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ABSTRACT 

Discovering patterns in graphs has long been an area of interest. 

In most approaches to such pattern discovery either quantitative 

anomalies, frequency of substructure or maximum flow is used to 

measure the interestingness of a pattern.  In this paper we 

introduce heuristics that guide a subgraph discovery algorithm 

away from banal paths towards more “informative” ones. Given 

an RDF graph a user might pose a question of the form: “What 

are the most relevant ways in which entity X is related to entity 

Y?” the response to which is a subgraph connecting X to Y. We 

use our heuristics to discover informative subgraphs within RDF 

graphs. Our heuristics are based on weighting mechanisms 

derived from edge semantics suggested by the RDF schema. We 

present an analysis of the quality of the subgraphs generated with 

respect to path ranking metrics. We then conclude presenting 

intuitions about which of our weighting schemes and heuristics 

produce higher quality subgraphs.    
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1. INTRODUCTION 
“I keep six honest serving-men (They taught me all I knew); Their 

names are What and Why and When And How and Where and 

Who.”— (Rudyard Kipling, from "The Elephant's Child" in Just 

So Stories 1902). The six questions in this quote by Rudyard 

Kipling are often tools we as humans use in an attempt to gain 

knowledge. How two entities are related is arguably the most 

crucial question among these. Discovering relevant sequences of 

relationships between two entities answers this question. We 

envision a system, which supports its users in discovering ways in 

which a pair of entities are related. It is very likely that semantic 

search engines [1] of the future will need to support such a 

discovery process. Applications for such a search paradigm can be 

found in areas such as conflict of interest detection [2] and 

financial risk analysis [3].  To this end, we investigate techniques 

that provide users with a chain of relationships between entities in 

response to queries of the following kind: “What are the most 

relevant ways in which entity X is related to entity Y?” The notion 

of relevance is critical to the definition of such a query. This 

becomes clear when one considers the small-world phenomenon 

[4, 5]. Given a knowledgebase and any two entities X and Y there 

could be a myriad of relatively short chains (i.e. six degrees) of 

relationships linking the two. Hence the need for some way of 

semantically constraining the discovery of possible ways in which 

X and Y could be related. Faloutsos et.al. [6] address this issue by 

developing an algorithm to extract relatively small connection 

subgraphs. They define the Connection Subgraph Problem as 

follows:  

Given: an edge-weighted undirected graph G, vertices s and t 

from G and an integer budget b 

Find: a connected subgraph H containing s and t and at most b 

other vertices that maximizes a “goodness” function g(H). 

Faloutsos et.al. [6] applied their techniques to a graph where 

nodes represented famous people and the edges between these 

nodes represented strength of acquaintance between them. These 

connection strengths were derived from name co-occurrences in 

Web pages.  All edges in their dataset therefore have exactly the 

same interpretation.  

Clearly this weighting scheme will not work for finding relevant 

subgraphs in RDF [7] graphs. Also, naively using a uniform 

weight on each edge is insufficient, as the semantics of each 

property type (edge) in RDF is different. Therefore a systematic 

way of weighting edges based on the semantics conveyed by the 

ontology represented using RDF schema [8] is needed.  

To adapt the approach in [6] to the more general case of an RDF 

graph:  

• We propose heuristics for edge weighting that depend 

indirectly on the semantics of entity and property types in the 

ontology and on characteristics of instance data. More 

specifically, we define Class and Property Specificity, 

Instance Participation Selectivity and a Span Heuristic.   

• We evaluate the generated subgraphs using path ranking 

schemes suggested in [9-11].  

• We present empirical evidence that our weighting schemes 

do indeed help identify “informative” patterns in the output 

subgraphs. 

• We present results that support the electricity based [6] 

model for RDF graph relevance.  

Section 2 presents related work. In sections 3 and 4 we discuss 

our algorithms and heuristics respectively. This is followed by a 

discussion of the dataset for our experiments in Section 5. Section 

6 presents our results and evaluations thereof. We conclude in 

Section 7 with a look at future research directions. 

2. Related Work 
Reasoning and knowledge discovery over graph data models has 

been studied in the Graph Mining community and more recently 

in the context of the Semantic Web. The remainder of this section 

highlights work which is most relevant to ours.  

The work most directly related to graph-based knowledge 

discovery and reasoning for the Semantic Web is that of Semantic 

Associations which were first introduced in [12]. Semantic 

Associations (termed ρ-operators) represent meaningful directed 

paths in an RDF meta-base. To the best of our knowledge this is 

the only existing work of this type. Anyanwu and Sheth define the 

ρ-path operator among others. Two entities X and Y are said to be 
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ρ-path associated if there exists a sequence of properties 

(relationships) starting at X connecting intermediate entities and 

ending at Y. The nature of web data [4] often leads to an 

overwhelming number of associations between two entities. To 

combat this problem, [9, 10] propose to rank Semantic 

Associations. As an alternative approach, the method in [13] 

filters the search space before computing associations. They adapt 

the HITS algorithm [14] to compute importance of Semantic Web 

resources and then only consider nodes with importance greater 

than some threshold when computing Semantic Associations. 

Their preprocessing step based on importance thresholds is likely 

to discount those paths that contain even a single unimportant 

node. Our approach to this information overload problem is 

fundamentally different from these two. We try to find the ‘best’ 

set of associations which contain a visually comprehendible 

number of resources.  

There has been a considerable amount of work done in the field of 

Graph Mining to detect patterns in graphs. Patterns discovered are 

characterized either by their anomalous nature or frequent 

occurrence, among other things. Efficient algorithms have been 

developed for many variations of the frequent subgraph discovery 

problem [15-17]. Community and group detection is another well-

studied graph mining problem which attempts to discover 

communities and groups based on link analysis. The problem has 

been studied on both the web graph [18, 19] and other data sets 

[20]. These graph mining problems however focus on graphs with 

single node types and single edge types. For the Semantic Web 

and Link Mining we need algorithms which take into account the 

semantics of different node and edge types. Community detection 

and mining in multi-relational networks has recently received a lot 

of attention [21]. Novel Link Discovery was introduced in [11] 

and involves finding novel paths between entities, novel loops and 

significantly connected nodes. The methodology used in this work 

considers different node and edge types but differs from ours in 

that importance is determined purely from rarity. Also the paths 

examined are considerably shorter than the ones we examine.  

3. ALGORITHMS  
Our method for finding a connection subgraph between two RDF 

resources is based on the algorithms from [6]. The authors present 

an algorithm for extracting a so-called candidate graph from an 

input graph. They also propose an algorithm based on electrical 

circuits to extract a display graph from the candidate for a given 

budget b. For our purposes we refer to these as Candidate ρ-graph 

and Display ρ-graph. We assume that the properties (edges) in the 

RDF graph are bidirectional (i.e. every relationship has a 

corresponding inverse relationship). This assumption is necessary 

because two resources may not be connected by a directed path 

but by a path which contains inverse relations. Ignoring this path 

could exclude vital information about the connections between the 

entities. 

Candidate ρ-graph Generation Algorithm 
The Candidate ρ-graph generation algorithm is used to prune the 

search space in very large graphs. It is based on a notion of 

distance between two nodes. The algorithm grows a set S around 

the source node s and a set T around the sink node t (s and t are 

referred to as the roots of their respective sets) until a certain 

threshold is met: a maximum number of expanded nodes or 

maximum number of cut edges between S and T. At each 

iteration, a pending list is maintained for each of these sets which 

consists of those nodes n∉S and n∉T and adjacent to some node 

k∈S or k’∈T. The sets S and T are expanded by choosing from 

the pending list the node with shortest distance to either s or t. Let 

u’ be the predecessor of u (the node adjacent to u on the shortest 

path to its root). For an edge (u, v) the distance between u and v is 

given by: 
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 ),( vuw  and vuu →→′β  are a function of the three heuristics 

explained in Section 4 viz. Class and Property Specificity, 

Instance Participation Selectivity and Span. The length of a path is 

the sum of the length of its edges. The aim of our initial 

experiments is to determine the quality of the Candidate ρ-graph 

in terms of its ability to capture the best paths between the query 

endpoints.  

Display ρ-graph Generation Algorithm 
The Display ρ-graph generation algorithm extracts a small 

connection subgraph from the input graph. In [6] the authors 

present a rather elegant solution to this by modeling the graph as 

an electrical circuit where the edge weights represent the 

conductance values in the circuit. They use the fact that current 

flows from high voltage to low voltage to impose direction on an 

otherwise undirected graph. Using Ohm’s law and Kirchoff’s law, 

a system of linear equations is created with voltages at each node 

as a variable in these equations. Solving this system of equations 

gives voltages at each node. This step takes ( )3
nΘ  time, which 

motivates the need for the Candidate ρ-graph generation. The 

greedy Display ρ-graph generation algorithm attempts to find a 

graph of at most b nodes (set to a maximum of 100 in our 

experiments) which maximizes the amount of total current 

delivered from the start node to the end node. Starting with an 

empty subgraph, this algorithm iteratively adds paths until 

meeting the budget b. At each of the iterations, a dynamic 

programming algorithm is used to find the path which has the 

maximum ratio of delivered current to number of new nodes 

added to the subgraph. This choice may not be globally optimal, 

hence the greedy nature of the algorithm. In our experiments we 

test this model based on current flow used to compute these 

display ρ-graphs. 

4. HEURISTICS 
RDFS vocabulary allows users to represent classes and 

relationships (properties) connecting them thereby indirectly 

imposing meaning on resources that are instances of these classes. 

We define three quantities (Class and Property Specificity, 

Instance Participation Selectivity, and Span) indirectly based on 

semantics and RDF statement types and frequencies. Our aim in 

doing this is to use semantics suggested by the schema to 

systematically convert an arbitrary un-weighted RDF graph into 

an edge-weighted graph appropriate as input to the algorithms 

described previously.  

We define a schema S as the union of the set of classes (C) and 

property types (P). Further, we define an RDF data store 

IR ,Π=  where US=Π  and I is the set of class and property 

instances corresponding to the schemas. A single entity could be 

an instance of multiple classes belonging to different schemas 

in Π . We assume that such an entity instance is uniquely 
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identified by one URI. In other words, no data integration 

operation is required.  

Class and Property Specificity (CS and PS) 
Intuitively more specific resources (entity instances and 

properties) participating in a path, convey more information than 

general ones. For instance, it is more informative if one knows 

that Michael Jordan was a basketball player as opposed to 

knowing that he is a person. Similarly, knowing that Rudy 

Giuliani was an employee of New York City is less informative 

than the fact that he was mayor of New York City.  

As a result of the rdfs:subClassOf  and rdfs:subPropertyOf  

properties provided by RDF schema it is possible to impose a 

partial ordering of properties and classes in the schema resulting 

in a wellformed hierarchy of classes and properties. For a given 

property p, let ( )pH  be the length of the longest path in the 

hierarchy tree that contains p, and for a given class c, let ( )cH ′  

be the length of the longest path in the hierarchy tree from the root 

to c. Properties and classes at the root of their respective hierarchy 

trees in the schema are considered most general while those at the 

leaves of these trees are considered most specific. Therefore a 

measure of specificity can be associated with each class or 

property commensurate with its position in its hierarchy. Let the 

depth of an arbitrary property in its property hierarchy be d(pi) 

and the depth of an arbitrary class in its class hierarchy be d(cj). 

Therefore, the specificity of property pi and class cj are given by   

( )
( )pH

pd
)µ(p i

i =  ( )
( )cH

cd
)µ(c

j

j ′
= .Every resource that is an instance of 

the class cj is assigned the weight )( jcµ . If a resource r is an 

instance of k distinct classes it is assigned the 

value ( ) ( )
km

mcr
≤≤

=
1

max µµ , since we want the most specific nodes 

and properties to be in the output subgraph. To convert this node 

weight into an edge weight, the value of each resource weight is 

equally distributed among all edges incident on the resource r. 

This weighting scheme favors nodes with lower degree since the 

node specificity is divided equally among its incident edges, 

therefore edges incident on nodes with high degree will get a 

lower weight.  

Instance Participation Selectivity (IPS) 
Another guideline we use is that rarer facts are typically more 

informative that frequently occurring ones [22]. Consider the 

example shown in Fig.1. The example shows two relationships 

lives_in and council_member_of defined on the classes Person 

and City. The instances p1,p2…pm of the class Person are members 

of the council of City c1, hence the relationship 

council_member_of between each p1,p2…pm to c1. Instances of 

class Person pm+1, pm+2,…pk-2, pk-1, pk represent people who live in 

City c1 and therefore are related to c1 by the relationship lives_in. 

From the perspective of the node c1, following an edge labeled 

lives_in will lead to one node among k-m possible nodes. In 

contrast, following an edge labeled council_member_of will lead 

to one node among m nodes. Given that rarer paths are considered 

more informative, the amount of information gained by choosing 

to traverse the council_member_of relationship to a node in the set 

{p1,p2…pm} is more than the gain achieved by choosing to traverse 

the lives_in relationship to a node in the set  {pm+1, pm+2,…pk-2, pk-

1, pk} . 

 

Figure 1 Illustrative example for Instance Participation 

Selectivity 

This is akin to choosing the hop with maximum information gain. 

To define this heuristic formally, we introduce the notion of the 

type of an RDF statement. The type of an RDF statement 

〈 s,p,o 〉   is defined as the triple π= 〈 Ci,p,Cj 〉  where typeOf(s)= 

Ci and typeOf(o)= Cj. Further, | π | is thus the number of 

statements of type π in a given RDF instance base. We therefore 

define Instance Participation Selectivity for each RDF statement 

as σπ = 1/| π |. Going back to Figure 1, let π= 〈 Person, lives_in, 

City 〉  and π’= 〈 Person, council_member_of, City 〉 . According 

to this example, σπ=1/(k-m) and  σπ
’= 1/m and if k>m then σπ

’> 

σπ. 

The Span Heuristic (SPAN) 
In [9] the authors define a ranking metric known as Refraction. 

Given a path of the form v1, e1, v2, e2… en-2, vn-1, en-1,vn from v1 to 

vn, where vi∈ Resources  and ei∈ Properties ∀i 1≤i≤n, this path is 

said to refract if there exists at least a pair of statements 

〈 vi,ei,vi+1 〉 , 〈 vi+1,ei+1,vi+2 〉  such that ( )S,eeS 1ii ∈¬∃ +
. In 

other words, this path passes through an instance of classes that 

belong to more than one schema.  The number of such 

occurrences measures the extent to which a given path conforms 

to a schema. We consider resources that are instances of classes 

belonging to different schemas as being indicative of informative 

paths between the given entities, since they tie different domains 

together. What makes such paths interesting is the fact that these 

paths represent a deviation from the expected paths suggested by 

the schemas. For example, in our scenario in Figure 4 an instance 

of the class Person may be classified as both an instance of class 

Actor in the Entertainment domain and an instance of class 

SpokesPerson in the Business domain. Such an instance serves to 

link different schemas.  

As a heuristic that favors the inclusion of such refracting paths in 

output subgraphs, we define a Span weight for an edge based on 

the class types of its two endpoints. Let us consider the example 

in Figure 2. For every node v in a given RDF graph we can define 

a set called SchemaCover, which is the set of schemas to which 

the classes (types) of v belong. Formally, 

SchemaCover= ( ){ }CvtypeOfSCS =∧∈∃  

The SchemaCover for each of the nodes in the set {u’, u, v1, v2, v3, 

v4, v5} is shown adjacent to the respective node in Figure 2. To 
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favor paths that span as many schemas as possible the search 

algorithm favors nodes that are classified under as many “new” 

schemas as possible at each step. By “new” we mean schemas that 

have been least recently encountered along a particular path. Let 

SDiff(u,u’) represent the number of new schemas seen as a result 

of traversing the edge (u,u’), where the value of SDiff(u,u’) = 

|SchemaCover(u’)-SchemaCover(u)|. The idea behind SDiff is to 

ensure that the discovery algorithm chooses the edge with 

maximum schema variety to traverse next. Using the absolute 

SchemaCover difference for one hop only, could lead to the 

following situation: The hop from u to u’ (based on high SDiff(u, 

u’)) is chosen. Subsequently, vi is chosen such that it maximizes 

SDiff(u’,vi). But u’ and vi are covered by exactly the same 

schemas (as in node u’ and v5 in Figure 2).   Therefore SDiff alone 

does not ensure that search will continue along paths that have 

nodes classified under more diverse schemas. To reduce the 

chance of this problem we define the Cumulative Schema 

Difference ( ) ( ) ( )iii vuSDiffvuSDiffvuuCSDiff ,,1,, ′++=′  

for { }uuadjvi
′−∈ ][ . We normalize this Cumulative Schema 

Difference (CSDiff) measure to compute a factor
ivuu →→'β ; 

( )1m21

CSDiff
β

ivuu'
−+

=→→
, where m is the number of schemas 

We then obtain the adjusted weight given by; 

( ) ( )ivuu'i u,vwβu,vw
i
∗=′

→→
 

 

Figure 2 Example of Span metric computation 

The effect of the factor β is to bias edge weights in the following 

way. Successor nodes that are instances of classes belonging to 

schemas other than those of the current and previous node are 

more likely to be visited, quantified by the two SDiff terms of 

CSDiff. More specifically, in the case of the example in Figure 2, 

a partial ordering is induced by the adjusted weights w’(u, vi), on 

the nodes as follows v1 f v4f v3f v2f  v5. The node v1 is 

therefore visited next. However, the measure β is not sufficient to 

distinguish between nodes in all cases. Consider the example in 

Figure 3. Nodes v1 and v2 have the same value of
ivuu →→'β ; but v1 

should be more desirable than v2 because it has a larger 

SchemaCover value. For such cases, we define a factor called 

SchemaCoverFactor  α(u, v): 

( ) 
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where m is the number of schemas. 

 

Figure 3 Influence of the Schema Cover Factor α 
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Note how the values of α for the two pairs of nodes that are in 

consideration are different even though the β values are the same. 

We therefore use α as a tie breaker in such cases. As per the 

calculations shown in Figure 3 this factor treats the node v1 

preferentially over node v2 i.e. v1f v2 thus resolving the 

ambiguity. Note that since the factor β is a property on a 3 node 

sequence it is query dependent and therefore cannot be pre-

computed. The value of 
ivuu'β →→  is therefore computed on-the-

fly during the candidate generation process. 

Combining three heuristics 
The values of all the produces using all the heuristics discussed 

above lie in the interval (0,1]. Although different weighting could 

be assigned to each heuristic we give them all equal weights in 

our experiments. The initial weight of an edge is given by the 

following formula:  

( )
( ) ( ) ( )

4

α(u,v)σ
degree(v)

vµ

degree(u)

uµ

2

1
pµ

u,vw

πvu ++







++

=
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where pu�v is the property connecting the resource node u and v, 

and π is the type of the statement vpu vu ,, →
. 

ivuu →→'β  is then 

used to adjust the weights w(u, vi) nii ≤≤∀ 1  as follows: 

ivuu →→'β * w(u, vi). This is done during the candidate generation 

phase when the path leading to a given edge is known. 

5. DATASET AND SCENARIO 
We used a synthetic dataset for our experiments since we needed 

control over characteristics of the data. This helps us ensure that 

our results are not unduly affected by unknown aspects i.e. 

connectivity, relative instance distribution etc. of the dataset. 
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Collection of real world data follows an almost opportunistic 

approach since availability often dictates design. As a result there 

is room for skew in instance data population. This skew may not 

always reflect real-world distributions, as was observed in our 

experience with SWETO [23]. To circumvent this we built a 

utility [24] that takes as input a set of schemas and a properties 

file specifying relative distributions of instances of classes and 

properties that would be expected in the real world. For example, 

consider two classes in the Business ontology (Appendix Fig. 

A2.): Trustee and Employee. It would be reasonable to assume 

that if there are 5,000 instances of the class Employee then there 

are unlikely to be 1,000 instances of the class Trustee. Instances 

of the class Trustee are more likely to be approximately 10. These 

numbers are domain specific. Our method for assigning values to 

these relative distributions is empirical and a discussion of this 

issue is beyond the scope of this paper. The result of running this 

utility is an RDF graph that contains nodes and edges that are 

instances of classes and property types belonging to any or all of 

the classes in the given schemas. The graph for our experiments 

contains 30,000 nodes and 45,000 edges.  

 

Figure 4 Example snippet of a subgraph returned for the 

query ρ(Actor_5567, Captain_8262) on our synthetic dataset– 

(Nodes in the above graph are color-coded according to the 

schemas their class belongs to. White nodes for Sports schema 

classes, Light Grey for Business and Dark Grey for 

Entertainment) 

As a motivation for the domains used in our dataset consider the 

following example. A fraud investigator with the Securities and 

Exchange Commission (SEC) receives the following piece of 

information about a week after the stock prices for 

EntertainmentCompany_9982 plummet. Actor_5567 sold 70% of 

his shares of EntertainmentCompany_9982 one week after 

Capt_8262 sold all of his shares in the same company. Both 

transactions took place two weeks before the prices plummeted. 

The example subgraph shown in Fig.4, might help an investigator 

visualize the connections between the resources: Actor_5567 and 

Captain_8262. 

6.  RESULTS AND EVALUATION 
We recognize the fact that the notion “best” subgraph is very 

subjective and dependent on the user’s perspective. It is however 

desirable to have an objective measure that could be used to 

quantify the quality of a generated subgraph. The issue of judging 

relevance of paths i.e. path ranking has been addressed in [9] and 

[10]. In [11] the authors use rarity of the path as a measure of its 

interestingness. To the best of our knowledge these are the only 

three efforts that measure path relevance. We therefore use these 

path ranking mechanisms to evaluate the quality of both the 

Candidate ρ-graph and the Display ρ-graph. In our experiments 

the Candidate ρ-graphs generated contained 30001 nodes and the 

Display ρ-graphs were restricted to a maximum of 100 nodes 

making them easy to visualize. 

Evaluation using Path Ranks 
In our data set there are over 60 million paths of length 13 

between the two endpoints used in Fig. 4. Paths of this length are 

unlikely to be of much interest to the user. To evaluate our 

subgraphs, we run an exhaustive k-hop limited Depth-First Search 

(DFS) on the input graph between the two entities. We use a 

depth limit of 9 hops for our experiments for feasibility of path 

enumeration for ranking. Note that both the Candidate ρ-graph 

and Display ρ-graph generated do contain arbitrary length paths, 

but we only consider paths of length at most 9 for fairness of 

comparison. We represent the paths returned by the k-hop DFS as 

the set FGPaths9 (paths of up to 9 hops in the full graph). There 

are therefore 30 distinct FGPaths9 sets, one for each query in our 

experiments. We rank the paths in each of the FGPaths9 sets 

using the ranking mechanisms proposed in [9] and [10] in 

addition to what we call Rarity Rank based on the method 

suggested in [11]. While Rarity Rank ranks paths based only on 

the rarity of the edges that constitute the path,  SemRank [9] uses 

a combination of Rarity, Specificity and Refraction (measure of 

conformity to schema) to rank paths. The mechanism proposed in 

[10] is the most flexible since it allows one to incorporate context, 

trust in the statements that constitute the path, path length, 

specificity and rarity. 

The rank of a path p based on the Rarity Rank scheme is 

given by the inverse of the number of paths that share the same 

type as path p. Each of the ranking mechanisms applied to the set 

FGPaths9 results in a list of ranked paths. Let us assume that this 

leads to ranking from 1→M where M is the rank of the least 

relevant path. Let this set of ranked paths be represented as 

FGRankedPaths9. We therefore have three distinct scales 

(FGRankedPaths9 sets) against which the quality of both 

Candidate ρ-graph and the Display ρ-graph can be measured. In 

all of the graphs, a table shown below the x-axis represents the 16 

possible combinations of the four heuristics we use viz. Class and 

Property Specificity (CS and PS), Instance Participation 

Selectivity (IPS) and The Span Heuristic (SPAN). 

Measuring Candidate ρ-graph quality 
To measure Candidate ρ-graph we compare the best paths in the 

entire graph to those in the Candidate ρ-graph. Let CGPaths9 

represent the set of paths in the Candidate ρ-graph with 

maximum length 9. For each path pcandidate ∈ CGPaths9 we count 

the number of paths p∈ FGRankedPaths9 such that rank(p) > 

rank(pcandidate). This gives us the rank of each path in the 

Candidate ρ-graph with respect to all paths in the set 

FGRankedPaths9. The score of a path is given by: 

)rank(pthsFGRankedPa)score(p candidate9candidate −=  

The quality of the Candidate ρ-graph is therefore given by: 

                                                                 

1 This was the observed number of nodes in the Candidate ρ-

graph for all the 30 queries used in our experiments. Further 

investigation revealed that this was an artifact of the 

connectivity of our dataset.  
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Figure 5 Quality of the Candidate ρ-graph as percentage of 

maximum score for averaged over 30 queries 

Figure 5 shows that the Candidate ρ-graph containing k paths 

obtained using our edge weighting schemes achieves between 

80—90% of the score that can be achieved by choosing the top-k 

ranked paths from the full graph (entire dataset of 30,000 nodes 

and 45,000 edges). The Candidate ρ-graphs in our results 

typically contain 30-40% of the paths in the entire graph between 

the endpoints yet are 80-90% as “good” as the top paths in the 

entire graph between the two endpoints.  

Measuring Display ρ-graph quality 
Similar to Candidate ρ-graph quality, we compare the paths in the 

Display ρ-graph to the best paths in the entire graph. Let the set 

DGPaths represent the paths in the Display ρ-graph. The rank of 

a path in the Display ρ-graph is computed exactly the same way 

the rank of a path in the Candidate ρ-graph is computed, as is the 

score.  

)rank(pthsFGRankedPa)score(p display9display −=  

The quality of a display ρ-graph is computed by comparing its 

cumulative score to the best possible display that could be 

obtained from the ranked set of paths in the full graph. We refer to 

this best possible display as Pseudo-Display. In our experiments 

we use a budget of 100 nodes for our Display ρ-graphs. Starting 

with an empty Pseudo-Display graph and the path with rank 1 in 

the set FGRankedPaths9 we add paths to the Pseudo-Display until 

100 nodes have been added. The cumulative score of the Pseudo-

Display is then computed as the sum of the scores of the paths. 

The quality of a Display ρ-graph is therefore given by: 

∑

∑

−∈

∈
=

DisplayPseudop

pseudo

DGPathsp

display

pseudo

display

)score(p

)score(p

Q(DGPaths)
 

Figure 6 shows that starting with the Candidate ρ-graphs with 

80—90% quality the Display ρ-graphs computed capture a 

maximum of 84% of the score that can be obtained by taking the 

best paths in the full graph. Our results show the quality of 

Display ρ-graphs with respect to SemRank [9] to be surprisingly 

low – 43%. Further investigation of the methods used revealed 

that the difference between the ranking scheme in [10] and that in 

[9] is that in the former instance node degrees affect the rank of a 

path (nodes of lower degree being favored) whereas in the latter 

rank of path is determined purely by properties in the path. Our 

heuristics favor lower degree nodes and hence the observed trend. 

A personal communication with the authors of [9] revealed that 

extending SemRank to include the effect of nodes is an intended 

follow up to this work.  

 

Figure 6 Quality of the Display ρ-graph – Note that all 

weighting heuristics turned off results in poor graph quality 

in contrast with all heuristics turned on 

Successive Display ρ-graph quality 
With the intention of validating the current flow model for 

subgraph relevance [6] we conducted the following experiment. 

We computed what we term as Successive Display ρ-graphs. To 

construct these displays we successively run the Display ρ-graph 

generation algorithm on the candidate ρ-graph. At each 

successive run we discount the paths used in previous displays. 

This results in the next best Display ρ-graph at every successive 

run. This process is repeated five times in our experiments to 

obtain five Display ρ-graphs. The current flow in each of these 

Display ρ-graphs is plotted relative to the current flow in the first 

Display ρ-graphs on a log scale in Figure 7. The quality of these 

Display ρ-graphs is plotted relative to the quality of the first 

Display ρ-graph in Figure 8. There is a large difference both in 

the current flow and the display quality between the first display 

and the next display. This confirms that there is a correspondence 

between current flow in the Display ρ-graphs and their quality. 

This in turn supports the electricity based model for RDF graph 

relevance. Note that the plots below are averages of the relative 

differences of successive displays over all ranking schemes. 
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Figure 7 Current Flow in 5 Successive Display ρ-graphs  

 

Figure 8 Quality of 5 Successive Displays relative to the best 

 

Figure 9 Display graph with budget =12 WITHOUT using edge weighting scheme 

 

Figure 10 Display graph with budget =12 using edge weighting scheme 

We conducted another experiment on factual data extracted 

from public access government websites. For this particular 

experiment we picked two persons of interest at random. Figures 

9 and 10 compare Display ρ-graphs generated for end points: 

Arnold Schwarzenegger and Bill Clinton. In both cases the 

budget is set to 12 nodes. Figure 10 contains a very interesting 

path that connects Arnold Schwarzenegger to Bill Clinton via 

Maria Shriver followed by Edward Kennedy.

Edward Kennedy and Bill Clinton both spoke at consecutive 

Democratic National Conventions. This indicated a strong 

similarity in their political ideologies. A strong familial 

relationship between Edward Kennedy and Arnold 

Schwarzenegger via Maria Shriver is also seen in the output in 

Figure 10. In comparison to these paths the paths in Figure 9 are 

rather uninteresting. This provides empirical evidence that our 

weighting schemes are useful. We believe that further 

investigation of semantic methods for subgraph discovery is 

warranted.  

7. CONCLUSIONS AND FUTURE WORK 
Our results suggest that using edge weights generated by our 

weighting scheme results in highly relevant Candidate ρ-graphs, 
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where relevance is judged using established path ranking 

metrics. Further evidence supporting this claim can be seen from 

quality of the Display ρ-graphs. The ranking metrics proposed 

by Aleman-Meza et.al. [10] in our experiments show that the 

quality of the Display ρ-graphs are best when using Class 

Specificity (CS), Instance Participation Selectivity (IPS) and 

Span together. Results for the Successive Displays serve to 

support the electricity flow based model for RDF subgraph 

relevance, besides validating our edge weighting schemes. 

Results presented in this paper seem very promising for 

application domains like Ontology based Scientific Discovery 

where the ability to visualize relevant relationships between 

metadata entities is crucial. As a follow up to this work we plan 

to apply our techniques to develop tools for finding correlations 

between Glycosylation patterns and patterns of gene expression 

within a cell line in the Glycomics [25] domain. We further 

propose to develop algorithms to support queries involving k 

endpoints for RDF graphs. Another interesting direction 

involves formalizing the notion of Context and investigating 

Context-Aware Subgraph Discovery algorithms. 
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