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Abstract: From the conception of an embedded controller to its implementation, the 
designer must refine the solution trying to minimize the final cost while satisfying 
functional and non functional requirements. We present a model-based methodology 
framework to address this problem and a real industrial case that shows the 
effectiveness of the proposed approach. Top-down and bottom-up aspects are 
considered and solutions are found by a meet -in-the-middle approach that couples 
model refinement and platform modeling. In more details, given a model of the 
implementation platform, which describes the available services and data types, the 
algorithms captured by models are refined and then automatically translated to 
software components. These components are integrated with handwritten (e.g. 
legacy) software modules together with the software platform. The validation of the 
system is performed at different level of details of the platform. A final validation 
phase on the real target is performed to finally validate the functionality and to 
guarantee that the performance constraints are met. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
The design of power-train controllers is a most 
challenging problem in automotive electronics 
because of the complexity of the functions to be 
implemented, the tight interaction among 
mechanical-electrical components, the safety aspects 
and the hard cost limits that the system must satisfy. 
Time-to-market requirements and the continuously 
changing specifications have caused the migration of 
most functions from hardware to a software 
implementation, and the need of a close interaction 
between subsystem makers and car makers. At the 
same time, a sub -system supplier must interact 
during the design of the controller with component 
suppliers, such as RTOS and micro-controller 
providers, in order to exploit the best available 
technology. This interaction during the design of the 
system should be supported by a common design 
methodology and design flow, with a shared 
understanding of specifications and implementation 
constraints. In the automotive domain, the SEA 
Design Chain Initiative (The SEA Consortium, 2003) 
has the goal to define a common framework and a 
seamless process-flow for the design of complex 
embedded real-time systems. This project will enable 
car makers and sub system suppliers to exchange 
requirements and solutions and enrich the models 
with non functional properties, hence strongly reduce 
the design time and the design cycles. 
In this paper we present the model-based design 
methodology that has been introduced in Magneti 
Marelli Powertrain that is well aliened with the basic 
concepts of the SEA project. The design 

methodology is based on a meet-in-the-middle 
(Vincentelli and Ferrari, 1999) approach with a 
defined set of abstraction layers and successive 
refinements (Balluchi, et al., 2002)  
The requirements of the highest level of abstraction, 
the system, are expressed in terms of functionality 
and performance indexes. These requirements are 
captured by executable models and are shared 
between car makers and sub system maker, 
drastically reducing ambiguity, i.e. possible 
interpretation errors. These models are then refined 
down to implementation.  
The design of control algorithms is a fundamental 
part of the design flow. It starts from a functional 
specificat ion and ends up with a detailed description 
of the algorithms. In the model-based design 
methodology, the part of the control algorithm that is 
mapped to the software partition is automatically 
translated from a model representation to a set of 
software components. The software architecture of 
the application will accommodate and compose 
together those software components such that the 
real-time requirements are met. In the proposed 
design flow, the control algorithms are captured 
using the MATLAB/Simulink (The Mathworks, 
2002) design environment and the automatic 
translation of the model to C-language code is 
performed with the TargetLink (dSPACE, 2002) 
code generator, in the sequel called model compiler 
and described in a following sections. 
To correctly accommodate automatically and 
manually generated software components, a software 
architecture composed of different layers has been 
totally specified and implemented. The layer closest 



     

to the hardware is the basic input output system 
(BIOS). The upper layer is containing the device 
drivers that encapsulate electrical drivers of sensors 
and actuators. The RTOS and communication 
services are common to all layers. All these layers 
implement the software platform (Vincentelli and 
Ferrari, 1999) that supports the application software. 
The latter has structural and semantic aspects that 
allow the correct integration of the software 
components implementing the entire set of control 
algorithms. 
To obtain the final implementation of the power-train 
controller, several players belonging to different 
organizations within a company and/or different 
companies have to cooperate during the design of 
each component and of the entire system: car makers 
must provide and share controller specifications, 
plant models and calibrat ion sets, silicon suppliers 
must provide performance models of the micro-
controllers. A common design methodology and tool 
chain is the key of success in cooping with the design 
complexity and constraints.  
The paper is organized as follow: the first part 
describes the methodology framework defined by 
Magneti Marelli Powertrain. The second part 
describes the TargetLink environment by dSPACE. 
The third part is dedicated to the description of a real 
design case. The fourth one indicates future work 
and conclusions. 
 

2. DESIGN METHODOLOGY 
 
In the proposed approach, five main levels of 
abstraction are identified: system level, function 
level, operation level, architecture level, and 
component level (Balluchi, et al., 2002). 
System: car manufactures define the specifications of 
power-train control systems in terms of desired 
performances of the vehicle in response to driver’s 
commands. Additional requested specifications, 
defined by governments or car manufacturers 
associations, are concerned with fuel consumption, 
noise and tail pipe emissions. At the system level, the 
given specifications are analyzed and expressed in an 
analytical formalism. Specifications have to be 
clearly stated and negotiated between cust omer and 
supplier to make sure that they are realizable within 
the budget and time allowed for completing the 
design.  
Functions:  the design of the functionality to be 
realized by the control system to meet the system 
specifications described above is very complex. A 
good quality of the design is obtained by 
decomposing the system into interacting sub-
systems, referred to as functions.  The decomposition 
allows designers to address the complexity if it leads 
to a design process that can be carried out as 
independently as possible for each component. The 
structure of the functions is the model of the platform 
at this level of abstraction. System specifications are 
spread out among the functional components so that 
the composition of the behaviors of the components 
is guaranteed to meet the requested objectives and 
constraints. The output of the functional level design 
is a desired behavior for each function.  

Operation: at the operation level, the desired 
behaviors have to be obtained, satisfying also some 
local objectives and constraints. Solutions are 
expressed in terms of basic building blocks, called 
operations. In a first design attempt, for each 
function, control strategies achieving the given 
specifications are devised and captured with 
executive models .  The control strategies operate on 
variables that are measured on the physical domain 
and produce values of variables that act on the 
physical domain. Then, each control strategy is 
refined by introducing chains of elementary 
operations, so that the set of all solutions can be 
integrated in a unique operations network.  
Architecture: the design step at the architectural 
level produces a mapping between the behavior that 
the system must realize (operations) and the platform 
representing the chosen system ar chitecture, i.e. an 
interconnection of mechanical and electrical 
components (e.g., sensors, actuators, microprocessors 
and ASICs). The set of components either are 
available in a library of existing parts or must be 
designed ex novo. 
This architecture and component-selection task is the 
subject of intense research by the system design 
community. 
At the end of the integration process, the calibration 
phase, i.e. the tuning of control and model 
parameters, is carried out in collaboration with the 
car maker, feeding back the control designers 
fundamental information of the actual behavior of the 
system. 
The correctness of the final implementation is strictly 
connected to the correctness of the control algorithms 
(operations), hence the models from which the 
implementation has been derived. In the past and 
since the first design phase, prototypes of target ECU 
were employed for long time to validate the 
algorithms, frequently described only on documents 
and C language, resulting in a very high prototyping 
effort. Moreover, the design cycles were carried out 
mainly at the software level, generating problems in 
tracking back the final solutions at the control level. 
In the model-based design methodology, validation 
can start as soon as the designer conceives the 
controllers with the use of complex models of the 
plant, describing the engine, driveline and the driver, 
or in a simpler way set of recorded input/output 
traces. If a control algorithm is subject to changes, 
the model is firstly modified and then the new 
software is generated, resulting in a natural 
synchronization between the model representation of 
the control algorithm and its implementation. This 
drastically reduces the usage of prototypes of target 
ECUs, ending in a strong reduction of design time 
and cost. Nowadays, this goal has been only partially 
achieved because of the difficulties of modeling 
power-train physical processes and other electro-
mechanical components (sensors and actuators). 
Nevertheless, the creation and use of these plant 
models play a strategic role in the automotive field.  
 

3. MODEL REFINEMENT AND SOFTWARE 
PLATFORM  



     

To support the methodology, the tool chain must 
handle the refinement of components from one level 
of abstraction to another one. Ideally, it should be 
possible to support, in the same design framework, 
the refinement of system requirements to control 
algorithms, and then to software or hardware 
components. If we consider data refinements, system 
specification and control algorithms might be 
provided with floating point notation of quantities, 
e.g. the quantity of fuel injected in the cylinder, 
while at the software level this data might be refined 
to 16 bits fixed point representation.  
In the design process, different actors (working even 
in different companies) will interpret the data in 
different ways: as floating point or fixed point 
notation. For example, car maker will provide 
requirements in floating point notation and will 
perform calibrations and measurements in a coherent 
manner, but at the implementation level the power-
train controller executes operation only in fixed point 
data, hence software engineers have to manage 
software in fixed point notation.  
Not a single tool today in the market easily supports 
refinement in a general meaning. The more advance 
research project on this topic is the Metropolis 
project at the University of Berkeley, see (Burch, et 
al., 2002) and (The Metropolis Project). 
In our approach, the algorithm specifications are 
captured in Simulink and are refined with different 
models, expressing different level of details, 
consistently link ed by  a configuration management  
system. The verification of the refinement is obtained 
only via functional simulation.  
The translation of a Simulink/Stateflow model to C 
code might require some design steps, some of them 
not always applicable. If the target architecture does 
not support native floating point operations, the 
Simulink/Stateflow specification must be correctly 
and efficiently translated to the fixed point notation 
of the target micro-controller. Since, even the state-
of-the-art transformation algorithms cannot formally 
proves the equivalence of the two representations, 
the float -to-fixed point transformation requires to be 
verified by simulation. The last refinement produces 
a model ready to be autom atically translated to C 
code. In particular, it requires the definition of all the 
target dependencies, such as: target software 
architecture hooks, target instruction set architecture 
(ISA), RAM and ROM mapping.  
At each refinement step, information about the target 
platform has been considered, from the supported 
data type to the semantic and syntax of the provided 
services (such as input/output). During the 
conception of the solution (function and operation 
level), the designer is free to use the full 
expressiveness of the capturing environment 
(Simulink), while during the refinement , the models 
must satisfy a set of design rules, checked by a 
model style checker. The design rules have been 
necessarily introduced to limit the execution model 
(not formal) to a known model of computation. This 
guarantees the existence of the transformation to C 
code and increases its correctness by construction, 
hence simplifying the validation phase.  In particular, 
a single control algorithm  is typically refined to an 

ext ended finite state machine. While a set of different 
algorithms is composed with the globally 
asynchronous locally synchronous (GALS) model of 
computation as defined in (Balarin , 1997). This 
model of computation with an additional scheduling 
of the components completely defines the 
functionality of the control application. 
 
As already mentioned in the introduction, the 
software platform must accommodate the 
automatically generated software components as well 
as the set of hand written ones. The software 
platform is mainly written manually and is composed 
of RTOS, communication services, BIOS and device 
drivers (see Figure 1). It is important to clarify that 
the software platform defines: 

• a language (or set of ) to program the 
platform (C and ASM) 

• a rigid set of structural rules: naming 
convention, hierarchy and visibility rules  

• a clear execution and communication 
semantic: process scheduling , system 
events and process communication 

• a well defined set of services, e.g. OSEK, 
OSEK Com, etc 

The model compiler generates the C code according 
to the characteristic of the select software platform. 
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Figure 1 ECU Architecture 

 
The entire software platform has been specified 
across all the products segments and cover different 
product generations. 
 

4. TARGETLINK: AUTOMATIC 
TRANSLATION FROM MODELS TO C CODE  

 
The translation of Simulink/Stateflow models to C 
code is performed by TargetLink from dSPACE 
(Hanselmann, et al, 1999). This model compiler 
creates the software modules (component level) from 
refined algorithms, as described in the previous 
sections. Code efficiency is one of the primary 
requirements for a model compiler. Another 
important necessity is process efficiency and 
flexibility. These three features of TargetLink, as 
well as several others, make it a tool which is highly 
integrateable within the environment of model-based 
design methodology. 
 
4.1. User-Guided Model Refinement 
As outlined in the previous section, the center focus 
of working with a model compiler is model 
refinement. The Simulink and Stateflow models 
represent the complete functional specification of an 
algorithm. This specification has to be prepared for 



     

code generation, which basically means that data for 
implementation has to be added to each block and 
each subsystem of the model specification. 
If micro-controllers with fixed-point arithmetic are 
being used, then variable scaling is the inevitable 
first step of the refinement process. Further data for 
variable definitions and declarations have to be 
specified, such as names, storage classes, scope and 
other attributes. Function and task partitioning takes 
place, and some model optimizations can be carried 
out to support efficient code generation. The designer 
has different options for entering the code generation 
related data. One of these is based on a data 
dictionary: a common storage location for data 
objects that are being referenced in models and are 
used for code generation. 
Data dictionaries typically store data objects such as 
the definition of global variables, OS messages, 
function interfaces and macros. In traditional manual 
programming, such data is directly coded in C. This 
is why data dictionaries are seldom used in manual 
programming. However, together with a model-
based design methodology, data dictionaries can 
indeed be used and are very beneficial. Their major 
advantages are: 

• A common project data source for large ECU 
projects. 

• Support for multi-model projects, allowing 
projects to be spre ad among different models, 
with their shared data objects stored in one 
location. 

• Protection of intellectual property by a 
systematic separation of the model-based 
algorithm specification from the data 
dictionary -based implementation 
specification. 

• Variant handling by switching data 
dictionaries or branches of one data dictionary 
in the background. 

A dialog-guided model refinement process, utilizing 
the user interfaces as described above, relieves the 
implementation specialist from a lot of tedious 
detailed work. He still specifies the implementation 
on a bit-accurate level, but does not write C code any 
longer. This reduces implementation errors and 
significantly increases software quality. 
 
4.2. Configurability of the Code Generation Process 
When code should be implemented on a production 
ECU, many details about the code become quite 
important. Model refinements are not just limited to 
data typing and fixed-point scaling. Properties that 
directly impact programming language aspects of the 
generated code are equally important. Naming 
conventions have to be followed, variables have to 
be properly declared and put into the right memory 
sections, there need to be efficient ways to link to 
external code, and the code output format should 
comply to company -specific standards. 
Generated code for real production projects will 
always have to interface external code, specifically to 
components of the lower software layers or to the 
proven legacy code of the application layer. 
TargetLink has a wide variety of specificat ion means 

on the block diagram level to easily interface with 
non-generated code. In particular, these are: 

• inclusion of existing header files 
• use of external global variables 
• use of externally defined macros 
• call to imported functions 
• call to access funct ions or macros 
• definition of Custom Code blocks which 

contain hand-written C code 
Related to this is TargetLink's full support of the 
OSEK/VDX operating system, see (OSEK/VDX, 
2001) and (Thomsen, 2002). TargetLink provides an 
extended library of special OSEK blocks which make 
the operation of system objects, such as tasks, alarms 
or critical sections, available at the block diagram 
level. 
The code can be generated in a format that exactly 
matches company -specific C code templates. Code 
output formatting is possible through XML and a 
XSLT style sheet. This allows the user to define the 
format of file and function headers, the format of 
code comments and the inclusion of specific header 
files. Furthermore, TargetLink-generated code 
complies with the MISRA C standard, see (MISRA, 
1998) and (Thomsen, 2002).  
The link between the code and the calibration tools is 
parameter description files which are standardized by 
the ASAM-MCD 2MC standard (formerly called 
ASAP2) see (ASAM-MCD 2MC, 2000). Modern 
code generators can all generate this format. Should 
there be calibration systems in use which apply a 
proprietary standard, then a TargetLink-generated 
ASAP2 file can be post-processed within the 
MATLAB environment to any other format. 
 
4.3. Simulation-Based Testing and Calibration 
Code generators and simulation environments 
complement each other in an almost symbiotic 
relationship. An integrated environment, such as 
Simulink together with TargetLink, allows a variety 
of significant development tasks to be completed. 
Simulation results are used for: 

• automatic fixed-point scaling  
• code testing and verification  
• benchmarking 
• model-based automatic calibration 

Although code generators work virtually flawlessly 
in comparison to manual programming, the generated 
code still needs to be tested. The strength of an 
integrated environment is that code tests are 
performed in the same environment that was used to 
specify the underlying simulation model. Functional 
identity is achieved when simulation results match. 
The validity of tests is documented by C1 or C2 code 
coverage. TargetLink provides the environment for a 
3-step verification process, which shows that the 
model and the generated software components have 
identical functions. 
The first step of this verification process is called 
model-in-the-loop simulation (MIL). It captures the 
specified behavior of the model by recording block 
output and block state data to an internal data server. 
The minimum and maximum values are used for the 
automatic scaling of fixed-point data types. The  



     

traces from MIL simulation are the basis for the 
subsequent steps.  
Software-in-the-loop simulation (SIL) is the next 
step where the code is generated and placed into the 
same simulation environment. Target Link does this 
automatically in the background. The user still sees 
the block diagram in the model. However, the 
corresponding code is executed during simulation. 
The simulation plots should be highly identical when 
compared with the results of MIL simul ation. If they 
are not, then the model was probably insufficiently 
scaled, or the generated code is incorrect. 
 

 
 
Figure 2: MIL, SIL and PIL simulation modes: a 

three-step process to verify generated code 
 
Code that runs correctly on the PC can still cause 
trouble on the target processor. Therefore, the final 
checks need to be done with processor-in-the-loop 
simulation (PIL). An off-the-shelf evaluation board 
is connected to the host PC; the generated code is 
compiled with the target compiler and downloaded to 
the board. TargetLink manages communication 
between the host PC and the processor board. All of 
these activities are automated without user 
interaction. The simulation results are plotted in the 
same plot windows that were used by the other 
simulation modes. If plots from the PIL simulation 
deviate from those in the SIL simulation, then the 
most likely cause is either a problem with the target 
compiler or a problem with the processor. 
If the plots match each other and the C2 code 
coverage was about 100%, then the functions of the 
generated software com ponent is with a high level of 
certainty equivalent with those in the specification 
model. This 3-step simulation approach is easy, 
intuitive and quick – and, as a result, it is a safe 
testing method. 
PIL simulation can also be used to profile the 
generated code and to further refine the 
implementation. During simulation, TargetLink 
automatically measures the execution time and stack 
consumption of the generated C functions directly on 
the target processor. Furthermore, code summaries 
list the RAM and ROM usage detailed for each 
function. These features allow the user to quickly try 
out implementation options, immediately measure 
the impact of the change on the generated code, and 
make logical implementation decisions for the most 
efficient implementation of a software component. 
Methods for automatic, model -based calibration are 
becoming increasingly popular. This trend is caused 
by the continuously improving accuracy of 
simulation models for automotive subsystems (e.g., 
engine models or vehicle dynamic models) and 
constant growth of computing power. Code 
generators like TargetLink are prepared to meet this 

challenge. The simulation modes (MIL, SIL and PIL) 
are API supported, meaning that tool automation can 
be done with MATLAB's M-script language. 
TargetLink’s SIL and PIL simulation modes allow 
the user to change data logging options for global 
variables without recompiling the code. Direct 
memory access for parameter tuning is possible, even 
while the simulation is running. This allows users to 
create optimization strategies for automatic model 
calibration and to set up an autonomously working 
calibration system. 
 

5. GASOLINE DIRECT INJECTION CASE 
STUDY 

 
The model-based methodology has been applied to 
the gasoline direct injection (GDI) engine control. 
The most innovative concept of a GDI engine that 
requires new control algorithm is the ability to inject 
the gasoline directly in the combustion chamber 
trough an injector. This capability removes the 
restriction of introducing fuel into the combustion 
chamber only when induction valves are open, and as 
a result a GDI engine has better performance and fuel 
economy and less pollution than traditional gasoline 
one. The complexity of a GDI engine resides to the 
need of a more precise control on the fuel-air mixture 
and combustion. In particular, the system differs 
from traditional one for the presence of a high-
pressure fuel pump (to inject fuel directly into the 
cylinder), injectors that support a high pressure flux 
of gasoline and generate adapted spray pattern 
(Pontoppidan and Gaviani, 1997) an intake port that 
generates the desired vortex in the combustion 
chamber, a more complex treatment of exhaust gas. 
The engine runs with two different type and 
independent combustion modes: homogeneous and 
stratified. The former being the traditional 
combustion mode, the latter presenting a non 
homogeneous air to fuel ratio (A/R) in the 
combustion chamber. 
 
The high complexity and the presence of innovative 
control algorithms make this system a perfect case 
study. Moreover, the strong dependency between the 
design of the combustion chamber and the design of 
the combustion control algorithm requires a deep 
analysis (prior implementation) and a strong 
interaction, with exchange of models, between car 
makers and sub system suppliers. The most important 
component of a GDI engine management system are: 
the air control by electronic throttle (DBW), variable 
valve timing or exhaust gas recirculation (EGR), self 
diagnosis for sensors and actuators and for emission 
regulations (EOBD/OBDII), safety control, exhaust 
emission control with Lambda sensor and linear 
lambda sensor to control the A/R, NoX sensor for 
NoX trap control, high pressure injector control.  
Starting from the car maker requirements, the system 
has been decomposed and refined into 98 operations, 
75 of them have been completely modeled and 
automatically translated to C code via TargetLink, 
resulting in 94% of the total application code. The 
application component accounts for more than 2/3 of 
the total lines of code, while the remaining part is 



     

related to the software platform. As expected the 
system design cycle has been reduced compared to 
the traditional approach. However, the time of the 
first design cycle was comparable (or even longer) of 
the traditional one. This was mainly due to the 
complexity to harnesses the design process and 
builds the modeling library. The subsequent design 
cycles have been drastically faster and the final 
number of design cycle has been reduced. 
The introduction of a well defined software platform 
has been instrumental to manage a variety of engine 
configurations and a not fixed hardware platform. 
The number of cylinder has been set from 2 to 6 and 
the list of sensor and actuators has been adapted to 
the different engine configurations. Moreover,  the set 
of custom ICs has been replaced without adapting 
any control models. This flexibility has been obtained 
by the adopted methodology that encapsulates these 
variants with the minimum amount of software 
differentiation. In particular, all the hardware and 
engine configuration variants have been captured in 
the lower level of the layered software architecture, 
respectively BIOS and device drivers, while the 
software application has been composed with the 
automatically generated or hand written software 
components. This flexibility introduced by the 
software layering has also encapsulated the evolution 
of the ECU from the first hardware prototype (A) to 
the start of production.  
 

6. CONCLUSION 
The methodology described in this paper has shown 
is these years of use in the GDI product development 
its validity and the maturity level of the tools. The 
application to a real product has shown the 
improvement of the time-to-market and the 
capability to cope with the complexity of modern 
power-train controllers.  The TargetLink model 
compiler has been instrumental in implementing our 
model-based design methodology. 
Nevertheless, some improvement must be done to 
better cover some important design aspects, such as 
requirements tracking at the model level, unified 
framework for refinement, model protection, etc.  
 
In the future we expect: 

• to have more data related to the process to 
qualify the real advantages of the approach; 

• to start a formalization of architectural 
aspects, such as the description of the 
software platform with architectural 
description language and  UML; 

• to improve the integration in the design 
chain. 

 
We plan to extend the use of the model-based design 
methodology to other power-train application and to 
exploit the new coming features of the new releases 
of TargetLink. The application of the model-based 
design methodology is expected to drastically 
decrease the time-to-market of new power-train 
controllers. In conclusion, the definition of a 
common design methodology and tool chain is the 
key of success in cooping with the complexity and 

constraints of the design of a modern engine 
management.  
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