper-cohomology H(X (44 =(t=¢) pr(d-d'=(-t)) yanishes, since E" be-
ing non-trivial implies that

H(X(d—d'-(t——t’), E/I(d-—d’——(t—t')) ~ A(d—d’—(t——t’)(Hl (X, E”))
and d—d' — (t—t') > (m—1)(2¢g — 2) = dim(H(X, E")).
Therefore, the direct image of the restriction of qd A=x (det* (B'Y) R L44Y to

Y4 under the map Y&t — Sh%t x Sflt 4= Vanishes if Shiit e d:+(m_2)(2g_2)8h‘f,
' Sh

which implies the first point of the lemma.
To prove the second point of the lemma, note that

Bu (gt (det* (B'") R L5 |yewr)

identifies with the pull-back under ¢ : 8h%* — 8h! of the sheaf L% E,, tensored
by AW-d=G-)(FA(X, B")[—(d — d — (¢ — ) — 2 = )](¢' —#).

The map € is smooth of relative dimension (g — 1) — ¢ and the sheaf Lt_,;’,f'_,,}f:
on $h} is perverse. Therefore,

Bran(gle* (det™(B'") R LE ) |yur)

lives in the cohomological degree (d —d' — (t —t')) +2(t —t) + (9—1) —t <
(g—1)—d+d<d
(i
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2.2.5

Proof of Proposition 5.

In order to simplify the notation, we will again assume that E' is a trivial
local system.

When working over 4,8h¢, the map r; is smooth. Therefore over dZSh’ld

dr,d di,d
D(grlb’j'll,EZH) >~ glellv’zEuv
and to prove the proposition it is enough to show, that

1 dy,d—dy . % dy,d—dy % * dy d—dy
P1g 191071 0qg (det™(ET") M LE,¢ om.)

vanishes when restricted to d1+(m~2)(zg_2)8hf1d - d1+(m_2)(2g_2)08h'1d and has coho-
mologies in degrees < d when restricted to 4,8h}* — A SH:Y.

For any c, the stack S~ SSh'ld is a union of locally closed sub-stacks Z,
0<t<d—(c+2g—2), where Z; is a stack that classifies pairs

(L€ S8h s:0— L)

with s being surjective on a torsion sub-sheaf T' < L of length £.

We have a natural map Zy — C_;Sh‘f“? that sends a pair (L € ,8h{,s: 0 — L)
as above to _ R
L/T € Shi~t ¢ _8hé
and a map _
Zy x Wy — Flihd
cShi '

that sends a triple
(L' > Ls:0=L)eZy x W,
8hi ¢
to N _ N
(L'/T — L/T) € 315374,
We have a Cartesian square:
Z;; X ] W, —— c_;ﬂ’lffo_idz
eShY

dy—t,d~dy
J« pl’o ‘ J«

Zy  —— Sh
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and the restriction of the sheaf

1 dyd—dy . dyd—d 1d d
pig Trednorioqigt " (det™(E™) W LEF)

to Z7 identifies with the pull-back under the map Z;y — c_‘{Shil_? of the sheaf
P 0 gl P (det (B ) B L)

d—t
on C—’{Shl .
Therefore, for ¢ = dy +(m—2)(g—1) this restriction vanishes by Lemma 10(1),
which proves the first point of the proposition.
To prove the second point of the lemma, let us take ¢ = dy. We will have:

dy—t>29—-2>g-1,

hence the sheaf 5 - _
Pis " Pro gl (det” (B ) BLE)

on Shf_? has cohomologies in degrees < d, by Lemma 10(2). This implies the

second point of the proposition ,since the map Zy — Sh‘f“z is smooth of relative
dimension 0.
O

2.2.6

The following result will be an important technical point in the proof of Main
Theorem C.

Proposition 6. Let d satisfy d > 49— 42t and let By and FEo be nqn-isomorphia
1-dimensional local systems. Then for any point of Sh, %<t — 08p! %< the Buler-
Poincaré characteristic of the stalk of j1,, o 7§* (L, B,) vanishes.

Proof. We will again assume, that E’ is the constant local system.
Let us divide all pairs (dy,dp), d; + da = d into 3 non-intersecting sets:

de <29 —24t;dy < 29— 2+ t;min(dy, dy) > 29 — 2+ 1.
Proposition 5(1) and (2) implies, that if a pair (d;, ds) belongs to the third set,
o 5" (L85, S5 — O8H< = 0
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We will show that the Euler-Poincaré characteristic of the stalk of ( @ ) Jie ©
di,da

my *(L%l’:%z) vanishes at every point of Sh} %<t —8h! “<* when (dy, d) run through
the first set or the second one.

If (dy,dz) belongs to the first set, then d; > 2g — 2 + ¢ and according to
Proposition 5(1), we can compute ji,, o 7y *(LdEl;figz [d]) over 8h}%<t through

'PPs™1 0 iy o] 0 g™ (det* (B'™) R det*(E"®))[d).
As we saw in the proof of Proposition 5 the stalk of
'Piig™ 0 inr o 7 0 giig™ (det” (B'™) B det" (B"™))

at every point of 8hj%<t — 98k %<* ig isomorphic to the stalk of

Pl ™ o gl M (det” (B ™) B det* (B"™))

at some point of Sk 45 for some 7 and t', up to tensoring by a 1-dimensional
vector space.
Following the proof of Lemma 10, we see that each

Py ™ 0 g (det” (B ) B det" (B"™)

is a successive extension of sheaves T(¢, ") @H (X (4~'—1") (E, @ By)d-(¥'~t")),
where T(¢,t") is a sheaf on 8, %% independent of d and where ¢ runs between
' — d2 and t'. 5

For (di,ds) running through the first set for a point of 8h,%~4* we have:

x( @ ol o gl (Aot (B ) R det (B"™)) =

(d1,d2)
=) x(T(, ") x( > H (X @=¢=) (5, @ EY)da=(E-tN))
& #=~t" <dy $29 -2+t
However,

xO_ H (XY, (By ® BY)D)) = x(A'(H(X, B2 ® E)[-1])) =0,

which implies the assertion.

The statement for (dy,ds) running through the second set, follows from what
we have proven for the first set by interchanging the roles of (di, Ey) and (dg, Es)
using Proposition 2(4).

d
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Remark 3. In fact, Proposition 5 allows to calculate completely the stalks of
Jiw 0 my*(Lg, 5,) studied above.

Corollary 11. Let E; and E, be as in Proposition 6. For d > 4g — 2, the stalks
of the sheaves Four; ojyy, o ny*(L g, ,g,) and Foury ojy, o 13*(L g, &,) have an equal

Buler-Poincaré characteristic at every point of i ~1(8h,%<1).

Proof. Consider the cone of the arrow
J1r 0 Wg*(LEl,Ez) - jl!* 0 W;J,*(L’El,Ez)'

Over Sh‘f;so, this a complex of sheaves supported on the zero section of the
vector bundle Sh"li;so with a zero pointwise Euler-Poincaré characteristic. There-
fore, the Euler-Poincaré characteristic of the stalks of its Fourier transform also
vanishes.

Over every point of Shﬁl‘l, the above cone is a Gp,-equivariant sheaf supported
on a l-dimensional sub-space of the fiber of Sh"li;sl at this point. In this case
it also easy to see that vanishing of the pointwise Euler-Poincaré characteristics

implies the same fact after the Fourier transform.
O

2.3 Proof of Main Theorem B

2.3.1

To prove Main theorem B for any n we have to introduce several new geometric
objects, that generalize those considered in Sect. 2.2.1.
Consider the fibered product

 dth(k~1)(g—1) di+ oot dig+h(k—1)(g=1),die1 .l
Shy, X Fi .

shate=n-D 0
This is a stack that classifies triples

ik —=1)(g~1),dp st +obdn 1
1;“ +dg+k(k—1)(g~1),dg g1+ Fdn which

and it is a (non-smooth) vector bundle over Fij;

is smooth over the preimage of (k-l)(gg_g)_Sh,f”(’“_l)(g_l) under the projection

dtk{k—1)(g—1)

dit.. A +k(k—1)(g=1),dp 41+ Adn rﬂzlo+.,.+_dk+k(1c—1)(g—1),d,_¢+1+...+dn 5 i

k,0
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Let W,f vkt etk =1 Ddiri 4 gonote the closed sub-stack of

Shl d+k(k}~1)(g—l) x g:'ldl+~~+dk+k(k"1)(§_l)1dk+l+-~'|"dn
k Shd"l‘k(k—l)(g_l) k)O
k

that corresponds to those triples (M}, < My, s) as above for which s factors as

s:QF - M < M,.
We will denote by 7, the projection

di+...+dp+k(k—1)(g-1),d veebd, di . Adp+k(k—1)(g~1),d veot-d,
Wk;1+ +d+k( Wo-1)dpy1+..4dn - ?ij[;{_ +dg+k( )(g~1)dp a1+ tdn

and by iz the embedding of W: vk th(b=1)g=1)dy1boctdn 44

g1 dHh(k=1)(9-1) y it th(k=1)(9=1) dg +.Hdn
k gpd+h(k=1)(9-1) k.0
k

. . . oty h(k—1)(g—1) di 1 oo+
The map 7y is representable and it realizes W,,C:HL k(=10 it tdn oo
4o di+h(k—1)(g=1),dps 4 +dn
a non-smooth vector bundle over the base H’Zkf b1 1) i bctdn,

Shiy x Flig —% W,

Shy
M 7/

Flio

]

Pr0

DPro
Sh;c

N

Shy,
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For each k, 1 < k < n —1 we introduce a sheaf ffkd" "% on 8h;d+k(k"l)(g“1):

k n
1 e ! i=1 i=k+1 . * i= i= *
ThE,). LB = Pro 102kt © Tk O ko
dl: 1dk dk—l"ll i
(Eisg, B RLE T E)®

® ((El ® .. ®Ek) (9—1)(k—1) I ozt ) (Q [1]( ))®d1+...+dk-—k2(g——1)+la(dk+1+...+dn)

dl, wdn . : : dy,d—dy
The sheaf Fyp5  of Sect. 2.2.1 is a direct summand of F15 5@ op and
as in Lemma 8, We “have:

Lemma 11. jf(&"lgl’;:jj%n) ~ T (LdEll’, ’ffgn)[d].

2.3.2
We will deduce Main Theorem B from the following result:

Proposition 7. (1) The canonical map
]1' OJl (g:'ldlg 7dn ) — 3_“1%11);:.’:-1&1"
8 an isomorphism over d1+(n_2)(gg_2)8h'ld.
(2) For each k we have a natural map:
dl?"')dn

d, ,d
Je+1y 0 Fourg(Fa) "% ) = Fer, 5,

which is an isomorphism over dk+1-,_(n_2)(zg_2)8h;cd.
(3) We have a canonical map:

dyod
Foury—1 (Fxy1m, "5,) —

2
* 3 ;n n —{n— -
O (BisE % )[d — n?](— 2)@((E1®...®En)( DED| )

which is an isomorphism over ) _,~ (dn+(n_1)(2g_2)OShn_ldJr(g*l)("—1)(71'2)).

Proof of Main Theorem B.

Remark 4. The proof given below uses the machinery of weights and relies on
the decomposition theorem. There exists also a more natural, purely geometric
argument, in the spirit of Langlands classification. We will present it elsewhere.
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It is known that every 1-dimensional local system on a smooth projective and
geometrically connected curve over F, is pure. By making a Tate twist, we can
assume that for each 4, 0 < i < n, E; is pure of weight 0.

Points (1) and (2) of Proposition 7 imply by induction that Vk, 1 <k <n-1

(a) Over ., 8h;, d+h(k=1(0=1) the sheaf S’kdl’ ’dg lives in cohomological dimen-
sions < 0.

(b) Over ., Shy, d+h(E=106-1 the sheaf S"kdl’ ’d" has weights < 0.

(¢) The only sub-quotient of weight 0 of ho(&"kdl’ dn B,) OVer ¢, Sh, dh(k=1)(g-1)
is
comp—1 (3" (L5775, )ld))
(this last points relies on the decomposition theorem, [1]).
Therefore the same is true for the restriction of Four,_;(F, _1‘21’;j:jf%‘n) to

v
MTp—1

-1 (Sn Sh;il—t(lg—l)('ll—l)(n—m ),

where it identifies with

2
Ot (Bisg % Y[d — n?](- 7;)@((El®...®En)—(n—lxe—l)‘Q‘g_n_l

according to Proposition 7 (3)
However, the sheaf E1s 1’ ’d?n is pure of weight 0 and

di,.. ,dn O R
lD)(E1s " ) o~ ElSEf,,,f,E;gv

and 5o is the pull-back of Eisg> % [d — n?](~ 2) $0 (n— 1)(2q,2)°Sh;d"'"(nﬂlmg ~2)

d+n(n—1)(29— 2)

since the map 7, is smooth over (n 1)(29-2) SNy,
Therefore, the pull-back of ElSdl’ ’d“ B ld—n ](" ) to the intersection

v 1-1 (cnSth(ln_l)(n—m(g”l)

d+n(n—1)(29-2
v 0g 1 (=120

M (n—1)(29-2)

3

is perverse and pure of weight 0.
By point (c¢) above, over this stack we have an isomorphism

2

0 *(Elsdl, dn )[d n ]( 2)
compp_1(my* (L dEll’, ’,dnnn)[d])

O

® (Br®...® Bp) 00| g aza) =
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2.3.3

Our present aim is to prove Proposition 7. Note, that point (1) is a consequence

. . ode s . dy,d~
of Proposition 5, since 3"1dE11’ ”dE"n is a direct summand of F; Elf(.iE;g o8,

Consider now the fibered product

d+-k(k+1)(9-1 di+...+di+k(k—1)(g—1),d e td
OSh’;c-i-l ( )g-1) x gjlklg‘ + e tk(k—1)(g—1),dk 41+ 4dn
shf"k(’“‘l)(g‘l) !

and let "PZT&F k(1o

d+-k(k—1)(g—-1
to 8k} THEEDID,

ettt denote the base change map from this stack

Over the preimage of (k._l)(gg-g)8hi+k(k_1)(g_1) under the projection

d di-+k(k d d qdl+"'+dk+k(k—1)(9—1),d;¢.§.1+...+dn
vt dpHE(k—1)(g—1), k.0 ket
&"l,cf(j +di+h(k~1)(g—1),dx-41+-+dn — Shk+k(k No-1)

the stacks

dk(k-+1)(g—1) Aot itk (k=1)(g—1),di 1ot dn
OSh;cH g 1 ptk(k—1)(9—1),dk41

X k0

Shz"}'k(k—-l)(g"'l)

and

Sh;cd-l-k(k—l)(g_l) 5 Sjldl+...+dk+k(k——1)(g—1),dk+1+...+dn

k,0
d+k(k-1 -1 4
8h{ (k—1)(g—1)

become mutually dual vector bundles.

We will denote by Foury the Fourier transform functor from the category of
sheaves on

h;cd+k(k—1)(9—1) 5 %41+...+dk+k(k—1)(9—1),dk+1+~.+dn

k—1)(2g—2)O
(k—1)(29—2) gpd+h(k—1)(g—1) k0
k

to that on

d+-k(k+1)(9—1) gjldl—|—..‘+dk+k(k—1)(9—1),d.k+1+...+dn

X k0

0g
29-2) Sh
K29=2) O+ ShHE =D

Let finally W' Zl+"'+d’“+k(k_1)(9 “Udkntet gonote the stack that classifies those
triples
(0 — Q8% — My1 — My — 0, M, < My1),
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with My € Shi“(’“‘”(‘"” for which the composition M} — M}, is an embedding,
ie.
My — M € ffl;cél+"'+d’“+k(k”l)(g—l),dk+1+...+dn
,0 .

S ditk(k-1)o-1), 3 d

We have a tautological open embedding of W'~ = into

k n
> ditk(k—1)(g—1), > di+k(29-2)
= =k

X S’Ik,l ;

1 dtk(k+1)(g=1)
Shk+1 d+k(k+1)(g—1)
Shk+1

we shall denote this embedding by 741

n

k
> ditk(k—1)(g-1), 3> di
1i=1 i=hk+1

We shall denote by 4}, and rj, the projections from W', to

d+k(k+1)(g-1) di+...+dp+k(k—1)(g—1),dgs1+...+dn
OSh‘;c+1 g F] 1+ dpk( Y(g—1),dr 41

X 5.0 and to

d+k(k-1)(g—1
Shk ( Wg-1)

dt by Hh(k—1)(g—1),djp1 ot d :
g Atk bt poghectively,

The following assertion follows from the standard properties of the Fourier
transform functor.

Lemma 12. (1) Let X be a sheaf on

ook (k=1)(g—1) g g1+t
X 7] 1+ dg+k(k—1)(g—1) A1+t _

d —1)(g—1
)Sh;c +k(k—1)(g—1) ;
Sh;i+k(k—1)(a-l) ’

(k—1)(29—2

Then
3 dith(h-1)(g—1), 3 d Sdek(h-1(g-1), 3 b
Foury, o'pj T (K) " Pl = o Foury, (X).

(2) Let X' be a sheaf on Flgi+AFFE D@D digitotdn ey

N * —_ 1
Foury o ity 0 71 (IC) 2 iy 074" () @1)(5)) ootk st
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2.3.4

Consider now a map

d;

S dith(k=1)(g-1), 35
M ShlERL

d+k(k+1)(g—1 i=
Sh‘;c+1 +k(k+1)(9—-1) X le;qzll
Shd‘f'k(k"‘l)(g"l) ’

k+1

given by sending (s : Q%% — Myyy, M}, < Myy,) with My, € ghﬁ'{(kﬁ)(gd) to
09F @ (Myy1/M}) € Sy i+,

Lemma 13. We have a Cartesian square:

n

S ditk(E-1)(g-1), 3 di+k(29-2) &
Wl;:l i=k+1 — OSh’li=k+l
o | i
k n
> ditk(k—1)(g-1), 3 di+k(29-2) > d;
Slz;c+1d+k(k+1)(g—1) % g:l;:’ll i=k+1 3 Sh’1i=k+1

d+k(k+1)(g—1
Shk+1( Ng—1)

Proof. The preimage in

di+...+dg - — -
% gttt e +h(k—1)(9—1),dg 1+t dn+k(29—2)

t dtk(k+1)(g-1)
Sh
k+1 k,1
gpdk A (9-D)
k1

of the open sub-stack

dpg1 .. +d, d wrt-d,
OShl1 ko1 "y Shll k1t tdn

corresponding to those triples
(0= Q®F — Myyy — My = 0, M} — Mj.1)

for which Q®* maps injectively into the quotient My.1/M}, which is equivalent
to the condition that Mj embeds into M}, the latter being the definition of
W,dl+...+dk+k(k-—1)(g—1),dk+1+...+dn

] :

O
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2.3.5
Proof of Proposition 7(2).
Let

k n k n

> ditk(k=1)(g-1), 3 di+k(29-2) Y dit+k(k=1)(g-1), > di+k(29-2)
1 i=1 i=k+1 d/ i=1 i=k+1
Dr1 and g,

denote the projections of

k n
d;+k(k—1)(g—1), di+k(2g-2
Sh! d+k(k+1)(g—1) gjligl (k=1 )i=§+1 i+k(29-2)
k+1 X ko1
gpdE(k+1)(g—1)
k+1

k n
_ 2 di-+k(k—1)(g—1) S d;
to 8hy, +1d+k(k+1)(g Y and to Shi X 8hi*¥1  respectively.

Proposition 1 implies, that 3’k+1§i51”'.‘."”d§n identifies with

k n k n
2 ditk(k-1)(g~1), 3 di+k(29-2) > ditk(k—1)(9-1), 3 ditk(29—2)
) _i=l i=k-1 i=1 i=k-+1 *

P o Iq;cjl
s o1y, 1 Aptlyeontn
(ElSEll,...,Ek/‘k gg‘lEkkill,-..,En)®
k . 1 k(3 )
(g-1)(1-k) k(29-2) ol i1
1:(§1 (B IQ@"L_T&) i:%)ﬂ (B laes) ® (Qe[l](z)) ML

S Hh(=1)(g—1), 35 dirth(20-2)
The image under the map ‘g, =k of

di+...+di+k(k-1)(g-1),d et dpn+k(29—-2) — d+-k(k+1)(29~2
,pkfl_l_ +dp+k(k—1)(9-1),dg 41+ Adn+k(29—2) 1(¢ik+1+(n—2)(29-2)8h; +k(k+1)(2g ))

belongs to the open sub-stack

n

S diotk(k=1)g-1) oy
Shy X dyy1+n—k-2)(g-1) Sh*F

since the fact that My1 € g, +(n—2)(2g—2)She+1 implies that

(Me41/Mz) ® Q¥ € 4,y 1(n—k-2)(29-2) 81
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Using Proposition 5(1) and Lemma 13, over g4, +1+(n_g)(29_2)8h1d+k(k+1)(29_2)
k

dla ad‘n

we can rewrite the expression for 5‘“k+1 T B, 28

Zd +k(k~1)(g— 1), E d+k(29~2
)=l ) 1 dittdptk(E—1)(g—1),dpp1 -+ Hdn+E(29—2) «

Py 10 Jrt1t °9k+1 © G,1
(Els‘“’ WAL 6’1%;1;;::52)

— ®k( }E d;)
& (B0 j1ms) & (B ge) ® @) 5
+1

’L.._

On the other hand,we can compute the sheaf Fourk(ﬂ’kd" ik ) using Lemma 12
and we will obtain that Foury (S’kdl’ +dn ) identifies with

) i)dﬁk(k—l)(g—l)’i:%ldf J s i§1di+k(k_1)(g_l)’t—%+l (st yond it yernsln
Pk, 1O T OT O ko (Eisy, %, RLg" "5 )
®(F1®..® Ey)~ (9-1)(k— 1)| T) ? (@e[l](%))®(k+1)(i=%+ldai)

Observe that the maps
gr o DR AR oD it o it apg it AR g~ it 5

—_ —1),dy e (29— D(g— ..
from W/ZH- +dp+k(k—1)(9—1),dk 41+ +dn+k(29~2) to Sh' d+k(k-+1)(g—1) coincide.

Ed1+k(lc Dio-1), 3 d

In addition, the composition of the projection g, 0 = ot with
the automorphism id xmgqer of the stack
5 dith(k-1)(g—1) * 4
Shi! X Shyi=k+1
coincides with the composition
Zldw'i’k(k {g— 1): E dz+"7(29 2)
(ld Xﬂ'o) o ,q;c_.l o jk-’rl

that maps

k n

> ditkth(k=1)(g=1), 35 di+k(29-2) zmk(k 1)(g-1) 2 4

W[;c-l i=k+1 - Sh“' X Sh0i=k+l ,
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Therefore, using Lemma 11, we obtain that the sheaf

n
Zd +k(k—1)(9-1), X d p J p p
1% i=k+1 * 1303k k41500500
Tk © Qk,o (Els 1g, RO B

k n
S ditk+k(k—1)(g—-1), 3 di+k(29—2)
i=k+1

on W' identifies with
Zd +k(k-1)(g- 1)7 Z dz +k(29-2)
| i= *
]k+1 SN ]
dyend doatyodn - 1 ®“(._§3 d;)
(Bis% RF; é”kfl,.--,En)izﬁl (E*20-D)|00) @ @MG) =
Hence, the sheaf I‘ourk(ﬂ-'k o ’d" 5, ) identifies with
, S det(k-1)(o-1), O i) , £ dith(-1)(o- 1), 3% dith(20-)
Prn B 0 Jht1t © Jir © Ton - *
¢ diyend dig1yeeestn
(Eisg, " 5,) ® F1g ) B,
k 1, ®k( E i)
® (BN & (B Vge) © @[1(G)
=1 083 sk

Comparing this with the expression for 3’k+1 poo 5 obtained above concludes

the proof of the proposition.
O

2.3.6
Proof of Proposition 7(3)
As in the proof of Proposition 7(2),
2
* . 1geenslp —(n— — n
i (Bis5,) © (Br ® .. ® Bn) ™00 o aca)d —n?](—)
identifies with

1, dmn+(n=1)(n=2)(g—1),dn+(n—1)(29—2) 1 _d—dn-+(n~1)(n~2)(g1),dn-+(n—1)(29~2) s
Pn-1,1 10 Gn—1,1

- _ — 1 _
(Bisgy 5, BF:%) 'S (B0 (B0 ® @1 (5))°
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and Four,_1(F,,_1) identifies with

lp;il ffn‘i‘(ﬂ 1)(n—2)(g—1),dn+(n—1)(29— 2) qu_dnl—i-(n 1)(n—2)(g—1),dn+(n—1)(29—2)# ojn!oj:l

(s, R71) B, (B ) (Bilenr) @ @ ()00

The assertion follows now from the following lemma:
Lemma 14. The open embedding
j W, _ Sh! d+n(n—-1)(g-1) % grld—dnﬂ-n(n—l)(g—-l),dn
v " gpdtnnn-n O

) .

is an isomorphism over the preimage of d,+(n—2)2g- Z)Sh‘ﬂ(“ D(n=2)(g-1) 4,

d+n(n—1)(g—1) d—dn-+n(n—1)(9=1).dn_
OSh;-L n(n g F] +n(n-1)(g-1),

X n~1,1

gni+n(n=1)(s=1)
Proof. We have to prove that if
0— Q%1 3 M, = My_1—0

is a short exact sequence with Ext*(L., M,_;) = 0 for any L. € Pic® with ¢ >
dn + (n — 2)(2g — 2), then for any embedding M} _, < My, with deg(M;_,)
deg(M,_,) — dn, the composition M;_; — M, — My,_; is also an embedding.

Suppose that this is not so and let K denote a maximal sub-sheaf in M _,
which does not intersect the kernel of the map M}_, — My_;. Let us introduce

the notation Ly := M,_,/K, Li = M},_,/K and M, := M, /K. It is easy to see,
that M!_,/K is a line bundle and that

deg(Mp-1/K) — deg(M,_,/K) = dn

The kernel of the map L} — L; embeds into Q®"!, therefore it has a degree

< (n—1)(29—2). Therefore, L, has a torsion sub-sheaf of length > deg(L} )—(n—
1)(29 —2) and hence L; maps surjectively onto a line bundle L with deg(L) <
deg(Ly) — deg(L}) + (n — 1)(29 — 2) = dn + (n — 1)(29 — 2). But for such L
there always exists a line bundle L, of degree ¢ = d,, + (n — 2)(2g — 2) with
Ext'(Le, L) # 0.

However, the maps

Ext!(Le, Mn_1) — Bxt! (L, L) = Bxt*(Le, L)

are surjective, hence Ext' (L., My—1) # 0 and this is a contradiction.
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Chapter 3

Automorphic sheaves attached to
a 2-dimensional geometrically
irreducible local system

3.1 A “simple” proof of Drinfeld’s theorem

3.1.1

Let E be a 2-dimensional geometrically irreducible local system on X. Our goal
in this chapter is to present a proof of the following theorem:

Main Theorem C
There exists an irreducible perverse sheaf Autg on Bun that satisfies:
(1) m*(Autg) ~ Autp KA?(E)
(2) (q x supp): o p*(Autg)[1](3) ~ Autz RE.
Our strategy will be to define first a sheaf S, over °SA's for d large enough

and to prove that it is a pull-back under %7y of a sheaf 85 on 8hy. The sheaf
Autgy will then be defined as the restriction of 8z to Buny C Shs.

3.1.2

Recall now the “fundamental diagram” introduced in Sect. 2.1.1:
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ogpdJL, gp¢ Sh 2072

/ \ \m
Spgtas?

Let d satlsfy d>4g—4. For a 2- d1mens1onal local system E' on X we define
the sheaf 84,4 on =1 (48h4"2+2) C Sh,” as follows:

Definition 4.
8w := Four ojy,, o my* (L% **2[d]).

Remark 5. In the case when E' = E; @ Ey with E; and E; being geometrically
non-isomorphic 1-dimensional local systems on X, we have shown in Corollary 9
that there exists a perverse sheaf Sp/¢ EISE E, OL 8hy that satisfies

O3 (8m®)[d — 4g + 4](—2g + 2) ~ 8¢

over 5,-2°8h,®. The next theorem states that the same is true for 8¢ when E is
geometrically irreducible.

Theorem 5. Let E be geometrically irreducible and let d satisfy: d > 6g — 4.
There exists an irreducible perverse sheaf $% over Sh$ such that the sheaves

O (84)[d — 49 + 4](—2g + 2) and 8},* are isomorphic over 89_2812'2‘1

A statement equivalent to Theorem 5 was proven by V.Drinfeld in [2]. Below
we will give another proof, where we will derive Theorem 5 from the following
two assertions:

Theorem 6. Let d satisfy d > 4g—3. The fact that F is geometrically irreducible
implies that the canonical maps

Juomy*(bp) = Ju, 0 1y (Lp) = Jr. 0 Mg (L)
are isomorphisms over Sh;%<!,

Proposition 8. Let d satisfy d > 49— 2 and let E' and E" be any 2-dimensional
local systems on X. Then the stalks of the two sheaves

Four ojy, o my*(L%,) and Fourojy, o my*(L%.)

have equal FEuler-Poincaré characteristics at every point of my~ 1(Sh'd <1)
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3.1.3

The following simple observation will be a key point in the proof of Theorem 5.

Lemma 15. Let X be an irreducible perverse sheaf on a smooth algebraic stack
Y. Assume that the Euler-Poincaré characteristics of the stalks of X are the same
for all points of Y. Then X is locally constant.

Proof of Lemma 15

By definition, we may assume that Y is a smooth algebraic variety. Let °Y c Y
denote an open sub-variety, where X is locally constant.

It is enough to show that X can be continued as a local system to the generic
point of every component of Y — %Y of codimension 1. Therefore, we are reduced
to the case when Y is a spectrum of a regular local ring of dimension 1 and let ®
and ¥ denote the functors of vanishing and nearby cycles respectively.

By the assumption, x(¥ (X)) = x(XK|y-oy), therefore x(®(X)) = 0. Since the
functor @ is exact, this implies that ®(X) = 0.

a
Proof of Theorem &

Pick F; and E; to be two 1-dimensional local systems on X satisfying H°(X, E;®
E3) =0.

By combining Theorem 6, Proposition 8 and Corollary 11, we learn that
the Euler-Poincaré characteristics of the stalks of On}(Eis}, p,)[d — 4g + 4] are

equal to those of 8%% over 7y~ (8h429"%51) and hence over 7y~ (SAS %51y n
0 8 hl ;<0
2925192 :

Let U denote the support of Eis‘}gl) 5, On Bun Mag—28h$ and let U° denote a
smooth non-empty open sub-stack of U, where EisdEhE2 is locally constant.! We
will denote by U (resp., by U°) the preimage of U (resp., of U°) in 7y ~1($h¢~20+%51)n
0 Shl ;<0
29-20M9 7 -

The fact that the Euler-Poincaré characteristics of the stalks of O} (Eis, p,)ld—
4g+4] and of 84" coincide implies that the support of 85 on 7y~ (A4 2=
grQSh'Qd;SO coincides with U.

Therefore, S’Ed is an irreducible perverse sheaf on U and it is enough to show

that its restriction to U° is a pull-back of some sheaf on U°, since the map
SQ_ZSh;d — 29-28h4 is smooth.

'In fact, one can show that EisdEh &, 18 supported at the generic point of Buns.
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We claim that it is enough to show that 8§9d is locally constant over Uo,
Indeed, S’Ed is equivariant with respect to the action of G, on Sh’gd by dilations

and the fibers of the map U°/G,, — U° are connected and simply connected,
since $h¢ — 8h=! has codimension 2 in $h¢ and the fibers of the projection %y
over U? are vector spaces with removed zero.

However, by the definition of U°, the Euler-Poincaré characteristics of the

stalks of O3 (Eish, 5,)[d — 4g + 4] are constant over U", hence the same is true

for 85;%. The assertion of the theorem follows now from Lemma 15.
O(Theorem 5)

3.2 Proofs of Theorem 6 and of Proposition 8

3.2.1

The proof of Theorem 6 relies on the following two geometric observations:

Lemma 16. Let Y be an algebraic stack and let a : € — Y be an (n-dimensional,
n > 2) vector-bundle over it. Let PE, Pa, X, X' be as in Proposition 4. The
following three conditions are equivalent:

(a) 71(X) 22 Ju(K) = 5.(X)

(b) a0 H(K) =a,05,(K)=0

(c) Pay(X") = 0.

Lemma 17. Let a : Y1 — Y5 be a representable proper map between algebraic
stacks. Let j:°Y; — Y1 be an open embedding such that the map of the comple-
ment of °Y, in Yy to Ys is a finite morphism. Let K be a perverse sheaf on %Y.
Assume that

(@0 )(X) = (a0 ) (X) =0.

Then ji(X) ~ 71 (XK) = 7.(X).

Proof of Lemma 16

It is well-known that (b) and (c) are equivalent and that a) o 7,(X) = a, o
#1(XK) = 0, which proves that (a) implies (b).

Assume now (b). According to Proposition 4, a; o 51, (X) = 0. Since X is
Gn-equivariant, the functors a; and inverse image with compact supports onto
the zero-section produce isomorphic objects when applied to X.

This proves that ji (X) = j.(X). The isomorphism 5 (X) = ji (X) follows by
duality.

63




O
Proof of Lemma 17

It is sufficient to prove that the cone of the map /i(XK) — 7. (X) vanishes. This
cone is supported on Y; — °Y; and since the restriction of the map a to Y — 0y,
is finite, it is sufficient to prove that the above cone vanishes after applying the
functor a1 = a, (the map a is proper).

We have:

ay(Cone(51(K) — 7.(X))) = Cone(a o j1(XK) = a. 0 ju(XK)) =0.
O

3.2.2

Proof of Theorem 6
Let us first prove the assertion of Theorem 6 over 7| L(8A%i=0),

The closed sub-stack Sk, <" — 98k, %=" is the zero section of the vector bundle

Sh’ld’so. We will use Lemma 16 to deduce the required assertion from a result by
Deligne.
Consider the projectivization

Prry : PSh, %St — ghdis!

of the vector bundle 8k, <! over Sh{=".

Over Sh%SY ~ Pic?, the stack PSh;%<! identifies with X /Gp,. Under this
identification, the projection Py goes over to the Abel-Jacoby map X4 /Gy, —
Pict and the sheaf on PSA,%<! corresponding to the sheaf 7§ (L) on Sh{=° goes
over to E(@. '

Deligne’s theorem ([2], Appendix), states that the direct image of E@ under
the Abel-Jacoby map vanishes if d > 4g — 4 and E is geometrically irreducible.
This proves our the assertion over the preimage of Sh,‘ll‘so.

To treat the general case, let us denote by Pj; : PS4t — P8h%<! the
open embedding of the image of °Sh}%=! under the natural projection.

The map of PSA,4S1—0P8A! bSL to Sh<" is finite and by combining Lemma 16
and Lemma 17 we see that it is enough to check that the functors (Pmy o Pyji)y
and (Pm o Pj;), applied to the sheaf on "P(8h;%<!) corresponding to mg *(L4,)
produce zero. The latter is equivalent to

1 0 (T (64)) = Ta 0 o, (3 (£4)) = 0.
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Consider now the complement $h¥' = ShFS! — SHE<C,
There is a map

d;1 0oy 1di<l 0eyrd—1,<0
Shit x_ 8K — °8h)
shdis

that sends a pair
0—=T—=L' - L—=0,0=L)— (0= L)€ Sh] =

and a map
Sht x Ogp/dist y gyld-t
shdist ’
that sends a pair
0—-T—L—L—0,0<L)

to
0—T—L/0— L/O—0)eFlgs"
The map
: Shd;l Do i<l —s (§p%1 0 ]:d—l;sﬂ % L,d-1
& 1 S]L?Sl Shl (S 1 Sh.ilz(l;so 5 ' )Sh(l,xé’:hg"l ﬂo,o

is a representable smooth affine fibration of relative dimension 1.

ShEL % Ogp/EEt

shist

1,d-1
_ Polo
Flget  —2— Sh{

) d—1;<0 _1 (exmy)
(ShEL  x  OspESYy o gylemt Lo
8hy~ti<0 8hyxSha~*

1,d-1 d-1
'(‘Jo,o )l 90,0 l

d—-1;<0 eXmg _

Shit % O8p —% 8hix 8h&!
gpo-1is0
id><°7r1l
Shi!

(In the diagram above, ¢ is the map Sh¥' — 8hy as in the proof of Lemma 10.)
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Therefore
1y © Ji; © ﬂB’*(L%HSh?u ~ (id x°71)y 0 ’(qé:g_l)! okiok o'(ex ﬂa’)*p(l)zg_l*(ﬁ;%) ~
~ (id x"m)ro (e x my)* 0 g5 o prg*(L)[~2)(<1),
which by Proposition 2(2) identifies with
(id %)y o (€ X 73)*(Lh B LE ) [—2)(—1).

Using the projection formula, the latter identifies with the tensor product of
¢*(LE)[—2](—1) and the pull-back under the map Sh%' — SAZ~C of the sheaf
Omy 0 my* (L% ).

However, we have already shown that %ryjory*(£%!) vanishes when restricted
to ShY™1= since d — 1 > 4g — 4, by the assumption.

The vanishing result for 7y, o j1,(7y*(Lg)) follows by Verdier’s duality, since
D(LE) = Lpv.

O

3.2.3

We will deduce Proposition 8 from the following lemma.

Lemma 18. Let E' and E" be two 2-dimensional local systems on X. Then
for any variety mapping to Sh,g the pull-backs of L%, and of L4, are isomorphic
locally in the étale topology (by this we mean that the corresponding projective sys-
tems of sheaves with torsion coefficients can be chosen to have locally isomorphic
members).

Proof. Let us consider the analogous sheaves L and Lpr constructed out of
local systems £’ and £ with torsion coefficients. It is enough to exhibit an étale
cover of the stack Shg such that the pull-backs of Ly and of Lz to it become
isomorphic.

Let now d : X’ — X be an étale Galois cover and consider the open sub-stack
Shi(X,X") in Sh&(X') that corresponds to those torsion sheaves T € Shad(X")
for which the support of T' does not intersect with the support of o(T") for any
element o € Gal(X'/X).

The natural map 6% : ShS(X, X') — 8hd(X) given by

T € Shi(X") = 6.(T) € 8h3(X)
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is étale and surjective. This implies the assertion, since if 0*(E") ~ §*(E"),

* *
6d (LE/) ~ L's*(E')IShg(X,X') ~ L‘s*(Eﬁ)!Shg(X,X') ~ 5d (LE")‘
O

The proof will use the following result, which follows from a theorem by
Deligne [6]:

Proposition 9. Let X; and X, be two constructible complezes on a complete
variety whose cohomology sheaves are isomorphic locally in the étale topology (cf.
Lemma 18 above). Then the hyper-cohomologies of these complezes have equal
Euler-Poincaré characteristics.

3.2.4

Proof of Proposition 8. 2

Let Kz and Kg» denote the pull-backs to the stack ‘PSh;%<! of the sheaves
L4, and L4, on Sh.

We claim, that it is enough to show that for any map ¢ : Y — PSh{4<H
where Y is a complete variety, the Euler-Poincaré characteristics of the hyper-
cohomologies

H(Y, §* o Pj1, (X)) and of H(Y, ¢* o Pjy, (X))

are equal.

Indeed, for any Gy,-equivariant sheaf X on a vector space €, the stalks of
Four(X) at e¥ € &" are glued from X|o, H(PE, X') and H(H.v, K'|s,, ), where X'
is the corresponding sheaf on P& and H,v is the hyper-plane in P€ corresponding
toe’.

To prove the required property of Xz and of Kg» it is enough to find a stack

PSh; %<1 with a proper map to P8h}%<! such that Pj,,(Xz) and Pjy,(Kpr) are

direct images of two locally isomorphic sheaves on PShj %<t

N

Let PSh} %<1 be the stack that classifies pairs Ly < L, where L is a coherent
sheaf of generic rank 1 and with an identification det(Lo) = O and where L €

Sh%S!. The stack PShj%<! is a sub-stack of Sfl?:g, therefore we have a projection

2T am grateful to G.Laumon, who has found a mistake in the previous version of the proof
of this proposition.
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Pj;

P8hi%<l — ShYS!. Let OPShiaist <& IP’Sh"Kl denote the open embedding of

preimage of $h%=" in Pgl?_‘rﬂ

Consider the fibered product PSh14<1! x Sh’ We have a natural proper map
Sh?

PSh'd<1 x Sht® — Sh%ST,
Sh°

—_— N ——

It is easy to see that PShi4<t x $A.° is a line bundle over PSh|4<! and hence
$h?

we get a map I[’g;?z—/d;ﬁl — P8hy%<! with OPS/]Z‘?Q mapping isomorphically onto
WPSh; St C P AST,

Let Xp (resp., Xgn) denote the pull-back of L4, (resp., of L4,) under the
natural projection Pgl;ml — Shd The sheaves fTCEr and ﬂ’ZEz are locally isomor-
phic and so are the sheaves lP’gl. 0 ]le (JCE/) and ]P’yl, o ]P’gl (CKEH) However, the

direct image of Pj;,0Pj; (Xg) (resp., of Pj;, 0P, (X)) onto P8k} %<1 identifies
with Pj,(Kgr) (resp., with Pjy,(Xgn)), which implies the assertion.
O(Proposition 8)
Remark 6. When working over a field of characteristic zero, the proof of Proposi-
tion 8 becomes cons1derably simpler. In partlcular We can prove the assertion not
only over 7y "1 (8h; =S Y, but rather over 7y~ 1(Sh} iz " provided that d > 2g—2+t:
Indeed, we have an analog Proposition 18 that asserts that Euler-Poincaré
characteristics of L and of Lgv are equal at all points of Sh%. The assertion of
Proposition 8 follows now from the fact that for any two complexes of holonomic
D-modules with regular singularities on any variety (not necessarily complete
(1)), that have equal pointwise Euler-Poincaré characteristics, the Euler-Poincaré
characteristics of their hyper-cohomologies are equal as well.

3.3 Proof of Main Theorem C

3.3.1

For d > 6g — 4 we have constructed the sheaf 8% on $hi. We define the sheaf
Aut$, for d > 6g — 4 to be the restriction of 8% to Buns.

To prove Main Theorem C we have to define the sheaves Autd for all d € Z
and to establish the Hecke property. This will be done in two steps:
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Step 1.
We will prove that for d > 6g — 4 over o4 28h2 N Bun, we have:

(q X supp): 0 p*(AutdEﬂ)[l](%) ~ Auté RE.

Step 2.
We will prove that for d > 6g — 4 and ¢ > 0, over (Buny Ngg— 28hs) x Pic®

m*(AutdF?) ~ Auth ®(A*(E))°
E B

Let us now show how Step 1 and Step 2 imply Main Theorem C.

Proof of Main Theorem C
First of all, since the sheaves 8% are irreducible and the map m is smooth,
the assertion of Step 2 implies that the isomorphism

(Sd+20) ~ Sd (A2 (E))

d > 6g — 4 and ¢ > 0 holds over the whole of Shé x Pic®.
For any d € Z pick a line bundle Lo such that d + 2deg(Lo) > 69 — 4. We
define Autd, as

Autgy i= m, (Autg"™ ) @ (A2(B)) 45 ).

The assertion of Step 2 implies that this definition is independent of L.
Moreover, the second Hecke property

m* (Autb ) o~ Auts R(A%(E))®

is automatically satisfied.
To prove the first Hecke property it is enough to establish the isomorphism

(q X supp): o p* (Autg [1](%) ~ Auti RE

over Bungy ﬂd/Shz for each d and d'.
For fixed d and ¢ pick again Ly in such a way that d 4+ 2deg(Lo) > 69 — 4
and d' + deg(Lo) > 29 — 2.

We have: mp, (Bung Ng8hs) C Buny Ny,- ,Shi2deE(Lo)

and

N 1
(q X Supp)! % p (AutdE+1)lBun2 ﬂdlShg [1](5)
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is isomorphic to

* " 1
mi, (axsupplop” (At I | s ®((AT ()01, )1](5).

2

The latter, according to the assertion of Step 1, identifies with
(mi, x id)* (AutEr29e ) RE) @ ((A2(EY))%eelo)|, ) ~ Aut RE,

which implies the required statement.
O

3.3.2

Proof of Step 1

Consider the fibered product %Sk, X Flys. Let us denote by gj ™ the base
8hg

change map °Shj,* s>1<fl Flys — 081 x Shi and by Pho®" the map 08, sTd Flyg —
14 13
08h, ™! that sends a pair
Q>M,0->M—>M—->T-—0)

to Q — M.
We have a commutative diagram:

d,1 ; dil
1 ‘1’2,0 d Pao d+1
08hy" x 8hy +— O8hy" x Flgp ——r 08hy"T

Shg
orpca| | on |
a0 P20
) 2,0
Shé x Shy +—— Flys —20y  8hdt

(note, that the right square is NOT Cartesian)
We will use the following result due to G.Laumon ([11], Corollary 4.3):

Proposition 10. The sheaf Fourojy, o 7(6’*(,2;%4_1_29-'-2) on OSh'de satisfies:

_ - 3 , —
Gs,0™ 10 ph o™ (Four ojyy o my* (L5 7*%))[3](5) = Four ojyy o my* (L5 ") B L
over w1}t (oShIT2TE),
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According to Theorem 6, we see that over 77~ 1(o8h] %)

. 3 d
qéof“ oy o (3'E;d+1)[3](§) ~ 8" R L.

; -1 .
We have: pg;é(qg:é (29-28h9)) C 94-28h4™, and by applying Theorem 5 we
obtain that over 77~ (o8h% 2 *%) N 89,28h'2d+1

(Oma < id)* (g 0 o33 (SENIEIG) = (Omz x i)' (8 R B).

Since over Buny Nay—oSh? the map Omy : 7{~ (s8R *?) — Sh¢ is smooth
and has connected fibers, the above isomorphism implies that

* 3 s
G551 © Pig (SdE+1)[3]('2‘) ~ 8% W L.

The assertion of Step 1 follows now by applying Proposmon 4 with ¥ =
Bungy Mgy »Sh? and € being the restriction to Buny ﬂgg_QSh of the vector bundle
Fio

‘O

3.3.3

Let mx be the map Bun, xX — Buny. The pull-back m% is the second Hecke
functor for GL(2).

We claim, that the proof Theorem 4 presented in Sect. 1.3.6 apphes to deduce
from the assertion of Step 1 that for d > 6g — 4 over Buny ﬂgg_.gShz,

m’ (Autdt?) ~ Auth KA?(E).

The only modification required is to replace all the relevant stacks by their
open sub-stacks that correspond to the preimage of Bun ﬂgg~28h2 under the
g-projection.

Therefore, the inverse image under the map Bung x X(9 — Bun, of Au
identifies with AutzR(A?(E))@, which in turn implies by the geometric class
field theory, that for ¢ > 0,

m % (Autt) o~ Autt R(A2(E))".

td+2c

This completes the proof of Main Theorem C.
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