IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Logic-Based Query Optimization
for Object Databases

John Grant, Jarek Gryz, Jack Minker, Fellow, IEEE, and Louiga Raschid, Member, IEEE

Abstract—We present a technique for transferring query optimization techniques, developed for relational databases, into object
databases. We demonstrate this technique for ODMG database schemas defined in ODL and object queries expressed in OQL. The
object schema is represented using a logical representation (Datalog). Semantic knowledge about the object data model, e.g., class
hierarchy information, relationship between objects, etc., as well as semantic knowledge about a particular schema and application
domain are expressed as integrity constraints. An OQL object query is represented as a logic query and query optimization is
performed in the Datalog representation. We obtain equivalent (optimized) logic queries and, subsequently, obtain equivalent
(optimized) OQL queries for each equivalent logic query. In this paper, we present one optimization technique for semantic query
optimization (SQO) based on the residue technique of [6], [7], [8]. We show that our technique generalizes previous research on SQO
for object databases. We handle a large class of OQL queries, including queries with constructors and methods. We demonstrate how
SQO can be used to eliminate queries which contain contradictions and simplify queries, e.g., by eliminating joins, or by reducing the
access scope for evaluating a query to some specific subclass(es). We also demonstrate how the definition of a method, or integrity
constraints describing the method, can be used in optimizing a query with a method.

Index Terms—Datalog, integrity constraints, logic query, methods in object DBMS, object DBMS, ODL, ODMG, OQL, semantic query
optimization (SQO), semantic residues.

<+

INTRODUCTION

529

IN this paper, we demonstrate the application of semantic
query optimization (SQO) techniques to query processing
in object databases. SQO uses semantic knowledge, in the
form of integrity constraints (ICs), to reformulate a query
and obtain a semantically equivalent query, which can
possibly be evaluated more efficiently. Informally, two
queries are semantically equivalent if they obtain the same
answers in a database that satisfies the same set of integrity
constraints. SQO has been applied to relational and
deductive databases [6], [7], [8]. In particular, it was shown
that a logic-based approach using the method of partial
subsumption is a general technique that encompasses
various special cases of SQO considered by other
researchers.

In a relational database, semantic information about the
particular application domain has to be explicitly obtained
by a database administrator and there is usually a limited
amount of such information available. In contrast, an object
database typically includes a much larger variety of
semantic information and, thus, is perhaps a more suitable
candidate to benefit from exploiting semantic knowledge to

o . Grant is with the Department of Mathematics and the Department of
Computer and Information Sciences, Towson University, 8000 York Rd.,
Towson, MD 21252. E-mail: jgrant@towson.edu.

o |. Gryz is with the Department of Computer Science, York University,
4700 Keele St., Toronto, Ontario, Canada. E-mail: jarek@cs.yorku.ca.

e |. Minker is with the Department of Computer Science, University of
Maryland, College Park, MD 20742. E-mail: minker@cs.umd.edu.

e L. Raschid is with the Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742.

E-mail: louiga@umiacs.umd.edu.

Manuscript received 2 July 1997; revised 1 June 1999; accepted 13 July 1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 105325.

obtain equivalent, and possibly optimized, queries. For
example, semantic knowledge about the object model may
include knowledge about the class hierarchy, object
identity, relationships between objects, etc. In addition, we
may obtain semantic knowledge that is particular to the
application domain, just as we would for a relational
schema. Finally, we may obtain semantic knowledge about
a method implementation. As discussed in Section 5,
semantic knowledge on a method may either be the method
definition or integrity constraints that describe the behavior
of the method. All of this semantic knowledge may be
utilized by SQO to obtain semantically equivalent and
possibly more efficient queries for object databases.

We present a technique for SQO and we demonstrate this
technique for ODMG database schemas defined in ODL, and
object queries expressed in OQL. The object schema is
represented using a logical representation (Datalog). Seman-
tic knowledge about the object data model, e.g., class
hierarchy information, relationship between objects, etc., as
well as semantic knowledge about the particular schema and
application domain, are expressed as integrity constraints.
An OQL object query is represented as a logic query (Datalog)
and query optimization is performed in the Datalog
representation. We obtain equivalent (optimized) logic
queries and, for each equivalentlogic query, we subsequently
obtain equivalent (optimized) OQL queries. As we show in
Section 2, we improve substantially on previous logic-based
approaches to SQO in object databases.

We only consider unnested select-from-where queries.
However, we are able to consider a fairly large class of
queries since techniques for unnesting certain subqueries,
when they occur in the select and from clauses, have been
proposed in [15] and can be applied in our approach to
obtain unnested queries. Some subqueries appearing in the

1041-4347/00/$10.00 © 2000 IEEE

530 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

where clause also could be unnested in the same way as is
done in SQL. Object queries include constructors, e.g.,
struct, set, list, etc., and also perform aggregate functions on
collections of objects. We do not translate these constructors
in the object query into the logic query and, hence, we do
not perform SQO over collections of objects in the logical
representation. However, in some restricted cases, we can
optimize some object queries with these constructors. To
explain, after we obtain an equivalent logic query, in the
Datalog representation, we consider both the initial object
query and the equivalent logic query in order to produce
the equivalent object query. Thus, in some cases, we are
able to preserve the constructors of the original object query
and express them in the equivalent object query, even if
these constructors do not appear in the initial logic query or
the equivalent logic query. We will illustrate this with an
example in Section 4.

Using an example ODMG database schema defined in
ODL, and object queries in OQL, we demonstrate a number
of possible optimization strategies using SQO and parti-
cular integrity constraints. For example, we demonstrate
how SQO can identify contradictions and, thus, eliminate
queries containing contradictions. We also demonstrate
how SQO can be used to possibly simplify queries. For
example, the access scope for evaluating a query can be
reduced from a class to some particular subclass(es)
depending on particular integrity constraints; this can
reduce the number of objects that are retrieved from the
database and is a possible optimization strategy. Further,
queries can also be simplified by eliminating joins. One
strategy to eliminate joins is using integrity constraints in
the form of key constraints. Another strategy is to use access
support relations [25] or special relations that store OIDs of
objects that represent a materialized view corresponding to
some path expression. Semantic knowledge about these
special relations can be used to eliminate some joins and has
the potential to simplify the query.

Application domain knowledge about methods can also
be represented as integrity constraints in our approach and
SQO can be used to optimize queries. In particular, we
consider methods defined for a single object; this is because
we do not represent collections of objects in the logic
representation. SQO can be applied to methods that are
predefined queries or arbitrary procedures. Simplification
of the query, by SQO, may involve limiting the method
application to objects in particular subclass(es) or adding
new conditions to the query, which serves to reduce the
number of objects on which the method is applied. A query
with a method is optimized at a shallow level if the only
available semantic knowledge is specific facts about the
method. Optimization at a deep level requires that the
encapsulation of the method must be broken. Semantic
knowledge may either be the method definition itself, in the
case where the method is defined as a query or, in the case
where the method is an arbitrary procedure, semantic
knowledge about the behavior of the method may be
expressed as a function expressing some relationship
between the input and output values. In this case,
simplification by SQO may involve computing the function

that expresses the behavior of the method, rather than
applying the method to the object.

SQO makes extensive use of integrity constraints. Hence,
for object databases with a variety of semantic knowledge,
the space of semantically equivalent queries that must be
considered by the cost-based physical optimizer could be
fairly large. In this scenario, heuristics must be used to
guide the optimizer. Many of the heuristics developed for
SQO in relational databases [6], [37], e.g., those that restrict
the introduction of selections on attributes that are not
indexed, etc., also apply to object databases. However, as
discussed earlier, there are several other types of simplifica-
tions for object queries that do not occur in SQO for
relational databases. In more complex situations involving
methods, SQO may produce a query in which a function
that describes the behavior of a method, with respect to
some object, is computed. In this case, heuristics must be
used to determine if the cost of computing the function is
cheaper than applying the method to this object. In many
cases, the heuristics may be dependent on the particular
object database implementation. We realize that this is an
important issue and is critical to the success of SQO in
object databases. While we identify where heuristics must
be used to guide SQO, in this paper, we do not develop
such heuristics. This research on developing and using
heuristics is beyond the scope of this paper.

The paper is organized as follows: The next section
provides background on research in SQO. Section 3 reviews
the residue technique of [6], [7], [8] which is used in our
optimization method. In Section 4, we first present the
ODMG data model and present an overview of our method
for SQO. We provide algorithms for translating an ODL
schema into a relational representation and discuss repre-
senting semantic knowledge from the object model and for
the object schema as integrity constraints. We then consider
unnested select-from-where OQL queries and provide an
algorithm for obtaining a corresponding logic query. We
also present an algorithm for obtaining an object query from
a logic query. We then use several examples to illustrate
various optimization strategies for SQO in object databases.
We conclude this section by discussing the treatment of
existentially and universally quantified object queries. In
Section 5, we first review methods in object databases and,
then, we provide several strategies for optimizing queries
with methods. We briefly consider method refinement. We
identify future research in which other query optimization
techniques can also be incorporated into object databases,
using our Datalog representation for schemas and queries,
and conclude in Section 6.

2 BACKGROUND

Much work has been done to develop logic-based techni-
ques for semantic query optimization (SQO) in deductive
and relational databases [6], [23], [26], [34], [37]. Subse-
quently, this work has been extended to databases with
recursion [27], [28], [32] and negation [19]. More recent
work considers SQO in the context of object databases
(ODB) and two different approaches have been proposed.

The first approach is based on manipulating special data
structures designed specifically for SQO in ODB. Queries or

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 531

parts of queries are represented by these data structures.
Heuristics are developed to produce query transformation
rules tailored to these data structures and these transforma-
tions are applied to the query. Since the number of
heuristics is limited, the number of query transformations
that are applied is also limited and predictable; this
approach is thus computationally simple. The disadvantage
of this approach is that the heuristics and transformations
only work for a specific query language and specific types
of optimization or transformation. In some cases, they only
work for certain types of ICs. This makes this approach
implementation dependent and rigid.

The following two papers represent this approach: Pang
et al. [35] present an algorithm for three types of semantic
optimization for simple object queries. The algorithm uses a
data structure, called a transformation table, which stores
information about the predicates used in the query,
classifying them as imperative, optional, or redundant. This
information is utilized to eliminate some of the possible
query transformations as not profitable. Lee and Yoo [29]
identify several new types of semantic query transforma-
tions, specific to the object data model. A query is
represented as a quadruple of graphs from which nodes
are removed or added, depending on the type of
transformation.

The second approach for SQO is logic-based. Queries,
rules, and ICs have a uniform representation in a logical
formalism and deduction is used to produce equivalent
query forms. There are no restrictions placed on the
transformations. All possible semantically equivalent
queries will be obtained for that particular formalism.

Three different kinds of logical formalisms have been
applied for SQO. Yoon and Kerschberg [40] assume that the
database schema, rules, and queries are expressed in
F-logic. They have shown how a query can be transformed
into a semantically equivalent query which incorporates
information contained in the integrity constraints. The
transformation is done by means of resolution (on the
query and ICs) extended to account for inheritance
information. The authors also discuss the issue of conflict
resolution strategies and the evaluation precedence of
reformulated queries. The second formalism [5] uses
description logics. Queries are expressed as OCDL (Object
Constraint Description Language) types which can be
expanded by SQO. The third formalism is based on Datalog.
Yoon et al. [41] transforms an object schema into a
deductive database schema and uses the residue technique
of [6] to optimize a query. The optimization algorithm is
only sketched there and applies to simple object queries.

Our approach to SQO is also logic-based and, thus, does
not have the inherent limitations of the first approach. We
consider a much larger class of queries compared to any of
the previous approaches and, in particular, we are able to
handle queries with constructors. We make extensive use of
semantic knowledge and we consider a larger variety of
simplifications in comparison to previous logic-based
approaches [41]. Finally, our research is the first to system-
atically address the issue of using semantic knowledge to
optimize methods.

3 SEMANTIC QUERY OPTIMIZATION FOR
RELATIONAL DATABASES

This section contains background on semantic query
optimization for relational databases, as described in [6].
The material is simply sketched here; the reader is referred
to the original paper for details. Additional issues, such as
nonrange restricted queries, the handling of negation, are
also given in that paper. The formalism of [6] carries over to
the context of OODBs. The basic idea is the use of a theorem
proving technique, called partial subsumption, to attach
integrity constraint fragments, called residues, to relations
during the semantic compilation phase before any queries
are posed. After a query is presented to the database
system, the residues are used, where possible, to transform
the query to another query that is semantically equivalent to
the original query but whose execution is potentially faster.
For the sake of simplicity, the method is illustrated using a
nonsorted logic.

We first present background on first-order logic and the
notation used throughout the paper. A literal is either an
atomic formula or the negation of an atomic formula. All
facts, integrity constraints, and queries are represented by
clauses. A clause is a disjunction of literals:
SiV...VS,V-R;V...nR, We use a Prolog-like notation
and write this clause as S; V...V S, < Ry,..., R, and call
S1 V...V Sy, the head and Ry, ..., R, the body of the clause.
In this paper, we discuss only Horn clauses, i.e., clauses for
which m < 1. The null clause has both a null body and a
null head; it represents a contradiction.

Atomic formulae stand for evaluable (or built-in)
relations such as: >, <, <, >, =, #, or relations defined
as part of the database. Integrity constraints, IC, are rules
expressing restrictions that the database must satisfy. We
use the following conventions: Capitalized attribute names
serve as variables in clauses; we write only those attributes
that are of interest in a query or an integrity constraint.
Constants and relation names start with lowercase letters.
Queries are written as: Q(Projected_Attributes) «— Body,
where Projected_Attributes is the list of projected attributes.

We start the presentation of SQO for relational databases
with the concept of subsumption:

Defintion 1. A clause C, subsumes a clause C if there is a
substitution o such that Cyo is a subclause of Cs.

For example, if
Ci=p(X,Y,a) —q¢X,2),r(X,Y,Z,a)
and
Cy=p(b,Y,a) —q,Y),rb,Y,Y, a),s(a),

then C subsumes C; by the substitution {X =b,Z =Y}.
To understand partial subsumption, we illustrate the
basic algorithm to test for subsumption between C; and Cs.
First, the proposed subsumed clause, C; in this case, is
instantiated to a ground clause by a substitution § using
new constants ki, ..., k, not present in C; or Cs. Thus,

029 = p(ba k1) a) — Q(ba kl)a T(b: kl) kl) a)7 S((J/)7
where § = {Y = k; }. Then, C»0 is negated:

532 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

P(X,Y,a) <= q(X,2), r(X,Y,Z,a) <-p(bkl,a)
{X=b,Y=k1}
<= q(b,2), r(b,k1,Z,a) a(bk1)<~

{Z=k1}

\

<-r(b,klkl,a) r(b,kl kl,a)<—

\

<-
Fig. 1. Refutation tree for subsumption.
=C90 = {— p(b, k1,a); q(b, k1) «;7(b, k1, k1,a) —;s(a) —}.

The final step is the construction, if possible, of a linear
refutation tree with C, the proposed subsuming clause, as
the root, and using at each step an element of (50 in the
resolution. The result is that C; subsumes C; if and only if
there is a refutation tree that ends with the null clause. In
our example, such a tree exists, as seen in Fig. 1.

The subsumption algorithm is applied in partial sub-
sumption with an integrity constraint taking the part of the
subsuming clause (C}) and a relation (negated) taking the
part of the subsumed clause (C5). In general, the null clause
is not obtained because integrity constraints usually do not
subsume relations. However, an integrity constraint may
partially subsume a relation, leaving a fragment at the
bottom of a refutation. Such a fragment is called a residue. A
residue, if nontrivial, represents an interaction between a
relation and an integrity constraint.

Before starting subsumption, constants must be taken
care of in the body of an integrity constraint, as the
following example illustrates. Suppose that r(X,Y,Z7) is a
relation and X =a < r(X,b,Z) is an integrity constraint.
The subsumption algorithm does not work here because
X =a« r(X,b,Z) cannot be resolved with r(ky, ko, k3) <,
the negation of the instantiation of r(X,Y, Z). A technique,
called expansion, is applied to the integrity constraint to
eliminate undesirable constants such as the “b” above. In
this case, expanding X =a<r(X,b,Z) yields
X=a+1r(X,X1,7),X; =b, which can be resolved with
r(ki, kg, k3) < to yield k; = a < k; = b. This is not yet the
residue. The substitution 6§ must first be reversed by
applying f~1. The residue is X =a «— Y =5, intuitively
representing the integrity constraint’s effect on r. Actually,
in some cases, an extra step, called reduction, is necessary
for obtaining a useful residue. This step basically takes
care of removing redundant atoms and reversing the
result of expansion. We leave out the details of expansion
and reduction here.

Next, we state the definitions of partial subsumption and
residue.

Definition 2. We say that IC partially subsumes the relation
R if IC does not subsume «— R, but a subclause of IC* (where
ICT is a result of expanding IC) subsumes «— R.

Definition 3. Given an integrity constraint I1C and relation R,
apply the subsumption algorithm to ICT and — R until no

more resolutions are possible. Let C be the clause at the bottom
of a refutation tree. Then, (C~)0~ (where C~ is a result of
reducing C) is a residue of IC and R.

There may be several different residues between an
integrity constraint and a relation. If the residue is /C~, that
is, there was no resolution, we call it a maximal residue. We
call a residue that is always true, like a = a « , a redundant
residue. Such residues are not useful. Finally, we call an
integrity constraint merge-compatible with a relation if there
is at least one residue that is neither maximal nor
redundant. These are the residues used in semantic query
optimization.

The technique described here was originally developed
for deductive databases. Thus, it can handle views, as well
as rules, if they are part of an object database.

We show informally on the following example how
residues are used for SQO.

Example 1. Let the database contain the following relations:
Student(St_id, Name), Takes_section(St_id, Section#),
Faculty(Section#, Fac_id, Age). Assume also that there is
an integrity constraint, ZC;, which says that all faculty
members are more than 18 years old. Formally:

Age > 18 — faculty(Section#,Fac_id, Age). ¢

By the method of partial subsumption, as described
above with ZC;, and the relation Faculty, we can
construct the residue: {Age > 18 —} (no expansion or
reduction was necessary here), which is attached to the
relation Faculty. Intuitively, it means that any query with
the predicate faculty must satisfy the condition stated by
the residue.

The query below asks for the names of all students
taught by professors younger than 18:

Q(Name) < student(St_id, Name),
takes_section(St_id, Section#),
faculty(Section#, Fac_id, Age), Age < 18.

Now, since the query contains the predicate faculty, the
residue applies here and the following semantically
equivalent query is produced:

Q'(Name) « student(St_id, Name),
takes_section(St_id, Section#),
faculty(Section#, Fac_id, Age),
Age < 18, Age > 18.

The query contains a contradiction. This means that it
cannot return any answers, otherwise the database would
violate ZC;. Hence, the query need not be evaluated. An
optimizer, upon discovering the contradiction, should halt
the processing of the query.

4 SEMANTIC QUERY TRANSFORMATION
4.1 ODMG Data Model

The lack of standards for object databases has been a major
limitation to their more widespread use and also to the
ability of transferring tools and techniques developed for
relational databases to object databases. Reference [13]
describes a standard for object database management

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 533
children
W it parents
as_prerequisites
COURSE prered = PERSON
name spouse name
number . . AddreSSstruc city
/P 1 is_prerequisite_for street
. / \ number
has_sections
STUDENT EMPLOYEE
takes -
student _id id
salary
is_section_of
is_taken_by
SECTION TA FACULTY
number assists rank
has_TA
is_taught_by teaches

Fig. 2. Example database schema. Each box represents a class, heavy arrows indicate class hierarchy, thin arrows describe relationships between
classes. The data in a box are attributes for that class; additional attributes are inherited from superclasses. Methods are not included in the figure.

systems developed by the members of the Object Database
Management Group (ODMG). This standard provides,
among other things, a syntax for an Object Definition
Language (ODL) and an Object Query Language (OQL).
The ODMG object model can be summarized as follows:

e The basic modeling primitive is the object. Every
object has an identity, referred to as an object
identifier (OID).

e The state of objects is defined by the values they
carry for a set of properties. These properties may be
either attributes of the object itself or relationships
between the object and one or more other objects.

e Objects can be categorized into classes (or types). All
objects of a given type exhibit common behavior and
a common range of states. Object types are related in
a subtype/supertype graph. All properties and
operations defined on a supertype are inherited by
a subtype.

e The behavior of objects of a type is defined by a set
of methods (also called operations) that can be
executed on objects of the type.

The schema in Fig. 2 (which is a slightly modified
example from [13]) illustrates the major features of the
ODMG data model in the form of a diagram.

The above specification describes the most typical
features of object databases. Perhaps the only point that
needs to be clarified is the difference between attributes and
relationships. Only the latter, according to the standard, can
relate objects. Attributes do not have OIDs; their indivi-
duality is determined by the individual object to which they
apply. Hence, a structure which is an attribute of some
object cannot be shared, i.e., it cannot be an attribute of

another object or contain substructures that change dyna-
mically. In our logic-based representation, for uniformity,
we introduce an OID for structures. This does not create a
problem in the optimized object queries since OIDs for
structures are never introduced into the object queries. We
note that techniques for representing structure attributes
without OIDs as specified by ODMG, in the relational
framework, have been developed in [21].

4.2 Overview of our Method

We perform SQO for the first-order logic representation of a
query expressed in OQL. Our optimization technique has
several steps, shown in Fig. 3. During a preoptimization
phase, the object database schema, described in ODL, is
translated into an equivalent logical representation in Step 1.
It is similar to translations proposed in [3], [41]. This
translation is intended to capture all the semantic informa-
tion encoded in the object data model, such as
object-identity, inheritance, types of relationships between
classes (one-to-one, one-to-many, many-to-many), and key
constraints. We assume that all integrity constraints are
expressed in the logical formalism as well. In the optimiza-
tion phase, each OQL query is then translated into its logical
representation in Step 2. Next, we apply the residue method
to obtain all queries semantically equivalent to the original
logical query in Step 3. Finally, in Step 4, we obtain an
optimized OQL query and, possibly, more than one.

We should emphasize here that the input to the
transformation of Step 4 contains not only an optimized
logic query, but also the original OQL query. This is
necessary if we want to retain all of the extralogical features
of OQL (such as structure constructors). The transformation
of Step 2, although sufficient for SQO, loses all these

534 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Pre-Optimization | Obiect 1 Relational
Database = Database
Phase Schema, Schema
Optimization Object 2 | Logic 3 Optimized 1 Optimized
= = Logic = Object
Phasc Query Query
uery uery
Q Q

Fig. 3. Query optimization steps. The arrows are not intended to indicate the complete input to each step.

features, hence they cannot be retrieved into the optimized
OQL query from the logic query alone. To guarantee full
equivalence of OQL queries (the original and the modified),
we map changes done during the optimization of the logic
query to changes of the OQL query. In other words, Step 4 is
not a translation of the logic query, but a modification of the
original OQL query according to the mapping.

The output of SQO in our approach contains several
semantically equivalent queries. Each of these queries
should then be evaluated by a conventional cost-based
physical optimizer and the query with the lowest cost
processed in the database. Since the number of semantically
equivalent queries generated by SQO can be large and, in
the worst case, it is exponential in the number of residues
applicable to the input query, the algorithm should be
accompanied by heuristics. Such heuristics would guide the
query transformation process so that only promising
transformations are generated. A strategy to eliminate some
of the useless residues (such as redundant residues) has
already been described in Section 3. Many of the heuristics
developed for SQO in relational databases [6], [37], e.g.,
those that restrict the introduction of selections on attributes
that are not indexed, etc., also apply to object databases.
However, as mentioned in the introduction, there are
several other types of simplifications for object queries that
do not occur in SQO for relational databases. Some
guidelines for the efficient search of promising semantic
transformations in object databases have been suggested in
[29], [35]. In many cases, the heuristics may be dependent
on the particular object database implementation. We do
not consider the development of heuristics in this paper.

We note here that the overhead incurred by the rewriting
phases (Steps 1, 2, and 4) in our technique is negligible
compared to the cost of SQO itself. The complexity of Step 1,
schema transformation, is linear with respect to the number
of classes, relationships, structures, and methods defined in
object database. Although this cost may be nontrivial for
large databases, it would be amortized over a large number
of queries. The complexity of Steps 2 and 4, query
transformation, is linear with respect to the size of the
query. Step 3, on the other hand, is exponential in the
number of integrity constraints applicable to a query and
will dominate the entire optimization process.

4.3 Schema Translation

We represent an ODL schema in the relational model by
relations and integrity constraints. Each class, structure,
relationship, and method of the object data model is
represented as a relation; all facts about the class hierarchy,
object identity, relationships, and keys are expressed by
means of integrity constraints. The definition of a method or
facts about the behavior of a method, are also expressed as
integrity constraints. The choice of the pure relational
model versus nested relational or F-logic (which are closer
in spirit to the object data model) was made for its
simplicity and expressive power. It is easy to show that
our translation of an ODL schema into a relational schema
is complete in the sense that a reverse translation uniquely
retrieves the original ODL schema.

We reiterate that the goal of our transformation is to
express all semantic information encoded in an ODL
schema using a Datalog representation. Our use of this
transformation in no way implies that the object database is
actually implemented using deductive database or rela-
tional database technology.

4.3.1 Relations

Each class, structure, relationship, and method defined in
an ODL schema becomes a relation in the relational schema.
The following rules specify the translation. In the Appen-
dix, we give a partial translation for the schema of Fig. 2.

1. Assume that a class C has the following attributes in

this order:
simple attributes A;,..., A,;
structure attributes S1,...,S),.

Note: Subclasses inherit the attributes of their
superclasses (in an unambiguous way). For each
class C, create a 1 + n + m-ary relation

¢(OID, A,,...,A,,0IDs,,,0IDg,),

where OIDg, is an OID of a structure of type S;.
2. For each structure S with attributes as above, create a
1+ n + m-ary relation

s(OID, Ay, ..., A,,0IDs,,...,0IDsg,).

3. For each relationship R, between classes C and C5,
create a binary relation

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 535

T(OIDCU O[DCz)v

where OID¢, and OIDc, are OIDs of tuples,
respectively, from the relations representing C

and Cj.

4. For each method! M, defined on objects of class C,
with user provided arguments Aj,...,A4,, that
returns a value Value, create an n + 2-ary relation m:

m(OID¢, Ay, ..., Ay V),

where OID¢ is an OID of an object of type C and
V = Value, if Value is a base value, or V- = OI Dy e,
where OI Dy, is an object identifier, otherwise.

4.3.2 Integrity Constraints

Integrity constraints created by the rules below are intended
to capture semantic information that is built into the object
schema. For object databases that allow the explicit
representation of integrity constraints,” such constraints

should also be translated into Datalog and added here.
We assume throughout the paper that all variables that

appear in the head of a rule and do not appear in its body
are existentially quantified.

1. OID Identification:

e For each relation r obtained from a relationship
between classes ¢ and (5, we have

Cl(OID17A1, e ,An) — T(OIDl,OIDz),
CQ(OID27 Bl, ey Bm) — T(OIDh OID2)7
where Ay,..., A, and By,...,B,, are attributes

of ¢ and ¢y, respectively.3 We do not obtain such

constraints for subclasses of C; and Cs.

e For each class C containing the OID of a
structure S as an attribute, we have
s(OID, By, ..., By,) < ¢(OIDy, Ay, ..., Ay, OID).

e For each method M containing the OID of a
class C, we have

¢(OID, Ay, ..., A,) — m(OID, By, ..., By, V),

where m is the relational representation of M.
2. Subclass hierarchy:
For each pair of classes C; and C,, where C; is a

subclass of C;, we have

Cl(Oll)7 Al,. .. ,An) —

CQ(OID7 Al,. .. »A'n,7An+la . ,Am).

3. Inverse relationships between classes:
For each pair of relations r; and r; obtained from an

inverse relationship between C; and C,, we have

1. We refer to one type of method only, i.e., methods applicable to single
objects returning a single value. A more comprehensive discussion of
methods is presented in Section 5.

2. Reference [13] does not allow the explicit representation of integrity
constraints.

3. The A; and B; are essentially Skolem functions.

TI(OIDI,O]DQ) — T2(OID27OID1)7
TQ(OIDQ,O]DI) — Tl(OIDl,OIDQ).

4. Many-to-one constraints:
For each relation r obtained from a many-to-one
relationship R, we have

OIDy =0ID; « r(OIDy,0ID),
r(OIDy,OID;).

5. Key and dependency constraints:

e For each relation ¢ obtained from a class or
structure, we have

Ay =Bi&...&A, = B,

— ¢(OID, Ay,..., A,),c(OID,By,...,B,).

e For each relation ¢ obtained from a class or
structure, if A, is a key,

OIDl :OIDQ — C(OID17A17. . -A'i7 .
C(OIDQ,B]w..,A¢7...B7L).

VATL)’

e Method constraints:

For each method that is a predefined query, the
definition of the method will be specified as a
view definition. For each method that is an
arbitrary procedure, facts describing the beha-
vior of the method will be expressed as integrity
constraints. Details of the view definition and
method constraints are presented in Section 5.

4.4 Query Translation
Step 2 in Fig. 3 is the query translation phase. The input to
this procedure is an OQL query and the relational
representation (from Step 1) of the ODL schema. The
output is the Datalog representation of the OQL query. Not
all of the features of OQL can be represented in Datalog. A
Datalog query cannot create new objects, ie. it lacks
constructors. Thus, an OQL query and its Datalog repre-
sentation can be considered equivalent only in the sense
that the latter retrieves from the relational database
precisely the tuples representing (according to the schema
transformation) the objects retrieved by the former. A
formal proof of the correctness of our transformation is
beyond the scope of this paper.* The material below
considers conjunctive queries. It can be extended easily to
handle disjunctive queries. A disjunctive query maps into a
set of Datalog queries, each of which must be answered.
In this section, we consider OQL queries restricted in the
following ways:

e We consider only select-from-where queries. This
covers the majority of commonly asked queries.

4. The proof of the equivalence of Datalog queries, before and after
optimization, is provided in [8]. Extending that proof to the equivalence
between the original and modified OQL queries would require describing a
single semantics over both Datalog and OQL.

536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

e We do not translate constructors (such as struct, set,
list, etc.) or collection expressions (such as unigue,
count, sum, etc.) into Datalog. Such operators are not
relevant for SQO and can be directly carried over
into the optimized OQL query. One of the key ideas
of our approach is the fact that the optimized
Datalog query is not translated into a new OQL
query (in which case, all constructors from the
original query would be missing). Rather, we map
the modifications done in the Datalog query into
modifications of the original OQL query and, thus,
do not have to reconstruct the OQL query from
scratch. In this way, we can apply the technique to a
large class of OQL queries without changing the
format of the answer set.

For clarity of presentation, we also ignore set
expressions intersect, union, except,5 which can be
represented in Datalog.

e The algorithm we present works for unnested
queries only. Subqueries appearing in the where
clause should be unnested in the same way it is done
in SQL. Techniques for unnesting certain subqueries
from the select and from clauses have been
proposed in [15], [14] and will be used to simplify
a nested query, prior to translation.

e Universally and existentially quantified queries can
also be transformed into Datalog; this is discussed in
Section 4.6.

Before the algorithm is applied to an OQL query, we
simplify the query by removing from it all path expressions
and substituting them with “one-dot” expressions, i.e.,
expressions of the form .y, where neither = nor y are path
expressions. This is done in the following way.

1. For all P.z, where P is a path expression:

e Substitute y.z for P.x, where y is an identifier
that does not occur anywhere else in the query.
e Add to the from clause the expression P y.
2. Repeat until there are no more path expressions in
the query.
The following OQL query has path expressions replaced
by one-dot expressions:

select x.A
from Py
where 2.B 0 c,

where z, y, z are identifiers, P is a “one-dot” expression,
A, B are attributes or methods, and ¢ is a constant. There
may be one or more expressions of the form z.4 in the
select clause, one or more phrases of the form P y in the
from clause, and zero or more phrases of the form z.B 6 cin
the where clause. For readability, we do not cover the case
where there is an expression z.B 6 v.C' in the where clause
since it is a trivial extension of the case where v.C is a
constant.

Attributes with the same name but in different classes
should be given different names in the translation. The

5. Except cannot generate unsafe formulas in Datalog if the output query
from OQL is union compatible.

procedure for identifying classes (structures) of identifiers
follows the algorithm.

Identifiers play the role of OIDs in the Datalog
representation of a query. The Datalog translation of the
OQL query has the form: Q(Projected_Attributes)«— Body. We
assume that atoms are added to the Body of the Datalog
query only if they have not been added there in previous
steps of the algorithm (i.e., we guarantee nonredundancy of
the Datalog query).

ALGORITHM OQL_to_DATALOG
1. For each z.A in the select clause
1.1. If A is an attribute,

1.1.1. Add ¢(X,..., A,...) to the Body,
where c is the class (structure) for
which z is the identifier.

1.1.2. Add A to the Projected_Attributes.

1.2. If A is a method M (A, ..., A,), where Ay, ...
are user provided arguments,

1.2.1. Add ¢(X,...) to the Body,
where c is the class (structure) for
which z is the identifier.

1.2.2. Add m(X, A4,..., A,, V) to the Body,
where m(X, Ay,...,A,, V) is the
relational representation of the
method M.

1.2.3. Add V to the Projected_Attributes.

2. For each z.B 0 ¢ in the where clause,
2.1. If B is an attribute,
2.1.1. Repeat step 1.1.1. (with .4 = z.B).
2.1.2. Add B 0 c to the Body.
2.2. If Bis a method
2.1.1. Repeat steps 1.2.1.-1.2.2.
(with z.A = z.B).
2.1.2. Add V 0 c to the Body.
3. For each P y in the from clause,
3.1. If P = C, where C is the name of a class,

3.1.1. Add c(Y,...) to the Body,
where c is the relational
representation of C.

3.2. If P = xz.R, where R is the name of a relationship,

3.2.1. Add r(X,Y) to the Body,
where 7 is the relational
representation of R.

3.3. If P = 2.5, where S is the name of a structure,

3.3.1. Add s(Y,...) to the Body,
where s is the relational
representation of S.

3.3.2. Put Y as a structure identifier of
structure S in the class ¢ to which X
refers, i.e., ¢(X,...,Y,...).

To identify classes (structures) to which identifiers in an
OQL query refer, we need to find the appropriate statement
in the from clause. Let z be an identifier whose class
(structure) we want to identify. Then, there must be a
statement P z in the from clause. If P is the name of a class,
then z refers to the class P. If P =1y.S, where S is the
structure name, then x refers to the structure S. Otherwise,

bl A'VL

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 537

P =y.R, where R is an OODB relationship. Then, there is
an integrity constraint linking the relationships and classes:

(X, Ay, ... Ay) — r(Y, X),

where 7 is the relational representation of R. In this case, =
refers to the class C for which ¢ is the relational
representation.

We trace the OQL_to_DATALOG algorithm on the
example based on the schema of Fig. 2.

Example 2. Let the following be a query in which path
expressions have been replaced with one-dot expres-
sions. The query refers to the schema of Fig. 2.
Taxes_withheld is a method defined on the class Employee;
it takes one user-provided argument Rate and returns a
value of type number.

select z.name, w.city
from Student x
x.Takes y
y.Is_taught_by z
z.Address w
where x.name = “john”and z.Taxes_withheld(10%) = 1, 000.

We follow the above algorithm step by step as follows:

1. There are two expressions in the select clause:
z.name and w.city and both contain attribute
names. They are identified as belonging, respec-
tively, to the class Faculty and the structure
Address. Hence, the following two atoms are
added to the body of the query:

faculty(Z, Namey), address(W, City)

and Name; and City are added to the projected
attributes in the Projected_Attributes.

2. Of the two expressions in the where clause,
x.name = “john” contains an attribute name and
z.taxes_withheld(10%) = 1,000 contains a method
name.

For the first one, the class Student is identified
and the following atoms are added to the body of
the query:

student(X, Names), Names =" john."

The second expression contains an identifier z
which refers to the class Faculty which was
already added to the query in Step 1. Thus, only
the following two atoms are added:

tazes_withheld(Z,10%,V),V = 1,000.

3. Of the four phrases in the from clause, Student x
has already been translated and added in Step 2.
The expression x.takes y is translated as:

takes(X,Y).
The expression y.is_taught_by z is translated as:

is_taught_by(Y, Z).

The expression z.address w is translated as
address(W, City). Since it has already been added
in Step 1, it need not be added here. However, we
need to substitute W as an attribute holding the
OID of the structure Address in the class to which
z refers, which is Faculty. Thus, the translation of
Faculty becomes faculty(Z, Name,, W)

Recall that we do not indicate all attributes of the OQL

classes in Datalog atoms. The final query has the

following form:

Q' (Name,, City) < student(X, Name;), takes(X,Y),
is_taught_by(Y,Z),
faculty(Z,Name; W),
address(W,City), Name,;="john”,
taxes_withheld(Z,10%,V),
V' =1000.

After the Datalog query has been optimized (as sketched
in Section 3), we are able to transform the original OQL
query into a semantically optimized form. As we stated
before, the idea here is to map the changes introduced in the
Datalog representation of the query to changes in the OQL
query. The only changes that can be made in a Datalog
query are the addition or removal of one or more literals. A
removed (added) literal can represent either an evaluable
relation (i.e., an atom of the form X =Y, A6k, or AB,
where X, Y are identifiers, A, B are attributes, and % is a
constant) or a database relation (i.e., a literal of the form
p(...) or =p(...), where p is a relation name). The algorithm
below provides a straightforward mapping of these Datalog
query modifications to OQL query modifications.

Let ¢,d be relations representing classes or structures
C, D and r be a relation representing a relationship R; P is
either a class or a one-dot expression.

ALGORITHM DATALOG_to_OQL

1. Adding (removing) an evaluable atom.
Let X =Y (X #Y) be an atom added to (removed from)
the Datalog query.
e Add (remove) x = y (z # y) to (from) the where
clause.
Let A 6 k be an atom added to (removed from)
the Datalog query. Then, there must be an atom
c(X,...,A,...) in the Datalog query.
e Add (remove) z.A 0 k to (from) the where clause.
Let A 6 B be an atom added to (removed from)
the Datalog query. Then, there must be atoms
oX,...,A,...)and d(Y,...,B,...) in the Datalog query.
e Add (remove) x.A 0 y.B to (from) the where clause.
2. Adding (removing) a predicate literal.
Let ¢(X,...) be an atom added to (removed from)
the Datalog query.
e Add (remove) C x to (from) the from clause.®
Let 7(X,Y) be an atom added to (removed from)
the Datalog query.

6. If the from clause already contains an expression P = and ¢(X, . ..) has
been added to the Datralog query, then we can substitute P intersect C'
for Pz in the from clause.

538 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

e Add (remove) x.R y to (from) the from clause.
Let —¢(X,...) be an atom added to the Datalog query.
Then, there must be an expression P x in the from clause.
e Substitute P except C x for P x in the from clause.
Let -r(X,Y’) be an atom added to (removed from)
the Datalog query. Then, there must be an expression P x
in the from clause.
o Substitute P except x.R y for P x in the from clause.

4.5 Applications

Next, we present several examples of semantic optimiza-
tion. In each case, we present an OQL query (already
modified to remove path expressions), its Datalog repre-
sentation), one or more integrity constraints that can be
applied to the query, an optimized Datalog query ¢, and
an optimized OQL query. We do not include the full list of
attributes for each predicate in a query or an integrity
constraint. We only write those attributes which are
projected, selected, or joined in a query. All queries refer
to the schema of Fig. 2.

Example 3. (Contradiction detection). Consider a query
that asks for the names of students taught by faculty
members younger than 18 years old. The OQL and
Datalog representations are as follows:

select x.name

from Student x
x.takes y
y.is_taught_by z

where z.age < 18

Q(Name)«— student(X,Name),takes(X,Y),
is_taught_by(Y,Z) faculty(Y,Age),
Age < 18.

Recall that we had an integrity constraint (ZC;) stating
that all faculty members are more than 18 years old.
Thus, this query is bound to fail. The Datalog represen-
tation of the query is optimized (details of the optimiza-
tion are given in Example 1), and a contradiction is
added to the query. It is as follows and is not evaluated:

@'(Name)« student(X,Name),takes(X,Y),
is_taught_by(Y,Z) faculty(Y,Age),
Age < 18, Age > 18.

Example 4. (Access scope reduction). Many object data-
bases maintain the extent for a class, i.e., the OIDs of all
objects in that class. By using integrity constraints on
class hierarchies, it may be possible to reduce the scope
of a query to a subclass. Manipulation of the extents of
the classes and subclasses may lead to plans that
possibly reduce the number of objects that are accessed
from the object database. Consider a query that asks for
names of all persons younger than 30. The OQL query
and its Datalog representation are as follows:

select x.name
from x in Person
where x.age < 30

Q(Name)« person(X,Name,Age), Age < 30.
Suppose we know that all faculty members are more
than 30 (since they are more than 18 by ZC; and the set of
all faculty members is a subclass of the set of all persons
ZCy). Then, the objects of the class Faculty should not be
considered when evaluating the query.”

ZCs

Given ZC; and ZC,, we can derive the following integrity
constraint:

person(X,Name,Age)— faculty(X,Name,Age).

Age > 30 « faculty(X,Name,Age),
person(X,Name,Age), ICs
which can also be expressed as:
- faculty(X,Name,Age)«— person(X,Name,Age),
Age < 30. ICy
Optimization of @ with ZC, yields the following;:
@' (Name)«— person(X,Name,Age), Age < 30,
—faculty(X,Name,Age).

Since a new literal has been added to the Datalog
representation of the query, the algorithm
DATALOG_to_OQL yields the following optimized
OQL query:

select X.name
from X in Person

x not in Faculty
where x.age < 30

One possible way to evaluate this query is to use the
class extents for Faculty and Person to first identify those
objects that are in class Person but not in class Faculty and
then retrieve only those object instances. Such an
optimization would be possible in object databases that
maintain the extents of classes. A heuristic would be
used to identify when such extents are maintained so
that this optimization may be performed.

Example 5. (Join reduction). The query that is considered
here uses a constructor list to create lists containing the
student id of a student and the employee id of a TA such
that they both take a section taught by the professor of
the same name. This example will illustrate that our SQO
technique is able to preserve the constructors in the
optimized OQL query. Further, in the original query,
objects identified by identifiers z and w are involved in a
join operation over the attribute name. This would
require the retrieval of these objects from the database.
Using a key constraint on attribute name, we can replace
this join with a corresponding comparison of the OIDs.
We are thus able to introduce an optimization that
eliminates unnecessary object retrievals.

select list[s.student_id, t.id]
from s in Student

7. For simplicity, we use the comparison Age < 30 in both the integrity
constraint and the query. In general, SQO must handle a more general case,
e.g., with Age <20 in the query. We do not describe the details of the
simplification here.

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES

tin TA
y in s.Takes
z in yIs_taught_by
v in t.Takes
w in v.Is_taught_by
where z.name=w.name

The Datalog representation of the query, which does
not preserve the constructor list, is as follows:

Q(Student_id,Id)« student(S,Student_id), takes(S,Y),
is_taught_by(Y,Z) faculty(Z,Name,),
ta(T Id),takes(T,V),is_taught_by(V,W),
faculty(W,Namey),

Name; = Name,.

ZCs states that Name is a key for the relation Faculty.

X1 = XQ — faculty(Xl,Namcl),
faculty(Xs, Namey), Name; = Names. ICs

ICs states that two objects with the same OIDs are
identical.

Name; = Name; <+ faculty(X;, Name;),
faculty(Xs, Namey), X; = Xs. ICs

These two integrity constraints allow us to rewrite the
query so that no objects from the class Faculty need be
retrieved to compare their names as follows:

Q' (Student_id, Id)« student(S,Student_id), takes(S,Y),
is_taught_by(Y,Z), faculty(Z,Name,),
ta(T,Id),takes(T,V),
is_taught_by(V,W),
faculty(W,Name,), Z=W.

Two changes have been made to the Datalog represen-
tation of the query as follows: The atom Name; = Name;
has been removed and the atom z = w has been added to
the query. These changes are mapped in a straightforward
way to the OQL query to yield the following;:

select list[s.student_id, t.id]
from s in Student

tin TA

y in s.Takes

z in y.Is_taught_by

v in t.Takes

w in v.Is_taught_by
where z=w

This optimized query may have an evaluation plan
that compares OIDs z and w, where z is in the set of OIDs
y.Is_taught_by and w is in the set of OIDs v.Is_taught_by.
The original query would have had a plan that retrieved
objects z and w from Faculty. The (new) plan thus
provides an optimization opportunity to reduce object
accesses from the database. Note also that, despite the
fact that the Datalog representation of the OQL query did
not contain the constructor list, it is retained in the OQL
query.

Example 6. (Join introduction using access support
relations). Queries that require evaluating very long

path expressions may be expensive to process. To

539

optimize their evaluation, access support relations were
introduced in [25]. Access support relations are separate
structures that explicitly store OIDs that relate objects
with each other. They may be maintained for path
expressions that are accessed frequently in queries. SQO
can use access support relations to reduce the number of
joins in a query. SQO may also use them to obtain
alternate queries which may have more optimal evalua-
tion plans.
Consider the following path expression P:

takes(X,Y),is_section_of(Y,Z),has_sections(Z,V),
has_ta(V,W).

Assume that this path expression occurs often in
queries relating the first and the last object of the path, as
in the following query:

Q(W) « student(X,Name),takes(X,Y),
is_section_of(Y,Z), has_sections(Z,V),
has_ta(V,W), Name="james.”

An access support relation for P is a materialized
view asr defined as follows:®

asr(X,W)« takes(X,Y),is_section_of(Y,Z),
has_sections(Z,V),has_ta(V,W).

Given this access support relation, all queries contain-
ing P can be evaluated more efficiently. For example,
query Q(W) can be rewritten as follows, where the view
asr has been introduced to eliminate several joins:

Q'(W) — student(X,Name),asr(X,W), Name="james.”

Now, consider the following query:

Q;(V)«— student(X,Name),takes(X,Y),
is_section_of(Y,Z), has_sections(Z,V),
Name="johnson.”

The access support relation asr is not directly useful
here since it only relates objects from the class identified
by X, i.e., Student, with objects from the class identified
by W, ie., TA. However, suppose there is an integrity
constraint that, for every student registered for a course,
there is a teaching assistant assigned to each section of
that course as follows:

has_ta(V,W)« takes(X,Y),is_section_of(Y,Z),
has_sections(Z,V). ICy
Suppose there is also another integrity constraint that
has_ta(V,W) is a one-to-one relationship, i.e., each section
has exactly one TA and each TA has exactly one section.
Then, using this integrity constraint and ZC;, we obtain
the following:

Qi (V) < student(X,Name),takes(X,Y),
is_section_of(Y, Z), has_sections(Z,V),
has_ta(V,W), Name="johnson”

which in turn can be rewritten as follows:

Q) (V) — student(X,Name), asr(X,W),
has_ta(V,W), Name="johnson.”

8. This type of relation is called a canonical extension of access support

relation for P in [25].

540 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

In the first example, using the access support relation
asr reduced the number of joins compared to the original
query. For queries involving long path expressions, i.e.,
queries that require evaluating many joins, such savings
could be substantial. In the second query, the use of the
access support relation produced an alternate query
evaluation plan which would not have been produced by
a syntactic optimizer, which does not use semantic
knowledge. A physical cost optimizer can make the
decision as to whether this evaluation will be more
efficient compared to the query that did not use the
access support relation. Thus, there is a possibility of
reducing the number of joins, and the generation of
alternate evaluation plans, using SQO.

In all of the examples presented above, only one more
efficiently evaluable query has been created for each case.
As stated in Section 4.2, this is achieved by first constraining
the search of possible transformations by means of
heuristics and then using a syntactic optimizer to evaluate
the execution cost for each of the semantically equivalent
queries.

4.6 Other Types of Queries

1. Existential Quantification:

This type of query has the following form: exists x
in e;: e3, where e; is a collection and e; is a predicate.
It returns frue if there is at least one element of
collection e; that satisfies ey, and false otherwise. The
translation is done in two steps. First, the existential
query is transformed into a select-from-where query
of the following form:’

select x
from e x
where ¢

Then, the above query is translated into Datalog by

algorithm OQL_to_DATALOG, with one modifica-

tion, i.e., the list Projected_Attributes is empty.
Consider the following OQL query:

exists x in Sections: x.Taught_by.name = “Turing”

The Datalog translation of this query is as follows:

q()« section(X), taught_by(XY),
faculty(Y,Name), Name = “Turing”

2. Universal Quantification:

A query of this type has the following form: for all
X in ey: ey, where e; is a collection and ey is a
predicate. Since universal queries cannot be directly
expressed in Datalog, the translation from OQL to
Datalog will also occur in two steps. We first note
that the following two statements in first-order logic
are equivalent:

e VX (p(X)—r(X))
e —3X (p(X) A -r(X))

9. If the query that is obtained is a nested query, then it must first be
unnested, as described in [15].

Thus, the universal query: for all x in e;: ey is
equivalent to an existential query not(exists x in e;:
not (e2)). Let

v() < Body.

be the Datalog translation of the query exists x in e;:
not (ez). Then, if v is treated as a view, the query
not(exists x in e1: not (e2)) can be expressed in Datalog
as follows:

q() < —w.

5 SEMANTIC OPTIMIZATION OF QUERIES WITH
METHODS

Methods (operations) are a distinct feature of an object
query language. They are operations that may be called
with user-provided arguments to be executed as part of a
query or an update in a database. Methods are defined for a
particular class of objects and are applicable to all objects in
that class and its subclass(es). In this section, we first
discuss a classification of methods; the methods that are
considered go beyond the ODMG standard. We then
identify the class of methods for which we present a
technique for SQO. We present details of SQO for methods
that are predefined queries in a query language and for
methods which are implemented as arbitrary procedures.
For each type of method, we present examples of shallow
and deep level SQO. We illustrate the importance of
heuristics for SQO with methods to be successful. We also
briefly consider method refinement (of the method
implementation).

5.1 Types of Methods for Applying SQO

Methods can be classified on three orthogonal character-
istics, as follows:

1. Value returned: A method can

a. return a value;
b. not return a value, but have side-effects.

2. Domain of method application: A method may be
defined for

a. a single object;
b. a collection of objects.

3. Implementation: A method may be implemented as

a. a predefined query in a query language;
b. an arbitrary procedure in a programming
language.
Methods that return no value but may have side effects (1b)
usually implement update procedures in a database. We do
not consider SQO for these methods since we do not
consider optimization of updates. We only consider
methods that return a (simple) value. We note that methods
can also have input and output parameters that enable them
to return collections of objects [13]; this is not considered
here for simplicity.
Methods defined for a collection of objects (2b) may
perform aggregate functions, e.g.,, MAX, MIN, AVG, etc., on

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 541

these collections. Since we do not explicitly represent
collections of objects in the logic representation, we do not
perform SQO on these methods.

For methods that are defined for a single object (2a) and
return a value (la), we distinguish between methods that
are implemented as predefined queries (3a) and methods
that are arbitrary procedures (3b). SQO can be applied at
two different levels for these methods and these levels are
informally labeled deep and shallow level optimization. A
query with a method is optimized at a shallow level if the
only available semantic knowledge is specific facts about
the method. Optimization at a deep level requires that the
encapsulation of the method must be broken. To perform
optimization at a deep level, we use semantic knowledge
about the method definition in the case that the method is a
predefined query in a query language. In the case where the
method is an arbitrary procedure, the behavior of the
method, with respect to the object to which it is applied,
must be expressed as a relationship, which is then used for
optimization at a deep level. Heuristics are needed to
determine if deep level optimization is beneficial in both
cases.

To relate to previous research, [2], [33] proposed that the
encapsulation of the method be broken and that the
implementation be revealed to the optimizer. Such informa-
tion was to be stated in a form that would be understood
and efficiently processed by the optimizer. References [10],
[20] suggest rewriting methods by means of equivalences
that specify the semantics of methods. In our approach for
SQO for methods, we can provide shallow level optimiza-
tion even when the definition of the method or the method
behavior is unknown, i.e., the encapsulation of the method
is not broken. However, for deep level SQO, the imple-
mentation of a method is revealed by providing the
method’s definition, or by a relationship describing the
behavior of the method. Our technique has an important
advantage over existing approaches; we use a uniform
framework for describing semantic knowledge of methods
and of the database schema. Thus, we are able to generate
semantically equivalent queries which could not have been
generated without this combined semantic knowledge.

5.2 Predefined Queries

Predefined queries (called POSTQUEL functions in [38]) are
methods written in a query language. An example of such a
method is Student_of, which is defined on the class Faculty
and takes Name (of a faculty member) as its argument. It
returns all students who are taught by the faculty member.
The method definition is as follows:

define function Students_of(Arg)
select y
from Faculty x
x.Teaches z
z.Is_taken_by y
where x.Name = Arg

We first consider the case where the method definition is
not available and only shallow level SQO can be performed.
We then consider the situation where the method definition
is available and deep level SQO is possible. However, with

deep level SQO, there is a need for heuristics to determine if
the deep level rewriting is optimal.

Suppose we assume that the method’s definition is not
available. In this case, if there is semantic knowledge in the
form of specific facts about the method, then we can
perform shallow level optimization. Suppose we know that
a faculty member named Johnson has no students (because
he does not teach any classes). Then, we can state the
following specific fact about this method expressed as an
integrity constraint.

— students_of(X,Name,Value), faculty(X),
Name="Johnson.” ICs

Suppose we consider the following query Q and its Datalog
representation:

select w
from Faculty x
x.Students_of(“Johnson”) w

Q(W)«— students_of(X,Name,W), faculty(X,Name),
Name="Johnson.”

The integrity constraint ZCs will identify a contradiction
and the query will fail. However, it is highly unlikely that
we will obtain such specific facts relevant to the method. It
is much more likely that we will only have the more general
constraint that Johnson does not teach any classes, as
follows:

ZCy

Now, for SQO to be successful, we require that the
definition of the method Students_of() be available to the
semantic optimizer. The relational representation of this
method definition, expressed as a view definition with
parameters, is as follows:

— faculty(X,Name), teaches(X,Y), Name="Johnson.”

students_of(X,Name,Y) < faculty(X, Name), teaches(X, Z),
is_taken_by(Z, Y).

The Datalog representation of the query, after substituting
the view definition for the method, is as follows:

Q(Y) « faculty(X, Name), teaches(X, Z),
is_taken_by(Z, Y), Name="Johnson.”

Then, we can use the integrity constraint ZCy to perform
deep level SQO. The SQO technique described in Section 4
is applied directly. SQO will identify a contradiction so that
the query must fail. This type of query rewriting has been
advocated in [1].

We note that, although both shallow and deep level SQO
can be performed for these methods, we still need heuristics
to determine if we are producing a more efficient plan. We
illustrate with an example.

Example 7. Consider the following query:

Q(W)«— students_of(Z,Name,W), faculty(Z),
Name="Baker.”

With the method substituted by its definition, the query
becomes:

Q(W)— faculty(Z,Name),teaches(Z)Y),
is_taken_by(Y,W),Name="Baker.”

542 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Assume that Baker teaches section CMSC424 only, given
by ZCyy. Also suppose that Baker is the only person who
teaches that section, as given by ZC;;.

Number=CMSC 424 — faculty(Z,Name),teaches(Z,Y),
section(Y,Number),

Name="Baker.” ICyo
Name="Baker”«+ faculty(Z,Name), teaches(Z,Y),
section(Y,Number),
Number=CMSC 424. ICu

With these two integrity constraints, and the fact that
each section is taught by someone, we can derive the
following equivalent query:

Q) (W)« section(Y,Number),is_taken_by(Y,W),
Number=CMSC 424.

()} appears simpler than ;. However, suppose the
method itself was efficiently implemented, e.g., using an
access support relation between faculty and their students.
Then, Q, may be optimized using this access support
relation, but not Q. In this case, @} may be more expensive
to evaluate than query Q;. To reliably estimate the cost of
each of these queries, a physical optimizer would have to
keep information about the implementation (cost) of the
methods. Alternatively, if this approach is too complex, we
may require the use of a heuristic. A suitable heuristic may
be that a method should not be substituted by its definition,
and SQO should not be performed using integrity con-
straints, unless SQO leads to an optimized query which is
always cheaper to evaluate, e.g., the optimized query
cannot return any answers and, thus, need not be evaluated
at all.

5.3 Arbitrary Procedures

Here, we consider a type of method (called C-functions in
[38]) which is arbitrary procedures written in some
programming language and which cannot be expressed
by means of a query language. For example, Taxes_withheld,
used in Section 4.4, is such a method. Recall that it is
applied to objects of class Employee and its subclasses; its
argument is a tax rate and its output represents the taxes
withheld.

As with predefined queries, we distinguish between
shallow and deep level optimization for this type of
method. Shallow level optimization uses specific facts about
the method. For deep level optimization, semantic knowl-
edge about the behavior of the method may be expressed as
a function expressing some relationship between the input
and output values. Deep level optimization may then
compute this function rather than apply the method. As
before, heuristics are needed to determine if deep level SQO
produces efficient plans. We restrict our attention to
methods performing mathematical computations since it
is simpler to describe the behavior of a mathematical
computation using a function.

For optimization at a shallow level, when the semantics
of a method is unknown, we use integrity constraints
explicitly stating conditions (facts) about the methods
themselves. These may be conditions describing the range

of values of a given method independent of the input, e.g.,
the fact that Taxes_withheld returns positive values only, or
they may restrict the range of values of the method for a
specific subclass.

Example 8. Consider a query that asks for the names of
employees whose withheld taxes are less than 1,000, for a
tax rate = 10 percent, as follows:

Q(Name) « taxes_withheld(OID,10%,Value),
employee(OID,Name),Value < 1000.

Suppose we have the fact that all faculty pay more than
3,000 in taxes, which provides the following integrity
constraint:

Value > 3000 « faculty(OID),
taxes_withheld(OID,Rate,Value). ZCi,

Now, @ can be optimized using our standard techniques
for SQO using this integrity constraint and the fact that
Faculty is a subclass of Employee to obtain the following

query:
Q'(Name)« taxes_withheld(OID,10%,Value),

employee(OID,Name),
Value < 1000, — faculty(OID, Name).

The potential optimization here is that the scope of
applying this method to objects has been reduced since the
method is not applied to objects in class Faculty. Again, for
this optimization to be applied, we may need a heuristic
that indicates that the extent of the classes are being
maintained. However, as before, it is unlikely that we can
obtain integrity constraints referring to the values of
methods themselves.

It is more likely that, instead of a specific fact about the
value of the method, we may have more general informa-
tion about the salary of faculty members, which would
result in the following constraint:

Salary > 30k « faculty(OID,Salary) IC3

Unfortunately, ZC;3 alone is insufficient to perform any
optimization for a query that applies this method. We need
semantic knowledge about the computation of the method,
i.e., the relationship between the input and the result of the
method. For this, the encapsulation of a method needs to be
broken. The task of extracting information about such
relationships is not trivial; it requires both a good knowl-
edge of the method’s implementation as well as an
understanding of the workings of the semantic optimizer.
Clearly, this process cannot be automated.” The behavior of
a method can be expressed by defining a function as
follows:

Definition 4. Let ¢ be a class in DB with attributes Ay, ..., A,.
Let m(OID, By, -+, By, V) be a method defined on c, where
By, -+, By, are the input parameters and V' is the output value
computed by the method. Then, this value V is defined by a
method function f,,(4;,,- -, Ay, Bi,---, Bp), where A;; €
{A1,..., A} if the following hold:

10. It is assumed in [20] that the semantics of a method can only be stated
by the method’s implementer.

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 543

fm(Ailv“ '7A7;kv7Bl : "7Bm) =V
iff m(OID, By, ..., By, V),
C(OID7A1a .. aAn)

for all instances of DB.

Given such a function f,, expressing the behavior of the
method, we may now express integrity constraints that refer
to this function and thus describe the behavior of the
method. A constraint about the function can be either a
simple constraint or a complex constraint. We first define a
simple constraint.

Definition 5. Let f,(A;, -+, 4, Bi,---,By)=V be a
function computing method m. A simple method constraint
has the following form:

fm(Ah y 7Aikva B17 Tt Bm)ev — Ailegl (Al)a) Aik,egk(Ak),
where
9 € {:7 757 <7 >}7Aij € {Ala o

Ai g {Ala'”aATMBla'”
function.

'aA'n}7 1 S]Skv

vy B, V}, and g; is an arbitrary

A simple constraint may be used to add new selection
conditions to the query, with the potential of reducing the
number of objects for which the method has to be
computed. Alternately, a simple constraint may be used to
identify a contradiction where the method need not be
computed. Finally, several constraints may imply a full
equivalence between a method (in a given query) and some
combination of functions gi,...,g;, thus allowing us to
replace the computation of a method with computing the
functions g1, ..., gr. We illustrate with examples.

Example 9. Consider the query of Example 8 that asks for
the names of employees whose withheld taxes are less
than 1,000, for a tax rate = 10 percent, as follows:

Q(Name) —
taxes_withheld(OID,10%,Value),
employee(OID,Name),Value < 1000.

Suppose we know that if the salary of employees is
larger than or equal to 50k, then their taxes are larger
than or equal to 1,000. This can be expressed as the
following method constraint:

Salary < 50k. «— fy4,.5(Salary, Rate) < 1000. ICyy

SQO can now use the method constraint to simplify the
query. Since the Value returned by the method is
constrained to be less than 1,000, we can compute
withheld taxes for only those employees with salary less
than 50k, as follows:

Q'(Name) «— taxes_withheld(OID,10%,Value),
employee(OID,Name,Salary),
Value < 1,000, Salary < 50k.

With the simple method constraint above, we restricted
the scope of objects for which the method was to be applied.
Next, we consider simple method constraints that imply a
full equivalence between a method (in a given query) and

some combination of functions gi, - - -, g, thus allowing the
replacement of the computation of the method with
computing the functions gy, - - -, gx.

Example 10. We consider a modified example from [20]. A
method age(x,y), defined for objects of class Person, takes
as input values = and y. This method returns a (binary)
value true if the age of the person to which this method is
applied is equal to x and the current year is y. Thus, the
behavior of the method is that it returns a value of true if
year_of birth = (y — x), for that person. Consider a query
which asks for persons of age = 55 with current year
equal to 1997 and its Datalog representation, as follows:

select x
from Person x
where x.age(55, 1997)

Q(X) « person(X), age(X,55,1997,True)

A simple plan for evaluating this query would apply the
method to all objects of Person. Suppose, however, that
we consider two method constraints that completely
characterize the behavior of this method, i.e., the
relationship between the input and the output value
that is computed, as follows:

fage(Year_of_Birth, Age, This_year)

True < Year_of _Birth # This_year — Age. ZCy;
fage(Year_of_Birth, Age, This_year)
= True <+ Year_of _Birth = This_year — Age. ZCig

Given these two constraints, we have the following
equivalence:

fage(Year_of_Birth, Age, This_year)
= True = Year_of Birth = This_year — Age.

Given this equivalence, instead of computing the method
for objects of type Person, we can compute the function
that completely describes the behavior of the method,
i.e., we can simply select persons whose Year_of Birth
satisfies the condition of the constraint. The simplified
query is as follows:

Q(X) « person(X, Year_of_Birth),
Year_of _Birth = This_Year — Age.

Whether or not method constraints can be useful in
improving the efficiency of query evaluation depends
primarily on the cost of computing the functions gi,- - gi.
If the arguments to these functions are fully instantiated in
the query, i.e., they are user-provided parameters
By,---,B,, or they are attributes A;,---, A4, that are
restricted by equality to be constants, then the values of
these functions can be computed before the query is
evaluated. Thus, even if computing these functions is
expensive, it may still be worthwhile to precompute them
and rewrite the query, using these functions, before the
query is processed. However, if the arguments in g1, -, g,
ie., A;,---, Ay, are not instantiated in the query and their
values need to be retrieved from objects during query
processing, then the optimizer would need to determine the
cost of computing g¢i,---, g, in order to determine if this

544 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

optimization is worthwhile. Ideally, these functions would
be just identity functions, as in the cases above, and we
could use heuristics to apply SQO.

Finally, we consider complex method constraints that
may describe mathematical properties about functions that
describe the behavior of the methods. These properties of
the functions could include if they are one-to-one, mono-
tonic, nonmonotonic, etc. This semantic knowledge may
refer to the relation between the input of methods and
output in a more abstract way, compared to simple method
constraints.

Definition 6. Let m be a method computed by the function

fm(Ar, ..., Ay) = V. A method constraint is complex when
it has the following form:
fm(Ah . ,A,,,)é)fm(Bl, ceey Bn) — Ailequjl, ceey A,;ke,,,Bik,
where

0,01,...,0, € {=,#,<,>},

Ai - {Ah e 7A17,}7Bz' c {Bla e 7Bn}

Example 11. We consider (again) the Taxes_withheld
method. We consider a constraint specifying that the
method Taxes_withheld is monotonic with respect to
Salary. The constraint is thus as follows:

frazes(Salaryl, Rate) > fi,.05(Salary2, Rate)
« Salaryl > Salary?2. ICi7
Assume that, for Rate = 10% and the Salary = 30k, the

value of the method is 3,000, i.e., the following constraint
holds:

f1a0es (30K, 10%) = 3,000. ICis
Thus, the following constraint can be derived:
frazes (Salary, 10%) > 3,000 < Salary > 30k. ICrg

Consider again the fact given earlier as ZCi3:
Salary > 30k < faculty(OID, Salary).

From ZC;3 and ZC19, we can derive the following
constraint which states that faculty pay over $3,000 in
taxes for the rate 10%.

ftazes (Salary, 10%) > 3000 < faculty(OID, Salary). ZCay

Now, consider the following query which instantiates
the Rate to 10 percent and requests employees whose
taxes withheld are less than 3,000:

select x
from Employee x
where x.Taxes_withheld(10%) < 3,000

ZCy can be used by SQO to determine that the method
should not be applied to objects of Faculty."'

5.4 Method Overloading

Overloading of method names provides a particular
method implementation for each class along an inheritance
path [42]. For example, the method Taxes_withheld can have

11. This derivation also uses the fact that Faculty is a subclass of Employee.

different implementations depending on whether the
method’s receiver, i.e., the object to which the method is
applied, is of the type Employee or the type TA. In the single
inheritance case, the method definition that is closest to the
lowest-level subtype of the receiver is used. This case is
called simple dispatching [42] and we only consider this case.

Method name overloading has consequences for SQO. If
there are multiple implementations of a method, then there
can be integrity constraints, each describing a different
implementation of the same method name. One possibility
for distinguishing among them is to use a subscript to refer
to a class name. Suppose the method Taxes_withheld has two
different implementations, one for the class Employee and
another for the class TA, but only the former is monotonic.
Then, we can express this information as follows:

frazes_emp(Salaryl, Rate) > fizes_emp(Salary2, Rate)
«— Salaryl > Salary?2.

The OQL_to_DATALOG algorithm must be modified to
use the method name with the appropriate subscript. This is
not a problem if the lowest subclass to which the receiver
belongs is known at compile time. If this is not the case,
then there are two cases. First, the subscripts will not be
used and, so, SQO using the method constraints or facts
describing the methods will not be applicable. The alter-
native is to rewrite the query so that we consider all
possibilities for the lowest common subtype. The optimizer
can then optimize this query appropriately. The following
procedure describes this process: Assume for simplicity that
the extent of a class is equal to the union of the extents of its
immediate subclasses. Let () be a query with a method M
applied to an object X in class C. Let Cj,...,C, be the
lowest subclasses of C' in which different versions
My, ..., M,, of M are defined. Subclasses of C' to which
the same method implementation applies can be clustered
together into the following sets: Cyy,, .. .,Ca,, such that M;
applies to all objects of Cy,. Let Q; be the query @ to which
the statement X in Cy;, has been added. Then, @ can be
expressed as the union of the @;s, 1 <i < m. Now, each Q;
can be optimized using information about the implementa-
tion of M.

Clearly, the algorithm should be applied only when the
information about the implementation of the method
guarantees substantial savings in the optimized query.
This, again, can only be determined using appropriate
heuristics.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a logic-based approach to
SQO in object databases that generalizes previous research.
We handle a large class of OQL queries, including queries
with constructors and methods. The object schema is
represented using a logical representation (Datalog).
Semantic knowledge about the object data model, e.g., class
hierarchy information, relationship between objects, etc., as
well as semantic knowledge about the particular schema
and application domain, are expressed as integrity con-
straints. An OQL object query is represented as a logic
query and query optimization is performed in the Datalog

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 545

representation. We obtain equivalent (optimized) logic
queries and, subsequently, obtain equivalent (optimized)
OQL queries, for each equivalent logic query.

We demonstrate a number of possible optimization
strategies using SQO and particular integrity constraints.
SQO can identify contradictions and, thus, eliminate queries
containing contradictions. SQO can be used to possibly
simplify queries. This includes reducing the access scope
for evaluating a query from a class to some particular
subclass(es); this can reduce the number of objects that are
retrieved from the database. SQO can simplify queries by
eliminating joins. One strategy to eliminate joins is using
integrity constraints in the form of key constraints. Another
strategy is to use access support relations, or special relations
that store OIDs of objects that represent a materialized
view, corresponding to some path expression.

SQO can be applied to methods that are predefined
queries and arbitrary procedures. Simplification of the
query, by SQO, may involve limiting the method applica-
tion to objects in particular subclass(es) or adding new
conditions to the query, which serves to reduce the actual
objects on which the method is applied. A query with a
method is optimized at a shallow level if the only available
semantic knowledge is specific facts about the method.
Optimization at a deep level requires that the encapsulation
of the method must be broken. To perform optimization at a
deep level, we use semantic knowledge about the method
definition in the case that the method is a predefined query
in a query language. In the case where the method is an
arbitrary procedure, semantic knowledge about the beha-
vior of the method may be expressed as a function
expressing some relationship between the input and output
values. Deep level optimization may then compute this
function, rather than apply the method.

SQO makes extensive use of integrity constraints.
Heuristics are needed to determine if SQO is beneficial to
reduce the space of semantically equivalent queries that
must be considered by the cost-based physical optimizer. In
many cases, the heuristics may be dependent on the
particular object database implementation. This is an area
for future research.

The Flora semantic query optimizer for OQL, developed
at INRIA [16], [18], [17], provides tools for unnesting
queries. We expect to utilize this utility. It also has a
rewriting capability that has been used to implement
several of the SQO transformations described in this paper.
It does not provide a general treatment for SQO and does
not provide the techniques for optimizing queries with
methods as is discussed in this paper. However, it is
capable of handling a larger class of queries since it is not
limited by a Datalog representation for optimization and it
uses pattern-match based rewriting, based on a strongly
typed object algebra. In future research, we hope to
incorporate our techniques within this implementation so
that we may explore a greater space of semantically
equivalent queries. We also expect to determine the
applicability of SQO to object-relational databases.

We also propose utilizing our general framework
(representation and query rewriting) for SQO to transfer
other techniques developed for relational databases to

object databases. Such techniques include semantic query
caching (SQC) [12], [11], [24] and query rewriting using views
[36], [31], [9], [39]. We also plan to revise the work in the
context of ODMG 2.0.

The benefit of semantic query caching (SQC) is obtained by
using the cached results of previous queries to save on some
computation.

Example 12. Assume the results of the following query are
cached:

select list(x.name, x.age)
from Student x
where x.age <19

and the following query is posed to a database:

select
from

struct(x.name, x.age)
Student x

Now, a part of the answer set for the current query can
be retrieved from the cache and the remainder need only
request student names and ages for students older than
19.

We can use similar techniques, as described in this
paper, to represent the cached query, and to determine if
the result of the cached query can be used to answer this
query. Further, we need to determine if the format of the
answer of the cached query is compatible with the answer
of the new query.'?

The ability to use materialized views to answer queries is
important in many applications: global information systems
[30], mobile computing [4], and view adaptation [22].
Algorithms for relational queries are presented in [36],
[31], [9], [39] and algorithms for object queries are presented
in [18]. We note that a limited rewriting using integrity
constraints is proposed in [18]. Since we express integrity
constraints and views in the same representation, our
framework will allow us to provide more general techni-
ques for rewriting queries using views in object databases.

APPENDIX

The following is the result of the transformation of the
OODB schema of Fig. 2 by means of the algorithm described
in Section 4.3.

RELATIONS

1. Classes
person(OID,Name,OIDg)
employee(OID,Name,Id,Salary,OIDy)
student(OID,Name,Id,Salary,OIDg,Student_id)
ta(OID,Name,Id,Salary,OIDg,Student_id)
faculty(OID,Name,Id,Salary,OIDg,Rank)
course(OID,Name,Number)
section(OID,Number)

2. Structures:
address(OID,City,Street, Number)

3. Relationships:
children(OIDy, OID»)

12. For example, if the answer set of cached query is stored as a set and a
new query requests the answer set to be a bag, then, in general, the cached
query cannot be used.

546

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

parents(OID;, OID»)
spouse(OID;, OIDs)
has_prerequisites(OID;, OID,)
is_prerequisite_for(OID;, OID5)
has_section(OID;, OIDs)
is_section_of(OID;, OID,)
takes(OID;, OID,)
is_taken_by(OID;, OIDs)
assists(OID;, OID,)
has_TA(OID;, OID,)
teaches(OID;, OIDy)
is_taught_by(OID;, OID,)

INTEGRITY CONSTRAINTS

Since there are many integrity constraints for the schema of
Fig. 2, we present here only a representative sample of them
including all integrity constraints used in the examples.

1. OID Identification
section(OID;,Number)« is_section_of(OID;, OID5)
course(OIDy,Name,Number)
«— is_section_of(OID;, OID,)
address(OID;,City,Street, Number)
— person(OID,Name,OID;)

2. Object identities
« section(OID,Number),
course(OID,Name,Number)

3. Subclass hierarchy
person(OID,Name,OIDg)
«— employee(OID,Name,Id,Salary,OIDg)

4. Inverse relationships between classes
teaches(OID, OID,)
«— is_taught_by(OID,, OID;)
is_taught_by(OID;, OID,)
— teaches(OID,, OID,)

5. Many-to-one constraints
OID; = OID; « is_taught_by(OID;, OID,),
is_taught_by(OID,, OID3)

6. Key and dependency constraints
Name; = Namey < course(OID,Name;, Numbery),
course(OID,Name,, Numbers)
Number; = Number,
«— course(OID,Name;, Numbery),
course(OID,Name,, Numbers)
Assume that Number is the key for the relation
course. Then, the following constraint should be
added.
OID; = OIDy « course(OID;, Name;,Number),
course(OIDy, Namey,Number)

ACKNOWLEDGMENTS

We would like to thank the referees for the many
constructive comments that they have made.

REFERENCES

(1]

(2]

K. Aberer and G. Fischer, “Semantic Query Optimization for
Methods in Object-Oriented Database Systems,” Proc. IEEE Int’l
Conf. Data Eng., pp. 70-79, 1995.

F. Bancilhon, S. Cluet, and C. Delobel, “A Query Language for o;,”
Building an Object-Oriented Database System, pp. 243-255, Morgan
Kaufman, 1992.

B3]
4

(5]

[6]

(71

(8]

[l

[10]

[11]

(12]

(13]

(14]

(15]

[10]

(171

(18]

(19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

(27]

J. Banerjee, W. Kim, and K.-C. Kim, “Queries in Object-Oriented
Databases,” Proc. Fourth Int’l Conf. Data Eng., 1988.

D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching
Strategies in Mobile Environment,” Proc. SIGMOD, pp. 1-12,
1994.

D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini, “Odb-
qoptimizer: A Tool for Semantic Query Optimization in Oodb,”
Proc. Int’l Conf. Data Eng., ICDE '97, pp. 578-578, Apr. 1997.

U. Chakravarthy, J. Grant, and J. Minker, “Logic-Based Approach
to Semantic Query Optimization,” ACM Trans. Database Systems,
vol. 15, no. 2, pp. 162-207, June 1990.

U.S. Chakravarthy, J. Grant, and]. Minker, “Semantic Query
Optimization: Additional Constraints and Control Strategies,”
Proc. Expert Database Systems, L. Kerschberg, ed., pp. 259269, Apr.
1986.

US. Chakravarthy, J. Grant, and J. Minker, “Foundations of
Semantic Query Optimization for Deductive Databases,” Founda-
tions of Deductive Databases and Logic Programming, J. Minker, ed.,
pp- 243-273, Morgan Kaufmann, 1988.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim,
“Optimizing Queries with Materialized Views,” Proc. 11th Int’l
Conf. Data Eng., pp. 190-200, 1995.

S. Chaudhuri and K. Shim, “Query Optimization in the Presence
of Foreign Functions,” Proc. 19th Conf. Very Large Data Bases,
pp. 526-542, 1993.

CM. Chen and N. Roussopoulos, “The Implementation and
Performance Evaluation of the ADMS Query Optimizer: Integrat-
ing Query Result Caching and Matching,” Proc. Fourth Int’l Conf.
Extending Database Technology, 1994.

S. Dar, M. Franklin, B. Jonsson, D. Srivastava, and M. Tan,
“Semantic Data Caching and Replacement,” Proc. 22nd Conf. Very
Large Data Bases, 1996.

Object Database Standard: ODMG-93. release 1.2, R.G.G. Cattell, ed.,
Morgan Kaufman, 1996.

L. Fegaras, “Query Unnesting in Object-Oriented Databases,”
Proc. ACM Special Interest Group Management of Data, pp. 49-60,
1998.

D. Florescu, “Design and Implementation of the Flora Object
Oriented Query Optimizer,” PhD thesis, Dept. of Computer
Science, Univ. of Paris 6, 1996.

D. Florescu, L. Raschid, and P. Valduriez, “Using Heterogeneous
Equivalences for Query Rewriting in Multidatabase Systems,”
Proc. Int’l Conf. Cooperating Information Systems, 1995.

D. Florescu, L. Raschid, and P. Valduriez, “Answering Queries
Using Oql View Expressions,” Proc. Workshop Materialized Views:
Techniques and Applications, in conjunction with the ACM Special
Interest Group Management of Data Int’l Conf., 1996.

D. Florescu, L. Raschid, and P. Valduriez, “A Methodology for
Query Reformulation in Cis Using Semantic Knowledge,” Int'l J.
Cooperating Information Systems, 1996.

T. Gaasterland and J. Lobo, “Processing Negation and Disjunction
in Logic Programs through Integrity Constraints,” . Intelligent
Information Systems, vol. 2, no. 3, 1993.

V. Gaede and O. Gunther, “Efficient Processing of Queries
Containing User-Defined Predicates,” Proc. Int’l Conf. Deductive
and Object-Oriented Databases, pp. 281-298, 1995.

J. Grant and T. Sellis, “Extended Database Logic: Complex Objects
and Deduction,” Information Sciences, vol. 52, pp. 85-110, 1990.
A. Gupta, I.S. Mumick, and K.A. Ross, “Adapting Materialized
Views after Redefinitions,” Proc. ACM Special Interest Group
Management of Data, 1995.

M.T. Hammer and S.B. Zdonik, “Knowledge-Based Query
Processing,” Proc. Sixth Int’l Conf. Very Large Data Bases, pp. 137-
147, Oct. 1980.

AM. Keller and J. Basu, “A Predicate-Based Caching Scheme for
Client-Server Database Architectures,” The VLDB]., vol. 5, no. 2,
pp- 3547, Apr. 1996.

A. Kemper and G. Moerkotte, “Access Support in Object Bases,”
Proc. ACM Special Interest Group Management of Data, pp. 364-374,
1990.

JJ. King, “Quist: A System for Semantic Query Optimization in
Relational Databases,” Proc. Seventh Int’l Conf. Very Large Data
Bases, pp. 510-517, Sept. 1981.

L.V.S. Lakshmanan and R. Missaoui, “On Semantic Query
Optimization in Deductive Databases,” Proc. IEEE Int’l Conf. Data
Eng., pp. 368-375, 1992.

GRANT ET AL.: LOGIC-BASED QUERY OPTIMIZATION FOR OBJECT DATABASES 547

[28] S. Lee and]. Han, “Semantic Query Optimization in Recursive
Databases,” Proc. IEEE Int’l Conf. Data Eng., pp. 444451, 1988.

[29] Y.-W. Lee and S.I. Yoo, “Semantic Query Optimization for Object
Queries,” Proc. Int’l Conf. Deductive and Object-Oriented Databases,
pp. 467-484, 1995.

[30] A. Levy, D. Srivastava, and T. Kirk, “Data Model and Query
Evaluation in Global Information Systems,” |. Intelligent Informa-
tion Systems, vol. 5, no. 2, Sept. 1995.

[31] AY. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava,
“Answering Queries Using Views,” Proc. ACM Symp. Principles
of Database Systems, pp. 95-104, 1995.

[32] A.Y.Levyand Y. Sagiv, “Semantic Query Optimization in Datalog
Programs,” Proc. ACM Symp. Principles of Database Systems, 1995.

[33] D. Maier, S. Daniel, T. Keller, B. Vance, G. Graefe, and W.J.
McKenna, “Challenges for Query Processing in Object-Oriented
Databases,” Query Processing for Advanced Database Systems,]J.C.
Freytag, D. Maier, and G. Vossen, eds., pp. 337-381, Morgan
Kaufmann, 1994.

[34] J.R. McSkimin and J. Minker, “The Use of a Semantic Network in
Deductive Question-Answering Systems,” Proc. Fifth Int’l Joint
Conf. Artificial Intelligence, pp. 50-58, 1977.

[35] H.H. Pang, HJ. Lu, and B.C. Ooi, “An Efficient Semantic Query
Optimization Algorithm,” Proc. IEEE Int’l Conf. Data Eng., pp. 326—
335, 1991.

[36] X. Qian, “Query Folding,” Proc. 12th Int’l Conf. Data Eng., pp. 48—
55, 1996.

[37] S.T. Shenoy and Z.M. Ozsoyoglu, “Design and Implementation of
a Semantic Query Optimizer,” IEEE Trans. Knowledge and Data
Eng., vol. 1, no. 3, pp. 344-361, Sept. 1989.

[38] M. Stonebraker and G. Kemnitz, “The POSTGRES Next-Genera-
tion Database Management System,” Comm. ACM, vol. 34, no. 10,
pp. 78-92, 1991.

[39] HZ. Yang and P.-A Larson, “Query Transformation for PSJ-
Queries,” Proc. 13th Int’l Conf. Very Large Data Bases, pp. 245-254,
1987.

[40] J.P. Yoon and L. Kerschberg, “Semantic Query Optimization in
Deductive Object-Oriented Databases,” Proc. Third Int'l Conf.
Deductive and Object-Oriented Databases, pp. 169-182, 1993.

[41] S.C. Yoon, LY. Song, and E.K. Park, “Semantic Query Processing
in Object-Oriented Databases Using Deductive Approach,” Proc.
Int’l Conf. Information and Knowledge Management, pp. 150-157,
1995.

[42] Readings in Object-Oriented Database Systems, S.B. Zdonik and D.
Maier, eds., Morgan Kaufmann, 1990.

John Grant received the PhD degree in mathe-
matics from New York University (Courant
Institute of Mathematical Sciences) in 1970.
From 1970 to 1978, he was on the faculty of
the University of Florida, first in the Department
of Mathematics and then in the Department of
Computer and Information Sciences as a post-
doctoral fellow, assistant professor, and associ-
ate professor. Since 1978, he has been at
Towson University, where he is a professor of
mathematics and computer and information sciences. From 1990 to
1992, he was a professor at the University of Maryland Institute for
Advanced Computer Studies (UMIACS). He has also been a visiting
professor of computer science at the University of Maryland. He has
more than 50 publications (primarily journal articles) in databases and
logic, including a database textbook.

Jarek Gryz received the PhD degree in
computer science from the University of Mary-
land, College Park, in 1997. He is currently an
assistant professor in the Department of
Computer Science at York University in Tor-
onto and a visiting scientist at the Center for
Advanced Studies, IBM Toronto Laboratory.
His interests include database query optimiza-
tion, heterogeneous database systems, and
logic programming.

Jack Minker received the BA degree, cum laude
with honors, in mathematics from Brooklyn
College in 1949, the MS degree in mathematics
from the University of Wisconsin in 1950, and
the PhD degree in mathematics from the
University of Pennsylvania in 1959. He is a
professor in the Department of Computer
Science and the Institute for Advanced Compu-
ter Studies at the University of Maryland,
College Park. He has published more than 150
refereed technical papers in journals, books, and conferences. He is an
editor or coeditor of four books devoted to deductive databases and
logic programming. He is coauthor of a book, Foundations of Disjunctive
Logic Programming. He serves on the editorial board of a number of
journals. He was the first chairman of the Department of Computer
Science (1974-1979) at the University of Maryland. He served as
chairman of the Advisory Committee on Computing to the National
Science Foundation (1979-1982). In 1985, he received the ACM’s
Outstanding Contribution Award for his work in human rights. He was
elected a fellow of the American Association for the Advancement of
Science based on his work in artificial intelligence, database theory, and
his efforts in behalf of human rights. He is a founding fellow of the
American Association for Artificial Intelligence, a founding fellow of the
ACM, and a fellow of the IEEE.

Louiga Raschid received the Btech degree in
electrical engineering from the Indian Institute of
Technology, Madras, in 1980, and the PhD
degree in electrical engineering from the Uni-
versity of Florida, Gainesville, in 1987. Since
1987, she has been at the University of Mary-
land at College Park. She holds a joint appoint-
ment with the Smith School of Business, the
Institute for Advanced Computer Studies and the
; Department of Computer Science (affiliate). She
was promoted to associate professor in September 1993. Her research
interests include the following: scalable architectures for wide-area
heterogeneous information servers, query optimization and evaluation
techniques for heterogeneous distributed environments, semantic query
optimization for object and object-relational databases, fixpoint and
declarative semantics for rule-based programs, and updates in database
systems. She is codirector of the Laboratory for Computational
Linguistics and Information Processing. Since 1994, she has been a
visiting scientist at the French National Laboratories for Information
Sciences (INRIA). She has also been a visiting scientist with Hewlett
Packard Research Labs and the Stanford Research Institute. Dr.
Raschid serves on the editorial board of the INFORMS Journal of
Computing and on the advisory board of the Journal of Networks and
Information Systems (HERMES, France). She is a member of the IEEE,
the ACM, and the Society of Women Engineers.

