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We propose a new neural approach for approximating function using a reinforcement-type learning: each 
time the network generates an output, the environment responds with the scalar distance between the 
delivered output and the expected one. Thus, this distance is the only information the network can use to 
modify the estimation of the multi-dimensional output. This reinforcement feature is embedded in a neural-
gas method, taking advantages of the different facilities it offers. We detail the global algorithm and we 
present some simulation results in order to show the behaviour of the developed method.  

1. Introduction 
The original objective of this study is to develop a biologically inspired method for the control of a 

robotic head while performing simple tasks such as tracking a moving target. We want the robotic head 
to learn how to track without any a priori knowledge. The only information that is to be given to the 
head is the distance between the target and the centre of the image.  

In other words, we want the neural net to approximate iteratively a function )(XFY =  where 
nm

F ℜ→ℜ: . At each step k of the learning procedure, the neural network generates an output 
corresponding to an input point kX . If we denote kΨ the proposed output delivered by the network, the 
environment sends back a reinforcement signal kρ , which is the distance between the delivered and the 
expected value: 

 ( )kkk XF−=ψρ  (1) 

We consider here an off-line algorithm: the training is realized with a finite number of samples. 
When the learning procedure is completed, the neural network is ready to be used as a function 
approximator and adaptation is no longer performed.  

In the next section, we explain the principle of our approach on a very simple case, and the 
complete algorithm is detailed in section 3. Some simulation results are presented in section 4, and 
section 5 is dedicated to the conclusions and perspectives of our work. 

2. Principle of the new approach 
In order to make the explanation easier, we consider that we just want to approximate the value of 
function F for a given input point X. Let’s call Y the desired vector .i.e. )(XFY = , and XR the 
reinforcement function defined as follows: 

 ( ) ( )XFR
R

kkXk

n

X

−=→
ℜ→ℜ

ψψψ
    :  (2) 

We will distinguish between 
*

kY , the internal approximation of Y made by the network at the 
iteration step k, and kΨ the output of the neural network. The basic idea of the method consists in 
making a linear modelling of the function XR  in the neighbourhood of the current value 

*
kY . In other 

words, it is necessary to separate kΨ  and 
*

kY : kΨ  will be chosen in the neighbourhood of 
*

kY  so that it 
gives information about the slope of the function XR . 

If we note 
*

,kXR  the approximation of the function XR at iteration k, we defined: 
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 ( ) ( )*
,,

*
, kkXkXkX YRrR −+= ψψ  (3) 

where kXR , is a vector that models the orientation of the plane that is tangent to the function XR on 
the point 

*
kY . The new value 

*
1+kY is moved downward along the slope of the function XR , according to 

the linear model: 

 kXkk RYY ,
**

1 : γ+=+  (4) 

whereγ scales the size of the adaptation step. The approximation of the function XR can be 
updated by applying a gradient descent method [1,2]: 

 ( ) ( )[ ]kkXkXrkXkX RRrr ψψλ *
,,1, : −+=+  (5) 

 ( ) ( ) ( )[ ]( )**
,

*
,,1, : kkkkkXkkXkXRkXkX YYRRRRR −Ψ−Ψ−−+=+ ψψλ  (6) 

where rλ and Rλ are parameters that allow to tune the adaptation step. 
 
Since the input vectors kΨ are used during the learning phase in order to estimate the function XR in 

the neighbourhood of the current value
*

kY , it seems reasonable to choose these vectors in the 
neighbourhood of 

*
kY : 

  Φ+=Ψ nkk Y σ*
 (7) 

where Φ is a noise term that is generated according to an uniform distribution between –1 and 1, 
and nσ is a parameter that defines the size of the neighbourhood.  

3. The Off-Line Algorithm 
We described in the previous section the algorithm to estimate the value of the function F for a 
particular input X. The extension for modeling the complete function is then straightforward with the 
help of the neural-gas ’way of thinking’: the input space of the function F is split dynamically into small 
regions during the learning. Since each of these regions is managed by a cell, we can estimate 
separately for each of them the output of the function, using the method described in the previous 
section. The precision of the estimation can be increased as much as necessary by increasing the 
number of input cells. Moreover, some interpolation mechanism can be added to smooth the estimated 
function between two regions. Each cell i is defined by the following quantities: 

iW  : the vector that defines the position of the cell in the input space, with dim( iW )=m 

ir and iR  : the parameters of the model of the reinforcement signal, where we changed the 
subscript symbol X with the index i of the cell. We also omit the index k that refers to 
the iteration number in order to simplify the notation, although the learning algorithm is 
still iterative. 

Following [3,4], the connections between each cells are managed with the help of variables ija  
which represents the age of the connection between the i-th and the j-th cell. When no connection is 
established we set 1−=ija , otherwise the value represents the number of iterations since the connection 
has been created or refreshed. The learning algorithm is as follows: 

 

{1} initialise randomly 
*

iY , iA , ir  , iR and iW  for all neurons. Initialise the age of all the 

connections: 1−=ija  Dji ∈∀ ,  , where D  is the set of the indices of all the neurons. 

{2} when an input X  is received, find the indices of the two closest neurons, i.e.: 

 i
Di

WXArgi −=
∈
min*  (8) 

 
{ } i
iDi

WXArgi −=
∈ */

** min  (9)   
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{3} generate an approximated output: 

 Φ+=Ψ ni
Y σ*

*  (10) 

{4} receive the reinforcement signal ρ from the environment. 
 
{5} update of the position of the neurons in the input space: 

• the closest neuron is moved towards the input X  by a fraction wε : 

 )( ** iwi
WXW −=∆ ε  (11) 

• the cells in the neighbourhood *i
N  of the closest cell are also moved towards the input  

by a fraction nε : 

 )( ini WXW −=∆ ε          *i
Ni ∈∀  (12) 

where the neighbourhood is defined as: 
 { }ijajN iji ≠≥= ,0/  (13) 

 
{6} update the model of the function R using equations derived from (5) and (6):   

 ( )[ ]ψρλ *
**

iri
Rr −=∆  (14) 

 ( ) ( )[ ]( )***
****

*

iiiiRi YYRRR −Ψ−Ψ−−=∆ ψρλ  (15)  

     

{7} update the output of the neuron *i : 

 *
*

*

i
RY

i

γ=∆  (16) 

{8} update the ages of the connections:  
0:*** =

ii
a  

1: ** +=
jiji

aa  *i
Nj ∈∀  (17) 

1:* −=
ji

a   if   max* aa
ji

>   *i
Nj ∈∀  

where maxa  is a threshold parameter of the method. 

 
{9} if a stopping criterion is not fulfilled continue with step {2}. 
 
In order to illustrate the behaviour of the modified neural net, we present in the next section some 

simple simulations we made using the modified neural-gas network. 

4. Simulation results 
We want the networks to approximate the following function: 
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 (18) 

This function is also illustrated on figure 1. The neural networks consisted in 50 neurons, and we 
chose 5.0=nσ , 01.0=γ  and 1.0== Rr λλ . Concerning the placement of the neurons in the input space, 
we chose 005.0=wε , 001.0=nε and 88max=a  as suggested in [4].  
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Figure 1: the function 

22: ℜ→ℜF  to be approximated 
 

The resulting estimated function is showed in figure 2.  
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Figure 2: the approximated function 
 

According to figure 2, we can conclude that the proposed approach behaves correctly. Of course, it is 
always possible to increase the precision of the method by increasing the number of neurons. 

5. Conclusion 
We proposed a reinforcement learning approach based on the neural-gas neural network. The 

simple simulations we made show that our method yields good results, and some straightforward 
improvements can be considered, such as smoothing the output or adding new neurons during the 
learning procedure. It is also easy to imagine an on-line algorithm for which the range of the noise 
added to the estimated vector is decreased as the reinforcement signal decreases.   
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