
Adding Reinforcement Learning Features to the
Neural-Gas Method

M. Winter, G. Metta and G. Sandini.

LIRA-Lab, DIST, University of Genoa, viale Causa 13, I-16145 Genoa, ITALY.
sandini@lira.dist.unige.it

We propose a new neural approach for approximating function using a reinforcement-type learning: each
time the network generates an output, the environment responds with the scalar distance between the
delivered output and the expected one. Thus, this distance is the only information the network can use to
modify the estimation of the multi-dimensional output. This reinforcement feature is embedded in a neural-
gas method, taking advantages of the different facilities it offers. We detail the global algorithm and we
present some simulation results in order to show the behaviour of the developed method.

1. Introduction
The original objective of this study is to develop a biologically inspired method for the control of a

robotic head while performing simple tasks such as tracking a moving target. We want the robotic head
to learn how to track without any a priori knowledge. The only information that is to be given to the
head is the distance between the target and the centre of the image.

In other words, we want the neural net to approximate iteratively a function)(XFY = where
nm

F ℜ→ℜ: . At each step k of the learning procedure, the neural network generates an output
corresponding to an input point kX . If we denote kΨ the proposed output delivered by the network, the
environment sends back a reinforcement signal kρ , which is the distance between the delivered and the
expected value:

 ()kkk XF−=ψρ (1)

We consider here an off-line algorithm: the training is realized with a finite number of samples.
When the learning procedure is completed, the neural network is ready to be used as a function
approximator and adaptation is no longer performed.

In the next section, we explain the principle of our approach on a very simple case, and the
complete algorithm is detailed in section 3. Some simulation results are presented in section 4, and
section 5 is dedicated to the conclusions and perspectives of our work.

2. Principle of the new approach
In order to make the explanation easier, we consider that we just want to approximate the value of
function F for a given input point X. Let’s call Y the desired vector .i.e.)(XFY = , and XR the
reinforcement function defined as follows:

 () ()XFR
R

kkXk

n

X

−=→
ℜ→ℜ

ψψψ
 : (2)

We will distinguish between
*

kY , the internal approximation of Y made by the network at the
iteration step k, and kΨ the output of the neural network. The basic idea of the method consists in
making a linear modelling of the function XR in the neighbourhood of the current value

*
kY . In other

words, it is necessary to separate kΨ and
*

kY : kΨ will be chosen in the neighbourhood of
*

kY so that it
gives information about the slope of the function XR .

If we note
*

,kXR the approximation of the function XR at iteration k, we defined:

0-7695-0619-4/00/$10.00 (C) 2000 IEEE

 () ()*
,,

*
, kkXkXkX YRrR −+= ψψ (3)

where kXR , is a vector that models the orientation of the plane that is tangent to the function XR on
the point

*
kY . The new value

*
1+kY is moved downward along the slope of the function XR , according to

the linear model:

 kXkk RYY ,
**

1 : γ+=+ (4)

whereγ scales the size of the adaptation step. The approximation of the function XR can be
updated by applying a gradient descent method [1,2]:

 () ()[]kkXkXrkXkX RRrr ψψλ *
,,1, : −+=+ (5)

 () () ()[]()**
,

*
,,1, : kkkkkXkkXkXRkXkX YYRRRRR −Ψ−Ψ−−+=+ ψψλ (6)

where rλ and Rλ are parameters that allow to tune the adaptation step.

Since the input vectors kΨ are used during the learning phase in order to estimate the function XR in

the neighbourhood of the current value
*

kY , it seems reasonable to choose these vectors in the
neighbourhood of

*
kY :

 Φ+=Ψ nkk Y σ*
 (7)

where Φ is a noise term that is generated according to an uniform distribution between –1 and 1,
and nσ is a parameter that defines the size of the neighbourhood.

3. The Off-Line Algorithm
We described in the previous section the algorithm to estimate the value of the function F for a
particular input X. The extension for modeling the complete function is then straightforward with the
help of the neural-gas ’way of thinking’: the input space of the function F is split dynamically into small
regions during the learning. Since each of these regions is managed by a cell, we can estimate
separately for each of them the output of the function, using the method described in the previous
section. The precision of the estimation can be increased as much as necessary by increasing the
number of input cells. Moreover, some interpolation mechanism can be added to smooth the estimated
function between two regions. Each cell i is defined by the following quantities:

iW : the vector that defines the position of the cell in the input space, with dim(iW)=m

ir and iR : the parameters of the model of the reinforcement signal, where we changed the
subscript symbol X with the index i of the cell. We also omit the index k that refers to
the iteration number in order to simplify the notation, although the learning algorithm is
still iterative.

Following [3,4], the connections between each cells are managed with the help of variables ija
which represents the age of the connection between the i-th and the j-th cell. When no connection is
established we set 1−=ija , otherwise the value represents the number of iterations since the connection
has been created or refreshed. The learning algorithm is as follows:

{1} initialise randomly
*

iY , iA , ir , iR and iW for all neurons. Initialise the age of all the

connections: 1−=ija Dji ∈∀ , , where D is the set of the indices of all the neurons.

{2} when an input X is received, find the indices of the two closest neurons, i.e.:

 i
Di

WXArgi −=
∈
min* (8)

{ } i
iDi

WXArgi −=
∈ */

** min (9)

0-7695-0619-4/00/$10.00 (C) 2000 IEEE

{3} generate an approximated output:

 Φ+=Ψ ni
Y σ*

* (10)

{4} receive the reinforcement signal ρ from the environment.

{5} update of the position of the neurons in the input space:

• the closest neuron is moved towards the input X by a fraction wε :

)(** iwi
WXW −=∆ ε (11)

• the cells in the neighbourhood *i
N of the closest cell are also moved towards the input

by a fraction nε :

)(ini WXW −=∆ ε *i
Ni ∈∀ (12)

where the neighbourhood is defined as:
 { }ijajN iji ≠≥= ,0/ (13)

{6} update the model of the function R using equations derived from (5) and (6):

 ()[]ψρλ *
**

iri
Rr −=∆ (14)

 () ()[]()***

*

iiiiRi YYRRR −Ψ−Ψ−−=∆ ψρλ (15)

{7} update the output of the neuron *i :

 *
*

*

i
RY

i

γ=∆ (16)

{8} update the ages of the connections:
0:*** =

ii
a

1: ** +=
jiji

aa *i
Nj ∈∀ (17)

1:* −=
ji

a if max* aa
ji

> *i
Nj ∈∀

where maxa is a threshold parameter of the method.

{9} if a stopping criterion is not fulfilled continue with step {2}.

In order to illustrate the behaviour of the modified neural net, we present in the next section some

simple simulations we made using the modified neural-gas network.

4. Simulation results
We want the networks to approximate the following function:

 () 





=













































=
2

1

2
sin

2
cos

2
sin

2
cos

,
z

z

xy

yx

yxF
ππ

ππ

 (18)

This function is also illustrated on figure 1. The neural networks consisted in 50 neurons, and we
chose 5.0=nσ , 01.0=γ and 1.0== Rr λλ . Concerning the placement of the neurons in the input space,
we chose 005.0=wε , 001.0=nε and 88max=a as suggested in [4].

0-7695-0619-4/00/$10.00 (C) 2000 IEEE

X
Y

Z
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

 X
Y

Z 2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Figure 1: the function

22: ℜ→ℜF to be approximated

The resulting estimated function is showed in figure 2.

X
Y

Z 2
*

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

 X

Y

Z 1
*

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Figure 2: the approximated function

According to figure 2, we can conclude that the proposed approach behaves correctly. Of course, it is
always possible to increase the precision of the method by increasing the number of neurons.

5. Conclusion
We proposed a reinforcement learning approach based on the neural-gas neural network. The

simple simulations we made show that our method yields good results, and some straightforward
improvements can be considered, such as smoothing the output or adding new neurons during the
learning procedure. It is also easy to imagine an on-line algorithm for which the range of the noise
added to the estimated vector is decreased as the reinforcement signal decreases.

[1] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. “Neural-Gas” Network for Vector Quantization and its Application

to Time-Series Prediction, IEEE Transactions on Neural Networks, vol. 4, No. 4, pages 558-569, July 1993.
[2] T. M. Martinetz and K. J. Schulten. A “neural-gas” network learns topologies. In T. Kohonen, K. Makisara, O. Simula,

and J. Kangas, editors, Artificial Neural Networks, pages 397-402. North-Holland, Amsterdam, 1991.
[3] J. A. Walter and K. J. Schulten. Implementation of self organizing neural networks for visuo-motor control of an industrial
robot, IEEE Transactions on Neural Networks, vol. 4, No. 1, pages 86-95, 1993.
[4] B. Fritzke. Some competitive learning methods, Technical Report from the Systems Biophysics Institute for Neural

Computation, Ruhr-Universitat Bochum, April 1997.

0-7695-0619-4/00/$10.00 (C) 2000 IEEE

