
FPGA Implementations
of the RC6 Block Cipher

Jean-Luc Beuchat

Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon,
46, Allée d’Italie, F–69364 Lyon Cedex 07,

Jean-Luc.Beuchat@ens-lyon.fr

Abstract. RC6 is a symmetric-key algorithm which encrypts 128-bit
plaintext blocks to 128-bit ciphertext blocks. The encryption process in-
volves four operations: integer addition modulo 2w, bitwise exclusive or
of two w-bit words, rotation to the left, and computation of f(X) =
(X(2X + 1)) mod 2w, which is the critical arithmetic operation of this
block cipher. In this paper, we investigate and compare four implemen-
tations of the f(X) operator on Virtex-E and Virtex-II devices. Our
experiments show that the choice of an algorithm is strongly related to
the target FPGA family. We also describe several architectures of a RC6
processor designed for feedback or non-feedback chaining modes. Our
fastest implementation achieves a throughput of 15.2 Gb/s on a Xilinx
XC2V3000-6 device.

1 Introduction

In 1997, the National Institute of Standards and Technology (NIST) initiated a
process to specify a new symmetric-key encryption algorithm capable of protect-
ing sensitive data. RSA Laboratories submitted RC6 [9] as a candidate for this
Advanced Encryption Standard (AES). NIST announced fifteen AES candidates
at the First AES Candidate Conference (August 1998) and solicited public com-
ments to select five finalist algorithms (August 1999): MARS, RC6, Rijndael,
Serpent, and Twofish. Though the algorithm Rijndael was eventually selected,
RC6 remains a good choice for security applications and is also a candidate for
the NP 18033 project (via the Swedish ISO/IEC JTC 1/SC 27 member body1)
and the Cryptrec project initiated by the Information-technology Promotion
Agency in Japan2.

A version of RC6 is more exactly specified as RC6-w/r/b, where the param-
eters w, r, and b respectively express the word size (in bits), the number of
rounds, and the size of the encryption key (in bytes). Since all actual implemen-
tations are targeted at w = 32 and r = 20, we use RC6 as shorthand to refer
to RC6-32/20/b. A key schedule generates 2r + 4 words (w bits each) from the
b-bytes key provided by the user (see [9] for details). These values (called round
1 http://www.din.de/ni/sc27
2 http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

P.Y.K. Cheung et al. (Eds.): FPL 2003, LNCS 2778, pp. 101–110, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.din.de/ni/sc27
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

102 J.-L. Beuchat

f f

A B C D

α α α α

ββ

α+β α α+β α

γ β+γ γ β+γ

γ

γ

δ δδ δ

β+γ pipeline stages

A B C D

α α α α

S[2i] S[2i+1]

S[2r+2] S[2r+3]

log w

S[1]

log w

S[0]

R
ep

ea
t f

or
 r

 r
ou

nd
s

(a) Pipelined datapath of RC6.

entity rc6_f is
port (

D : in std_logic_vector (31 downto 0);
Q : out std_logic_vector (31 downto 0));

end rc6_f;
architecture behavioral of rc6_f is

signal d0 : std_logic_vector (31 downto 0);
signal d1 : std_logic_vector (31 downto 0);
signal p : std_logic_vector (63 downto 0);

begin -- behavioral
d0 <= D;
d1 <= D (30 downto 0) & ’1’;
p <= d0 * d1;
Q <= p (31 downto 0);

end behavioral;

(b) Straightforward implementation of f(X).

Fig. 1. Encryption with RC6.

keys) are stored in an array S[0, . . . , 2r+3] and are used in both encryption and
decryption. The encryption algorithm involves four operations (Figure 1a):

– Integer addition modulo 2w (denoted by X � Y).
– Bitwise exclusive or of two w-bit words (denoted by X ⊕ Y).
– Computation of f(X) = (X(2X + 1)) mod 2w, where X is a w-bit integer.
– Rotation of the w-bit word X to the left by an amount given by the log2 w

least significant bits of Y (denoted by X ≪ Y).

Note that the decryption process requires moreover integer subtraction modulo
2w and rotation to the right. As the algorithm is similar to encryption, we will
not consider it here.

In this paper, we study several hardware architectures of RC6 using Virtex-E
and Virtex-II field programmable gate arrays (FPGA). Virtex-E and Virtex-II
Configurable Logic Blocks (CLB) provide functional elements for synchronous
and combinational logic. Each CLB includes respectively two (Virtex-E) and
four (Virtex-II) slices containing basically two 4-input look-up tables (LUT),
two storage elements, fast carry logic dedicated to addition and subtraction,
and two dedicated AND gates (referred to as MULT AND) which improve the
efficiency of multiplier implementation. Furthermore, Virtex-II devices embed
many 18-bit× 18-bit multiplier blocks (also referred to as MULT18x18 blocks)
supporting two independent dynamic data input ports: 18-bit signed or 17-bit
unsigned. Arithmetic operators dedicated to FPGAs should therefore involve
such building blocks.

This paper is organized as follows: Section 2 describes several architectures of
a RC6 processor. We then investigate various implementations of f(X) and show
that the choice of an algorithm depends on the target FPGA family (Section 3).
Finally, Section 4 digests our main results and compare them with recent works
on RC6.

FPGA Implementations of the RC6 Block Cipher 103

2 Architecture of a RC6 Processor

RC6 encrypts plaintext in fixed-size 128-bit blocks. However, messages will of-
ten exceed 128 bits and a simple solution, known as Electronic Codebook (ECB)
mode, consists in partitioning the plaintext into 128-bit blocks and encrypting
each independently. This ECB mode has a major drawback in that identical
ciphertext blocks imply identical plaintext blocks and is therefore inadvisable if
the secret key is reused for more than one message. More sophisticated chain-
ing modes bring a solution to this problem. For instance, in the Cipher Block
Chaining (CBC) mode, a feedback mechanism causes the jth ciphertext block
to depend on the first j plaintext blocks and an n-bit initialization vector. Since
the entire dependency on preceding blocks is contained in the previous cipher-
text block [6], all blocks must be processed sequentially (CBC decryption can
however be performed in parallel). This property forbids to pipeline the compu-
tation path and implies a slightly different hardware architecture of the block
cipher with a lower throughput. The counter (CTR) mode, a non-feedback mode
described for example in [3], could remedy the situation if it becomes a standard
as recommended in [5]. It is also possible to pipeline the processor in feedback
modes if we accept the decomposition of the data stream into d separately en-
crypted messages, where d is the pipeline depth [11]. Also note that RC6 involves
forty 32-bit× 32-bit unsigned multipliers. The implementation of the 20 rounds
is therefore only possible on rather large and expensive FPGAs.

Consequently, the hardware architecture of a RC6 processor depends as well
on the required chaining mode and the target FPGA. We adopt here a design
methodology initially proposed for the hardware implementation of the IDEA
block cipher [7, 11]: the simplest RC6 processor contains a single round, the
input round, and the output round (Figure 2a). This architecture is tailored to
feedback chaining modes: a single plaintext block is encrypted at a time and we
can provide a new input block after 21 clock cycles.

Assume now that a non-feedback chaining mode is required or that the data
stream is decomposed into several separately encrypted messages. In order to
shorten the critical path, each round has a parametric number of internal pipeline
stages (parameters α, β, γ, and δ on Figure 1a). Figure 2b depicts an iterative
architecture with partial loop unrolling and pipelining. The circuit implements
k rounds (k is an integer divisor of the total number of rounds r), the input
round, and the output round. Finally, Figure 2c illustrates an architecture with
full loop unrolling dedicated to high throughput implementations of the RC6
block cipher.

In addition to the RC6 computation path, each processor contains a subkey
memory implemented on CLBs and a control unit. The latter simply consists in
a token associated with each plaintext block. This token indicates the validity
of the data and selects the correct subkeys in iterative architectures. We have
written a C program which generates a structural VHDL description of such a
RC6 processor according to several parameters (partial or full loop unrolling,
inner-round pipeline stages, and outer-round pipeline stages). Some examples
are freely available at http://www.ens-lyon.fr/˜jlbeucha.

http://www.ens-lyon.fr/~jlbeucha

104 J.-L. Beuchat

Round

Output round

Input round

Round

Optional pipeline stage
Pipeline stage

A B C D

A B C

α+β+γ+δ
pipeline stage(s)

D

(a) Basic iterative architecture
(1+1+1 rounds)

Input round

Round 1

Round 20

Output round

A B C D

A B C D
(c) Full loop unrolling

(1+20+1 rounds)

Round

Input round

Round

Output round

A B C D

A B C D

(b) Partial loop unrolling
(1+k+1 rounds, k = 2, 4, 5 or 10)

Fig. 2. Some architectures of a RC6 processor.

3 Computation of f(X)

The computation of f(X) is the critical arithmetic operation of the block cipher.
Therefore, both area and delay of a RC6 processor are closely related to the
hardware operator carrying out f(X) = (X(2X +1)) mod 2w. In this section, we
investigate and compare a method involving an array of AND gates and carry-
propagate adders (CPA), and three algorithms dedicated to FPGA embedding
small multiplier blocks. In the following, Xq:p denotes

∑q
i=p xi2i.

3.1 Adder-Based Algorithm

This first algorithm is based on a standard method for squaring described for
instance in [8]. Let us consider the problem of computing f(X) when X is a 8-bit
unsigned integer. As shown in Figure 3, the partial products can be significantly
simplified before performing their addition according to the identities xixi = xi

and xixj + xjxi = 2xixj . Finally, based on the well-known relation xixj + xi =
2xixj +xix̄j , we remove x3x2 and x2 from the leftmost column and replace them
by x3x̄2. As f(X) is computed modulo 28, we ignore the term 2x3x2.

Let us formalize the algorithm sketched out in this example. If w is even, the
computation of f(X) involves the addition of w

2 partial products PPi defined as
follows3:

3 A proof of correctness is provided in [1].

FPGA Implementations of the RC6 Block Cipher 105

� � � � � � � � � � � � � � � �
	 � 	 � 	 � 	 � 	 � 	 � 	 � �

	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 �
	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 �
	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 �

�

	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 �
� �

	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � � � �

	 � 	 � 	 � 	 � 	 � 	 � 	 � � � � �

	 � 	 � 	 � 	 � 	 � � � � � �

	 � 	 � 	 � � � � � � �

	 � � � � � � � �

	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � � 	 � �

	 � 	 � 	 � 	 � 	 � 	 �
� 	 �

� � �

	 � 	 �
� 	 �

� � � � �

	 � � � � � � � �

	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 �
	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 � � 	 � �

	 � 	 � 	 � 	 � 	 � 	 �
� 	 �

� � �

	 � �	 �
� 	 �

� � � � �

	 � 	 � 	 � 	 � 	 � 	 � 	 � 	 �

� �

� � � �

� � � � � � � � � �
� � �

 �� � � � �

� � � !

� � � � �

� � � � �

 �

� � � � �

� � � � �

� !

 " !

� � � � �

� � � �

% ') + , . /

 "
 �
 !

0 2 .

0 3 ' +
) ' +

5 6 7
6 8

9 6 :
6 ;

9< =>
? @

AB C
D

Fig. 3. Algorithm 1: computation of f(X) = (X(2X +1)) mod 28 with AND gates and
carry-propagate adders.

PPi =

w−1∑

j=0

xj2j if i = w
2 − 1,

xi+1x̄i2w−1 + xi2w−3 if i = w
2 − 2,

xi22i+1 +
w−1∑

j=2i+3

xj−i−2xi2j if 0 ≤ i ≤ w
2 − 3.

The above equation allows to automatically generate the VHDL code of the
partial product generator for any even w. Synthesis tools are then able to put to
good use the MULT AND gates in order to generate and add partial products
using the same logic resources as a simple multioperand tree adder (Figure 3).

3.2 Multiplier-Based Algorithms

A straightforward algorithm reported in [10] consists in writing the VHDL code
depicted by Figure 1b. Since w = 32 and Virtex-II devices embed 17-bit × 17-bit
unsigned multipliers, commercial tools like Synplify Pro or XST (Xilinx Synthe-
sis Technology) resort to the well-known divide-and-conquer scheme [8] in order
to build the operator (Figure 4).

Each f(X) operator based on this scheme involves three multiplier blocks
and two carry-propagate adders. Consequently, a RC6 processor with full loop
unrolling requires 2r · 3 = 120 MULT18x18 blocks and fits in a XC2V4000
device. Let us define the lower and higher words of the operand X as follows:

106 J.-L. Beuchat

�

�� �

� � � � � � � � 	 � �� � � � 	 � �� � � 	

�

�
�

� � � �
� � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� �
� � � � � �
� � � � � � � � � �
� �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � " � $ & " $ ' (

) (+ � " � $ & " $ ' (

. � . � . � . � . � . � . � . �

/ ' $ 0 2 �. 5 + � " � $ & " $ ' (
6 . � � � � � � � � � � � � � � � � � � � 7 � : + . �

6 . � � � � � � � � � � � � � � � � � � 7 � : + . �

Fig. 4. Algorithm 2: computation of f(X) = (X · (2X + 1)) mod 2w with a divide-and-
conquer strategy.

XL =
∑w/2−1

i=0 xi2i and XH =
∑w/2−1

i=0 xn+i2i. A solution to reduce the amount
of 17-bit× 17-bit unsigned multipliers, and therefore the price of the processor,
is to evaluate f(X) according to:

f(X) = (2X2 + X) mod 2w = (2 · (2w/2XH + HL)2 + X) mod 2w

= (2 · (2wX2
H + 21+w/2XHXL + X2

L) + X) mod 2w

= (22+w/2XHXL + 2X2
L + X) mod 2w.

Figure 5 illustrates how this algorithm works. In this example, we assume that
w = 8 and that 4-bit× 4-bit multiplier blocks are available. Since (2 ·27x0x6 +2 ·
27x2x4) mod 28 = 0, we can discard these terms. For w = 32, this third algorithm
involves a 16-bit squarer, a 14-bit× 14-bit multiplier, a 14-bit CPA, and a 31-bit
CPA.

Remember that Virtex-II devices embed 17-bit × 17-bit unsigned multipliers.
In the following, we describe how to put to good use the most significant bit
of their input ports in order to further reduce the area of the f(X) operator.
Consider again the computation of f(X) with w = 8 (Figure 6). The trick
consists in performing the rectangular multiplication (2 ·X3:0+1)X3:0 and allows
to replace the (w − 1)-bit CPA by a w/2-bit CPA.

3.3 Comparison of the Four Algorithms

Table 1 summarizes the main characteristics of the four f(X) operators previ-
ously described4. From these results, we can conclude that:
4 The VHDL code was synthesized and implemented on Virtex-E and Virtex-II devices

with Synplify Pro 7.0.3 and Xilinx Alliance Series 4.1.03i. All input and output sig-
nals were routed through the D-type flip-flops available in the Input/Output blocks
of Virtex-E or Virtex-II devices. No specific constraints were given to the synthesis
tools and it should be possible to improve the results.

FPGA Implementations of the RC6 Block Cipher 107

� � � � � � � 	

 �

� �

 �

� � � 	

�
� � � � � � � �� �

�

!" $ � � & () *
+ �) - .
$ � $. * � (.

0 	!
2

� � � �
� 4 � 5

6� � � 7 8 � � � � � � �
9 : 9 :
9 ; 9 � 9 : 9 �

9 6 9 � 9 ; 9 � 9 : 9 �

9 < 9 = 9 6 9 = 9 ; 9 = 9 : 9 =

9 !
9 = 9 < 9 <
9 � 9 6 9 = 9 6 9 6
9 � 9 ; 9 � 9 ; 9 = 9 ; 9 ;

9 � 9 = 9 � 9 = 9 = 9 = 9 =
9 � 9 � 9 � 9 � 9 = 9 � 9 �

9 � 9 � 9 � 9 � 9 = 9 � 9 �

9 � 9 : 9 � 9 : 9 = 9 : 9 :

> ? @ 6 B ; C @
� B = D F H J ? 2

> ? @ 6 B ; C @
� B = D F H J ? 2

K L N P R S J

> ? @ : B = C @ : B = D F H J ? 2

Fig. 5. Algorithm 3: computation of f(X) with a squarer, a multiplier, and two carry-
propagate adders.

� �
�

� � �
� � � 	 � � � � �

� � � � � � � �

� � � � �
� � � � � � � �

�

� � � � � � � �

"

"
"
�

% & ' # * & , # - & . � # - & . / �# 1 & .

* & ,

3 4 3 4
3 " 3 � 3 4 3 �

3 5 3 � 3 " 3 � 3 4 3 �

3 6 3 7 3 5 3 7 3 " 3 7 3 4 3 7

3 8
3 7 3 6 3 6
3 � 3 5 3 7 3 5 3 5
3 � 3 " 3 � 3 " 3 7 3 " 3 "

3 � 3 7 3 � 3 7 3 7 3 7 3 7
3 � 3 � 3 � 3 � 3 7 3 � 3 �

3 � 3 � 3 � 3 � 3 7 3 � 3 �

3 � 3 4 3 � 3 4 3 7 3 4 3 4
9 9 : ; 4 < 7 = ? A B ; 4 < 7 A E G I : �

9 : ; 5 < " B ;
� < 7 A E G I : �

9 : ; 5 < " B ;
� < 7 A E G I : �

L M O Q R S I

Fig. 6. Algorithm 4: computation of f(X) = (X(2X + 1)) mod 28 with two multipliers
and two carry-propagate adders.

– On a Virtex-II device, Algorithm 4 leads to the smallest circuit.
– The adder-based operator (Algorithm 1) is the best alternative for the

Virtex-E family. This result is not surprising since current synthesis tools
are unable to build efficient multipliers from a high-level VHDL description
such that shown in Figure 7. We also notice that Algorithm 3 and Algorithm
4 lead to the same circuit area: the fact that both multipliers and adders
are now implemented on CLBs explains this result.

In order to improve the frequency of the RC6 processor, our VHDL code
generator is able to insert optional pipeline stages in the f(X) operator (param-
eter β on Figure 1a). For Virtex-II devices, we take advantage of the internal
pipeline stage of each MULT18x18 block. Unfortunately, the VHDL coding style
depends on both the chosen algorithm and the synthesis tools:

108 J.-L. Beuchat

entity rc6_f is
port (

D : in std_logic_vector (31 downto 0);
Q : out std_logic_vector (31 downto 0));

end rc6_f;
architecture behavioral of rc6_f is

signal sqr_q : std_logic_vector (31 downto 0);
signal mult_q : std_logic_vector (27 downto 0);
signal add_q : std_logic_vector (31 downto 0);

begin -- behavioral
sqr_q <= D (15 downto 0) * D (15 downto 0);
mult_q <= D (29 downto 16) * D (13 downto 0);
add_q (17 downto 0) <= D (17 downto 0);
add_q (31 downto 18) <= D (31 downto 18) +

mult_q (13 downto 0);
Q (0) <= add_q (0);
Q (31 downto 1) <= add_q (31 downto 1) + sqr_q (30 downto 0);

end behavioral;

(a) VHDL code for Algorithm 3.

entity rc6_f is
port (

D : in std_logic_vector (31 downto 0);
Q : out std_logic_vector (31 downto 0));

end rc6_f;
architecture behavioral of rc6_f is

signal mult1_q : std_logic_vector (32 downto 0);
signal mult2_q : std_logic_vector (27 downto 0);
signal add_q : std_logic_vector (15 downto 0);

begin -- behavioral
mult1_q <= (D (15 downto 0) & ’1’) * D (15 downto 0);
mult2_q <= D (29 downto 16) * D (13 downto 0);
add_q (15 downto 2) <= D (31 downto 18) +

mult2_q (13 downto 0);
add_q (1 downto 0) <= D (17 downto 16);
Q (15 downto 0) <= mult1_q (15 downto 0);
Q (31 downto 16) <= mult1_q (31 downto 16) + add_q;

end behavioral;

(b) VHDL code for Algorithm 4.

Fig. 7. Two VHDL descriptions of the f(X) operator.

Table 1. Comparison of several f(X) operators.

XCV50E-6 XC2V40-6
Slices Delay [ns] Pipeline Slices Mult. blocks Delay [ns]

Algorithm 1 134 ∼ 18 – 148 – ∼ 12
Algorithm 2 274 ∼ 20 – 18 3 ∼ 12

Algorithm 3 229 ∼ 20
– 25 2 ∼ 12

1 stage 41 2 ∼ 8

Algorithm 4 230 ∼ 20
– 17 2 ∼ 12

1 stage 25 2 ∼ 8

– For Algorithms 3 and 4, it sometimes suffices to insert a register after each
multiplication. For instance, Synplify Pro is able to infer registered multipli-
ers (option -pipe 1 in the synthesis script). Synthesis tools also provide the
designer with libraries containing the basic building blocks of a given FPGA
family. It is therefore possible to instantiate a pipelined MULT18x18 block
in the VHDL code, instead of expressing the multiplication operator.

– However, if the multiplier does not fit in a single MULT18x18 block, current
synthesis tools are unable to simultaneously apply the divide-and-conquer
scheme and the retiming algorithm. It is therefore impossible to automati-
cally pipeline the VHDL description of Algorithm 2 depicted on Figure 1.
The solution consists here in performing the divide-and-conquer scheme by
hand: the VHDL description will then contain three 16-bit× 16-bit multipli-
ers.

The VHDL code illustrated on Figure 7 leads however to poor results on Virtex-
E devices. A structural description of the operator (partial product generation,
carry-propagate adders, and registers) gives better results.

4 Implementation Results

Table 2 summarizes the main characteristics of several RC6 processors for Virtex-
E and Virtex-II devices. For non-feedback chaining modes, processors with full-

FPGA Implementations of the RC6 Block Cipher 109

Table 2. Some RC6 processors for Virtex-II and Virtex-E devices. CAD tools: Synplify
Pro 7.0.3 and Xilinx Alliance Series 4.1.03i (∗) or ISE 5.1.03i (†).

Device Algo Rounds
Pipeline

Slices
Mult. Through-

α β γ δ blocks put [Gb/s]

XCV2000E-6† 1 1 + 20 + 1 1 2 1 1 19198 (99%) – ∼ 10.6

N
o
n
-f
e
e
d
b
a
ck

ch
a
in

in
g

m
o
d
e
s

XCV300E-6∗ 1 1 + 1 + 1 1 2 1 1 2068 (67%) – ∼ 0.5
XC2V3000-6∗ 4 1 + 20 + 1 1 1 1 0 8554 (59%) 80 (83%) ∼ 15.2
XC2V3000-6† 4 1 + 20 + 1 1 1 1 0 10288 (71%) 80 (83%) ∼ 14.2
XC2V3000-6∗ 1 1 + 10 + 1 1 1 1 0 7456 (52%) 0 (0%) ∼ 4.8
XC2V1000-6∗ 4 1 + 10 + 1 1 1 1 0 4391 (85%) 40 (100%) ∼ 7.4
XC2V500-6∗ 4 1 + 5 + 1 1 1 1 0 2365 (76%) 20 (62%) ∼ 3.9
XC2V250-6∗ 4 1 + 4 + 1 1 1 1 0 1534 (99%) 16 (66%) ∼ 2.8

F
e
e
d
b
a
ck

ch
a
in

in
g

m
o
d
e
s

XCV300E-6∗ 1 1 + 1 + 1 0 0 0 0 1709 (55%) – ∼ 0.16
XCV300E-6∗ 4 1 + 1 + 1 0 0 0 0 1902 (61%) – ∼ 0.15
XCV400E-6∗ 1 1 + 4 + 1 1 0 0 0 3932 (81%) – ∼ 0.16
XC2V1000† 4 1 + 1 + 1 0 0 0 0 1560 (30%) 4 (10%) ∼ 0.29
XC2V1000† 4 1 + 4 + 1 1 0 0 0 2902 (56%) 16 (40%) ∼ 0.34

loop unrolling achieve high throughputs. The area and the critical path however
depend on the synthesis tools: we have obtained better results with Symplify Pro
7.0.3 and Xilinx Alliance 4.1.03i than with ISE 5.1.03i. Also note that XC2V500
and XC2V250 devices have not enough I/Os to deal with 128-bit words. Our
solution consists in defining 64-bit input and output ports and spending two
clock cycles for data transmission.

The basic iterative architecture (Figure 2a) seems to be the best one for
feedback chaining modes: it requires less slices than systems with partial loop
unrolling and achieves the same throughput. As the rounds are combinational,
the critical path increases and we obtain very low encryption rates.

A NSA team has implemented RC6 with semi-custom ASICs based on a
0.5 µm CMOS library [10]. Using the architecture depicted by Figure 2c with
a pipeline stage between two consecutive rounds and Algorithm 2 to compute
f(X), the NSA team reports a throughput of 2.2 Gbits/s. Gaj et al. have pro-
posed an architecture similar to Figure 2 [2, 4]. The main differences lie in the
f(X) operator and in the number of pipeline stages per cipher round (3 in our
case versus 28 in their system). However, four XCV1000-6 devices are required
to implement the algorithm with full loop unrolling and to achieve a through-
put of 13.1 Gbits/s. While the throughput is close to ours, this solution is more
expensive and requires a more complex PCB.

5 Conclusions

In this paper, several architectures of the RC6 block cipher for Virtex-E and
Virtex-II FPGAs have been described. We have also investigated four algorithms
computing f(X), which is the critical arithmetic operation of the block cipher.
Our experiments indicate that both the choice of an algorithm and the VHDL

110 J.-L. Beuchat

coding style are strongly related to the target FPGA family. Our VHDL gener-
ator allows to quickly explore a wide parameter space and to determine the best
architecture for a given set of constraints (feedback or non-feedback chaining
mode, FPGA device, . . .).

Acknowledgments

The author would like to thank the “Ministère Français de la Recherche”, the
Swiss National Science Foundation, and the Xilinx University Program for their
support.

References

1. J.-L. Beuchat. Etude et conception d’opérateurs arithmétiques optimisés pour cir-
cuits programmables. PhD thesis, Swiss Federal Institute of Technology Lausanne,
2001.

2. P. Chodowiec, P. Khuon, and K. Gaj. Fast Implementations of Secret-Key Block
Ciphers Using Mixed Inner- and Outer-Round Pipelining. In Proc. ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages 94–102, 2001.

3. M. Dworkin. Recommandation for Block Cipher Modes of Operation, 2001. NIST
Special Publication 800-38A.

4. K. Gaj and P. Chodowiec. Fast implementation and fair comparison of the final
candidates for Advanced Encryption Standard using Field Programmable Gate Ar-
rays. In Proc. RSA Security Conf. - Cryptographer’s Track, pages 84–99. Springer-
Verlag, 2001. Available at http://ece.gmu.edu/crypto/publications.htm.

5. H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST concerning AES
Modes of Operations: CTR-Mode Encryption.

6. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

7. E. Mosanya, C. Teuscher, H. F. Restrepo, P. Galley, and E. Sanchez. Crypto-
Booster: A Reconfigurable and Modular Cryprographic Coprocessor. In C. K.
Koc and C. Paar, editors, Proceedings of the First International Workshop on
Cryptographic Hardware and Embedded Systems, CHES’99, Worcester, MA, vol-
ume 1717 of Lecture Notes in Computer Science, pages 246–256. Springer-Verlag,
1999.

8. B. Parhami. Computer Arithmetic. Oxford University Press, 2000.
9. R.L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 Block Cipher,

1998.
10. B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke. Hardware Performance Simu-

lations of Round 2 Advanced Encryption Standard Algorithms. Technical report,
National Security Agency, 2000.

11. R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, and W. Ficht-
ner. A 177 Mbit/s VLSI Implementation of the International Data Encryption
Algorithm. IEEE Journal of Solid-State Circuits, 29(3):303–307, 1994.

http://ece.gmu.edu/crypto/publications.htm

	FPGA Implementations of the RC6 Block Cipher
	1 Introduction
	2 Architecture of a RC6 Processor
	3 Computation of f(X)
	3.1 Adder-Based Algorithm
	3.2 Multiplier-Based Algorithms
	3.3 Comparison of the Four Algorithms

	4 Implementation Results
	5 Conclusions

	References

